Quantum cohomology of the odd symplectic Grassmannian of lines

Clélia Pech
Institut Fourier, Grenoble

July 21th, 2011

Introduction
Motivation
What are odd symplectic Grassmannians ?

Classical cohomology Schubert varieties
Presentation

Quantum cohomology
Definition
Enumerativity of GW invariants
Quantum presentation

Introduction

Motivation

Quantum cohomology has been extensively studied for

- homogeneous spaces ;
- toric varieties.

Introduction

Motivation

Quantum cohomology has been extensively studied for

- homogeneous spaces ;
- toric varieties.

But

- very few explicit formulas for non-homogeneous non-toric varieties ;
- quasi-homogeneous varieties (e.g odd symplectic Grassmannians) should provide interesting examples.

Introduction

What are odd symplectic Grassmannians ?

Studied by Mihai (2007).

Definition

ω antisymmetric form of maximal rank on $\mathbb{C}^{2 n+1}$.

$$
\mathrm{IG}_{\omega}(m, 2 n+1):=\{\Sigma \in \mathrm{G}(m, 2 n+1) \mid \Sigma \text { is isotropic for } \omega\} .
$$

Introduction

What are odd symplectic Grassmannians ?

Studied by Mihai (2007).

Definition

ω antisymmetric form of maximal rank on $\mathbb{C}^{2 n+1}$.

$$
\mathrm{IG}_{\omega}(m, 2 n+1):=\{\Sigma \in \mathrm{G}(m, 2 n+1) \mid \Sigma \text { is isotropic for } \omega\} .
$$

Remarks

1. independant of the form ω;
2. endowed with an action of the odd symplectic group :

$$
\mathrm{Sp}_{2 n+1}:=\{g \in \mathrm{GL}(2 n+1) \mid \forall u, v \in V \omega(g u, g v)=\omega(u, v)\} ;
$$

3. odd symplectic Grassmannians of lines are the $m=2$ case.

Introduction

What are odd symplectic Grassmannians ?

Properties (of $\operatorname{IG}(m, 2 n+1)$)

1. smooth subvariety of dimension $m(2 n+1-m)-\frac{m(m-1)}{2}$ of $\mathrm{G}(m, 2 n+1)$.
2. two orbits under the action of $\mathrm{Sp}_{2 n+1}$:

- closed orbit $\mathbb{O}:=\{\Sigma \in \operatorname{IG}(m, 2 n+1) \mid \Sigma \supset K\}$, isomorphic to $\operatorname{IG}(m-1,2 n)$;
- open orbit $\{\Sigma \in \operatorname{IG}(m, 2 n+1) \mid \Sigma \not \supset K\}$, isomorphic to the dual of the tautological bundle over $\operatorname{IG}(m, 2 n)$;
where $K=\operatorname{Ker}(\omega)$.

Classical cohomology

Schubert varieties for the symplectic Grassmannian

Schubert varieties of the symplectic Grassmannian $\operatorname{IG}(m, 2 n)$

- are subvarieties defined by incidence conditions with respect to an isotropic flag ;
- can be indexed by k-strict partitions (cf Buch-Kresch-Tamvakis), i.e
$\lambda=\left(2 n-m \geq \lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0\right)$ such that $\lambda_{j}>k \Rightarrow \lambda_{j}>\lambda_{j+1}$,
with $k=n-m$;
- correspond to classes $\sigma_{\lambda} \in \mathrm{H}^{|\lambda|}(\mathrm{IG}, \mathbb{Z})$ generating the cohomology ring $\mathrm{H}^{*}(\mathrm{IG}, \mathbb{Z})$ as a \mathbb{Z}-module.

Classical cohomology

Schubert varieties for $\operatorname{IG}(m, 2 n+1)$

Embedding in the symplectic Grassmannian :

- IG $(m, 2 n+1) \hookrightarrow \operatorname{IG}(m, 2 n+2)$ identifies $\operatorname{IG}(m, 2 n+1)$ with a Schubert variety of $\operatorname{IG}(m, 2 n+2)$ (Miнai) ;
- hence "induced" Schubert varieties for $\operatorname{IG}(m, 2 n+1)$ and decomposition $\mathrm{H}^{*}(\operatorname{IG}(m, 2 n+1), \mathbb{Z})=\bigoplus_{\lambda} \mathbb{Z} \sigma_{\lambda}$.

