
Prolems for GAEL XX

1 Lecture 1

1. Let Z/2 acts by −1 on the affine line A1. Show that the quotient sheaf (e.g. for the
fppf topology) A1/(Z/2) is not representable by a scheme. The same question for
Gm acting by multiplication on A1.

2. Let R be a finitely generated associative k-algebra. Define M s
R to be the (set valued)

moduli functor classifying simple and finite dimensional R-modules. Give a precise
definition of the corresponding moduli functor. Is it a sheaf (for the fppf or etale
topology) ? Is it representable by a scheme ? Is its associated sheaf representable
by a scheme ?

3. Let S be a smooth algebraic variety, Y, Z ⊂ S be two smooth closed sub-varieties,
and X their intersection. Let A be a commutative k-algebra of finite type and I an
ideal in A with I2 = 0. Construct, for any morphism of k-schemes x : SpecA/I →
X, en element

o(x) ∈ Coker
(
(TY,x ⊕ TZ,x)⊗A/I I −→ TS,x ⊗A/I I

)
,

in such a way that o(x) = 0 if and only if x extends to a morphism SpecA → X
(here TY,x, TZ,x and TS,x are the pull-backs of the tangent sheaves on SpecA/I).

4. Let R be a finitely generated associative k-algebra and V a finite dimensional R-
module. Define the moduli functor of subobjects of V and prove that it is repre-
sentable by a projective scheme. Use this to prove the following statement: if V is
simple and if Ext1R(V, V ) 6= 0 and Ext2R(V, V ) = 0, then there is an infinite number
of non-isomorphic simple R-modules.

2 Lecture 2

1. Compute the cotangent complexes of A = k[t]/tn, as well as the morphisms between
them induced by the natural projections k[t]/tn+1 → k[t]/tn.
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2. Compute the derived tensor product k ⊗L
k[t]/tn k. Show that for any commutative

dg-algebra A with an augmentation A→ k, the derived tensor product k ⊗L
A k can

be written (up to a quasi-isomorphism) as Symk(L[1]) for a certain graded k-module
L. Can you identify L in terms of the cotangent complex LA of A ?

3. Let A be a commutative k-algebra of finite type and I be an ideal. We assume
that locally on SpecA, I is generated by a regular sequence (SpecA/I ↪→ SpecA
is l.c.i.). Compute the derived tensor product A/I ⊗L

A A/I and show that it is
quasi-isomorphic to SymA(I/I2[1]).

4. Let A be commutative k-algebra of finite type which is a local complete intersection.
Show that for any commutative dg-algebraB with π0(B) = A, the natural projection
B −→ π0(B) = A has a section in the homotopy category. Show that this property
characterises local complete intersections. Deduce that for a general commutative
dg-algebra B the projection B → π0(B) has no sections up to homotopy.

5. Show that flat, smooth and etale morphisms of commutative dg-algebras are stable
by compositions and derived base changes. Prove that smooth and etale morphisms
of commutative dg-algebras are local for the etale topology.

6. Show that if A→ B is an etale morphism of commutative dg-algebras, then for any
commutative A-algebra C, the mapping space MapA−cgda(B,C) is homotopically
discrete (i.e. all πi vanish for i > 0).

7. Show that a commutative dg-algebra A is finitely presented if and only if it satisfies
the following two conditions:

(a) π0(A) is finitely presented as a commutative k-algebra.

(b) the cotangent complex LA is finitely presented as a A-dg-module.

8. Let A be a quasi-smooth ommutative dg-algebra (i.e. it is finitely presented and its
cotangent complex LA has amplitude in [-1,0]). Show that, locally for the Zariski
topology, there exists a commutative smooth k-algebra B, a projective B-module
of finite type M and a morphism of B-modules s : M → B, such that A is quasi-
isomorphic to the Koszul dg-algebra SymB(M [1]) whose differential is induced by
s. Geometrically: any quasi-smooth derived scheme is locally the derived locus of
zeros of a section of vector bundle on a smooth scheme.

9. Let A = Symk(k[n]) for n ≤ 0. Show that k is a coherent A-dg-module and is
perfect if and only if n is even.

2



3 Lectures 3

1. Provide a complete proof that derived schemes are stable by homotopy pulll-backs
inside derived stacks.

2. Construct an example of a derived scheme X with a smooth truncation h0(X), but
such that the inclusion h0(X) ↪→ X does not possess a retraction. Show that such
examples can not exist when h0(X) is of dimension less than 1.

3. Let f : X −→ X ′ be a morphism between derived schemes of finite type over k.
Suppose that

(a) the induced map X(k)→ X ′(k) is a bijective map of sets

(b) for all x ∈ X(k), the induced morphism on tangent complexes

TX,x −→ TX′,f(x)

is a quasi-isomorphism.

