Problem Sheet on K3 surfaces and IHSM

Lecture 2

(1) Find an element in $\mathrm{O}\left(L_{2 d}\right)$ which interchanges the two components $\mathcal{D}_{L_{2 d}}$ and $\mathcal{D}_{L_{2 d}}^{\prime}$ of $\Omega_{L_{2 d}}$.
(2) Show that an element in $g \in \mathrm{O}\left(L_{2 d}\right)$ can be extended to an isometry in $\mathrm{O}\left(L_{\mathrm{K} 3}\right)$ if and only if $g \in \tilde{\mathrm{O}}\left(L_{2 d}\right)$.
(3) Show that there is an exact sequence

$$
0 \rightarrow \tilde{\mathrm{O}}\left(L_{2 d}\right) \rightarrow \mathrm{O}\left(L_{2 d}\right) \rightarrow \mathrm{O}\left(D\left(L_{2 d}\right)\right) \rightarrow 0
$$

(4) Find explicit (primitive) vectors in $L=3 U \oplus 2 E_{8}(-1) \oplus\langle-2\rangle$ with $\operatorname{div}(h)=2$.
(5) Consider $L=3 U \oplus 2 E_{8}(-1) \oplus\langle-2(n-1)\rangle$. How many different "types of polarization" (i.e. orbits of primitive vectors) of degree $2 d$ can you find?
(6) Prove that a nef divisor h on a K3 surface S is ample if and only if it has positive degree on every (-2)-curve S (Hint: this is easy with Reider's theorem).