Classical cohomology

Schubert varieties for $\operatorname{IG}(m, 2 n+1)$

Embedding in the symplectic Grassmannian :

- $\operatorname{IG}(m, 2 n+1) \hookrightarrow \operatorname{IG}(m, 2 n+2)$ identifies $\operatorname{IG}(m, 2 n+1)$ with a Schubert variety of $\operatorname{IG}(m, 2 n+2)$ (Miнai) ;
- hence "induced" Schubert varieties for $\operatorname{IG}(m, 2 n+1)$ and decomposition $\mathrm{H}^{*}(\operatorname{IG}(m, 2 n+1), \mathbb{Z})=\bigoplus_{\lambda} \mathbb{Z} \sigma_{\lambda}$.
For IG(2, $2 n+1)$, Schubert varieties are indexed by
- "usual" ($n-2$)-strict partitions $\lambda=\left(2 n-1 \geq \lambda_{1} \geq \lambda_{2} \geq 0\right)$;
- the "partition" $\lambda=(2 n-1,-1)$ corresponding to the class of the closed orbit \mathbb{O}.

Classical cohomology

Presentation

$\mathrm{H}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})$ is generated as a ring by two sets of special Schubert classes :

1. "rows" σ_{p} for $1 \leq p \leq 2 n-1$, plus the class $\sigma_{2 n-1,-1}$;
2. "columns" σ_{1} and $\sigma_{1,1}$.

Classical cohomology

Presentation

$\mathrm{H}^{*}(\mathrm{IG}(2,2 n+1), \mathbb{Z})$ is generated as a ring by two sets of special Schubert classes :

1. "rows" σ_{p} for $1 \leq p \leq 2 n-1$, plus the class $\sigma_{2 n-1,-1}$;
2. "columns" σ_{1} and $\sigma_{1,1}$.

Proposition (Presentation of $\left.\mathrm{H}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})\right)$
The ring $\mathrm{H}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})$ is generated by the classes $\sigma_{1}, \sigma_{1,1}$ and the relations are

$$
\begin{array}{r}
\operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n}=0 \\
\frac{1}{\sigma_{1}} \operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n+1}=0
\end{array}
$$

Quantum cohomology

Moduli space of stable maps

Consider

- X smooth projective Fano variety over \mathbb{C} with Picard rank 1
- n, d integers.

A stable map of degree d with n marked points is a map $f:\left(C ; p_{1}, \ldots, p_{n}\right) \rightarrow X$, where

- C is a tree of projective curves with n smooth marked points p_{1}, \ldots, p_{n};
- $f_{*}[C]=d \cdot$ [hyperplane] ;

Quantum cohomology

Moduli space of stable maps

Consider

- X smooth projective Fano variety over \mathbb{C} with Picard rank 1
- n, d integers.

A stable map of degree d with n marked points is a map $f:\left(C ; p_{1}, \ldots, p_{n}\right) \rightarrow X$, where

- C is a tree of projective curves with n smooth marked points p_{1}, \ldots, p_{n};
- $f_{*}[C]=d \cdot$ [hyperplane] ;
- stability condition : each contracted component of C has at least 3 special points.
The corresponding moduli space is denoted by $\overline{\mathcal{M}}_{0, n}(X, d)$.