Prove that f is an equivalence of derived schemes.

4. Let
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be a commutative triangle of derived schemes of finite type over k. Show that f
is etale (resp. smooth) if and only if for all geometric point s ∈ S(k) the induced
morphism on the derived fibers

fs : p−1({s}) −→ q−1({s})

is an etale (resp. smooth).

5. Let S = SpecA be a derived affine scheme such that π∗(A) is finite dimensional
over k (i.e. A is an Artin dg-algebra). Show that for all derived Artin stack X, the
derived mapping stack RMap(S,X) is representable by a derived Artin stack.

6. Let X be a derived Artin stack. Show that h0(X) carries canonical quasi-coherent
sheaves πi(OX). Provide examples of non-equivalent such X giving rise to the same
h0(X) and the same sheaves πi(OX).
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7. Let X be a derived Artin stack with πi(OX) = 0 for i big enough. Show that the
inclusion i : h0(X) ↪→ X induces an isomorphism on the Grothendieck groups of
coherent modules

i∗ : G0(h
0(X)) ' G0(X).

8. Let f : X −→ Y be a morphism of derived Artin stack. Show that if f is quasi-
smooth then the derived pull-back

f ∗ : Dqcoh(Y ) −→ Dqcoh(X)

preserves coherent modules and thus induces a pull-back

f ! : G0(Y ) −→ G0(X).

Using the previous exercise, this induces a pull-back

f !! : G0(h
0(Y )) −→ G0(h

0(X)).

Is this induced by the derived pull-back of coherent sheaves on h0(X) −→ h0(Y ) ?
Suppose that X = h0(X), what is then f !!(OX) ?

4 Lecture 4

1. Let Z be a smooth Artin stack, V a vector bundle on X and s : X → V a section.
Let X be the derived Artin stack of zeros of s. Show that the virtual class of X is
Ctop(V ), the top Chern class of V .

2. Let G be an algebraic group with Lie algebra g and K be a finite CW complex.
Show that RMap(K,G) decomposes, as a derived scheme, as

RMap(K,G) ' Gπ0(K) × Spec (Symk(V ⊗ g∗)) ,

where V =
⊕

i>0Hi(K, k)[i] is the reduced homology of K.

3. Let G be an algebraic group with Lie algebra g. Show that we have

RLocG(Sn) ' [SpecA/G],

where A = Symk(g
∗[n− 1]) for n > 1. What is the formula for n = 0 and n = 1 ?

4. Let G be a reductive group. Compute the virtual class of RLocG(S2). Show that it
vanishes for G = Gln.
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5. Let S be a smooth and projective surface, and let RPic(S) := RMap(S,BGm) be
the derived Picard stack of S. Show that RPic(S) is quasi-smooth and has a trivial
virtual class. Deduce that RV ect(S), the derived moduli stack of vector bundles on
S also has a trivial virtual class.

6. Let X be a K3 surface and C a smooth proper curve C of genus g ≥ 2. Construct
a morphism of derived Artin stacks

Θ : RMap(C,X) −→ RPic(X),

sending a map f : C −→ X to the determinant of the coherent complex f∗(OC).
Show that this map is quasi-smooth and deduce that the virtual class of RMap(C,X)
vanishes.

7. We consider the triangulated category T := Dqcoh(RLocG(S2)). Construct a monoidal
structure on T (consider a 3-sphere with three holes M and RLocG(M) to create a
correspondence). Prove that it is compatible with the standard t-structure on T ,
and that the corresponding heart is Rep(G), the usual tensor category of linear rep-
resentations of G. Is T equivalent, as a tensor triangulated category, to D(Rep(G)),
the derived category of linear representations of G ?

8. Let X be a smooth and projective complex variety, and β ∈ H2(X,Z) a fixed class.
Define a derived stack of stable maps RMg,n(X, β) (genus g, n maked points and
class β). Explain how to use it to define functors

Θg,n,β : Db
coh(Mg,n+1)×Db

coh(X
n) −→ Db

coh(X).

Can you see a relation between the θg,n,β’s and the Gromov-Witten theory of X ?

9. Compute the de Rham complex of BG for G a reductive group. Show that symplec-
tic forms shifted by 2 on BG are in one-to-one correspondence with non-degenerate
bilinear G-invariants forms on g := Lie(G).

10. Let M be an oriented n-dimensional topological manifold with boundary ∂M = N .
Show that the restriction map

r : RLocG(M) −→ RLocG(N)

is such that r∗(ω) = 0, where ω is the canonical (2 − n + 1)-shifted symplectic
structure on RLocG(N). Prove that the derived fibers of r carry natural (2 − n)-
shifted symplectic structures.
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