Problem Sheet on K3 surfaces and IHSM

Lecture 3

- (1) Let \mathcal{H}_n be the tubular domain associated to a lattice $L = 2U \oplus L_0$ as in lecture 3 and consider the action of $g \in O(L)$ on \mathcal{H}_n . Calculate the determinant of the functional matrix (thus verifying that it is $\det(g)j(g,Z)$).
- (2) Let $\tilde{\omega} = d\tilde{z}_1 \wedge \ldots \wedge \tilde{z}_n$ and let $F \in M_{nk}(\mathcal{O}(L), \det^{\otimes k})$. Show that $\tilde{F}\tilde{\omega}^k$ is an $\mathcal{O}(L)$ -invariant pluricanonical form.
- (3) Show that every non-constant modular form vanishes on a non-empty divisor (if $n \ge 2$) (Koecher principle).
- (4) Show the following: If (S, h) is a semi-polarized K3 surface of degree 2d which contains a smooth rational curve R with R.h = 0, then the period point of (S, h) lies on a reflection hyperplane.
- (5) Construct examples of polarized K3 surfaces (S, h) of degree 2d such that the point $[(S, h)] \in \mathcal{F}_{2d}$ is singular.
- (6) Show that for every prime p there is a finite surjective map $\mathcal{F}_{2p^2} \to \mathcal{F}_2$.
- (7) For which values of d can you show that \mathcal{F}_{2d} is unirational?