ULRICH BUNDLES AND VARIETIES OF

WILD REPRESENTATION TYPE

Joan Pons

Universitat de Barcelona

Advisors: Dr.Enrique Arrondo, Dra.Rosa Maria Miró.

Setting

We work in the setting of ACM schemes:

Definition 0.1. A closed subscheme $X \subseteq \mathbb{P}^n$ is *Arithmetically Cohen-Macaulay (briefly, ACM)* if its homogeneous coordinate ring R_X is a Cohen-Macaulay ring or, equivalently, dim R_X = depth R_X .

We are interested in constructing large families of indecomposable coherent sheaves on ACM varieties such that they are cohomologically as "simple" as possible, i.e., they are ACM:

Definition 0.2. Let $X \subseteq \mathbb{P}^n$ be a closed ACM scheme. A coherent sheaf \mathcal{E} on X is *Arithmetically Cohen-Macaulay* (ACM for short) if it is locally Cohen-Macaulay (i.e., depth $\mathcal{E}_x = \dim \mathcal{O}_{X,x}$ for every point $x \in X$) and has no intermediate cohomology:

 $H^{i}_{*}(X, \mathcal{E}) = 0$ for all $i = 1, ..., \dim X - 1$.

The ACM varieties with a finite number of ACM indecomposable coherent sheaves have been classified:

Theorem 0.3 ((Buchweitz, Greuel, Schreyer, Eisenbud, Herzog)). Let $X \subseteq \mathbb{P}^n$ be an ACM variety of finite representation type. Then X is either three or less reduced points on \mathbb{P}^2 , a projective space, a smooth quadric hypersurface $X \subset \mathbb{P}^n$, a cubic scroll in \mathbb{P}^4 , the Veronese surface in \mathbb{P}^5 or a rational normal curve.

On the other extreme would lie varieties of "wild representation type":

Definition 0.4. An ACM variety $X \subseteq \mathbb{P}^n$ is of *wild representation type* if there exist *l*-dimensional families of non-isomorphic indecomposable ACM sheaves for arbitrary large *l*.

Among ACM sheaves, we are specially interested in those with a large number of twisted global sections. There is a bound for this number:

Theorem 0.7 ((Ulrich)). If a Cohen-Macaulay ring R supports an Ulrich module M verifying $\operatorname{Ext}_{R}^{i}(M, R) = 0$ for $1 \leq i \leq \dim(R)$, then R is Gorenstein.

Results

Our contribution regards varieties $X \cong Bl_Z \mathbb{P}^n$ which are a blow-up of a finite set of points Z on \mathbb{P}^n with ample anticanonical divisor, i.e, they are Fano:

Definition 0.8. A *Fano variety* is defined to be a smooth n-variety X whose anticanonical divisor $-K_X$ is ample. Its degree is defined as $(-K_X)^n$. If $-K_X$ is very ample, X will be called a *strong Fano variety*.

A two-dimensional Fano variety (resp. strong Fano variety) is called a *del Pezzo surface* (resp. *strong del Pezzo surface*).

Del Pezzo surfaces have been classically classified:

Theorem 0.9. Let *X* be a del Pezzo surface of degree *d*. Then $1 \le d \le 9$ and

- (i) If d = 9, then X is isomorphic to \mathbb{P}^2_k (and $-K_{\mathbb{P}^2_k} = 3H_{\mathbb{P}^2_k}$ gives the usual Veronese embedding in \mathbb{P}^9_k).
- (ii) If d = 8, then X is isomorphic to either $\mathbb{P}^1_k \times \mathbb{P}^1_k$ or to a blow-up of \mathbb{P}^2_k at one point.
- (iii) If $7 \ge d \ge 1$, then X is isomorphic to a blow-up of 9 d points in general position.

Theorem 0.10 ((Miró-Roig -P.)). Let $X \cong Bl_Z \mathbb{P}^n \subseteq \mathbb{P}^N$ be a Fano blow-up embedded in \mathbb{P}^N by the anticanonical divisor $-K_X$, $n \ge 3$ and let $r \ge n$. Then there exists a family of rank r simple (hence, indecomposable) ACM vector bundles of dimension $\sim r^2$. In particular, Fano blow-ups are varieties of wild representation type

Theorem 0.5 (Ulrich, Casanellas-Hartshorne). Let $X \subseteq \mathbb{P}^n$ be an integral subscheme and \mathcal{E} be an ACM sheaf on X of positive rank. Then the minimal number of generators $m(\mathcal{E})$ of the R_X -module $\operatorname{H}^0_*(\mathcal{E}) := \bigoplus_i \operatorname{H}^0(X, \mathcal{E}(i))$ is bounded by

 $m(\mathcal{E}) \leq \deg(X) \operatorname{rk}(\mathcal{E}).$

Definition 0.6. An ACM sheaf \mathcal{E} of positive rank will be called an *Ulrich sheaf* if $m(\mathcal{E}) = \deg(X) \operatorname{rk}(\mathcal{E})$.

Why are Ulrich \mathcal{O}_X -sheaves meaningful? Because they give relevant information about the structure of *X*. For instance, in the algebraic case:

In the two dimensional case, i.e, for del Pezzo surfaces, we obtain a much stronger result:

Theorem 0.11 ((Miró-Roig -P.)). Let *X* be a del Pezzo surface of degree *d* with anticanonical divisor $H := -K_X$. Then for any $r \ge 2$ there exists a family of dimension $r^2 + 1$ of simple initialized Ulrich vector bundles of rank *r* with Chern classes $c_1 = rH$ and $c_2 = \frac{dr^2 + (2-d)r}{2}$. Moreover, they are μ -semistable with respect to the polarization $H = 3e_0 - \sum_{i=1}^{9-d} e_i$ and μ -stable with respect to $H_n := (n-3)e_0 + H$ for $n \gg 0$. In particular, del Pezzo surfaces are of wild representation type.