Problem Sheet on K3 surfaces and IHSM

Lecture 1

(1) Prove that the following are K3 surfaces: double covers of \mathbb{P}^{2} branched along a sextic, quartics in \mathbb{P}^{3}, complete intersections of bidegree $(2,3)$ in \mathbb{P}^{5} or of multidegree $(2,2,2)$ in \mathbb{P}^{6}. Can you think of other examples which are complete intersections?
(2) Analyze what happens when you take double covers of \mathbb{P}^{2} branched along a sextic with "mild" singularities.
(3) Count the number of moduli in the above examples.
(4) Find K3 surfaces with high Picard number (Hint: look e.g. at quartics in \mathbb{P}^{3} with many automorphisms).
(5) Show that the Kummer surface, i.e. the minimal resolution of the quotient A / ι of an abelian surface A by the invoultion $\iota: x \mapsto-x$, is a K3 surface. What can one say about the Picard group?
(6) The degree Hilbert scheme of a K3 surfaces S can be constructed as the blow-up of the second symmetric product $S^{2}(S)=S \times S / S_{2}$ along the diagonal. Prove that there exists a nowhere vanishing holomorphic symplectic 2-form on $\operatorname{Hilb}^{2}(S)$.
(7) Prove that the generalized Kummer variety $K^{n}(A)$ is an IHSM.