Quantum cohomology

An example of a stable map

Quantum cohomology

Gromov-Witten invariants

Evaluation maps

$$
\begin{array}{rlll}
e v_{i}: & \overline{\mathcal{M}}_{0, n}(X, d) & \longrightarrow & X \\
& {\left[f:\left(C ; p_{1}, \ldots, p_{n}\right) \rightarrow X\right]} & \mapsto & f\left(p_{i}\right)
\end{array}
$$

Quantum cohomology

Gromov-Witten invariants

Evaluation maps

$$
\begin{array}{rlll}
e v_{i}: & \overline{\mathcal{M}}_{0, n}(X, d) & \longrightarrow & X \\
& {\left[f:\left(C ; p_{1}, \ldots, p_{n}\right) \rightarrow X\right]} & \mapsto & f\left(p_{i}\right)
\end{array}
$$

Definition
The degree d GW invariant associated to classes $\gamma_{1}, \ldots, \gamma_{n}$ is

$$
I_{d}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\int_{\left[\overline{\mathcal{M}}_{0, n}(X, d)\right]^{\text {vir }}} e v_{1}^{*} \gamma_{1} \cup \cdots \cup e v_{n}^{*} \gamma_{n}
$$

where $\left[\overline{\mathcal{M}}_{0, n}(X, d)\right]^{\text {vir }}$ is the virtual fundamental cycle.
Remark : GW invariants are integers.

Quantum cohomology

Quantum product
The small quantum product of classes γ_{1} and γ_{2} is

$$
\gamma_{1} \star \gamma_{2}=\sum_{\beta} \sum q^{d} \underbrace{I_{d}\left(\gamma_{1} \cdot \gamma_{2} \cdot \check{\gamma}_{3}\right)}_{\text {Gromov-Witten invariant }} \gamma_{3}
$$

- q is the quantum parameter and has degree the index of X;
- γ_{3} runs over a basis of $\mathrm{H}^{*}(X, \mathbb{C})$; $\check{\gamma_{3}}$ runs over the corresponding dual basis.

Quantum cohomology

Quantum product

The small quantum product of classes γ_{1} and γ_{2} is

$$
\gamma_{1} \star \gamma_{2}=\sum_{\beta} \sum q^{d} \underbrace{I_{d}\left(\gamma_{1} \cdot \gamma_{2} \cdot \check{\gamma}_{3}\right)}_{\text {Gromov-Witten invariant }} \gamma_{3}
$$

- q is the quantum parameter and has degree the index of X;
- γ_{3} runs over a basis of $\mathrm{H}^{*}(X, \mathbb{C})$; γ_{3} runs over the corresponding dual basis.

Properties

1. The quantum product is commutative, degree-preserving, associative, with unit $1 \in \mathrm{H}^{*}(X, \mathbb{C})$.
2. It is a deformation of the cup-product.

Quantum cohomology

Enumerativity of GW invariants

What does it mean ?

$I_{d}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=$ number of degree d rational curves through $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, where Γ_{i} 's are cycles Poincaré dual to the classes γ_{i}.

Quantum cohomology

Enumerativity of GW invariants

What does it mean ?

$I_{d}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=$ number of degree d rational curves through $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$,
where Γ_{i} 's are cycles Poincaré dual to the classes γ_{i}.

What are the obstructions ?

1. moduli space may not have the expected dimension ;
2. maybe Γ_{i} 's can't be made to intersect transversely ;
3. stable maps with reducible source may contribute ;
4. a curve may cut one of the Γ_{i} 's in several points, contributing several times to the invariant ;
5. similarly a curve may cut one of the Γ_{i} 's with multiplicities.

Quantum cohomology

The moduli spaces $\overline{\mathcal{M}}_{0,2}(\mathrm{IG}, 1)$ and $\overline{\mathcal{M}}_{0,3}(\mathrm{IG}, 1)$

Proposition
The moduli spaces $\overline{\mathcal{M}}_{0,2}(\mathrm{IG}, 1)$ and $\overline{\mathcal{M}}_{0,3}(\mathrm{IG}, 1)$ are smooth (as stacks) and of the expected dimension.

Quantum cohomology

The moduli spaces $\overline{\mathcal{M}}_{0,2}(\mathrm{IG}, 1)$ and $\overline{\mathcal{M}}_{0,3}(\mathrm{IG}, 1)$

Proposition

The moduli spaces $\overline{\mathcal{M}}_{0,2}(\mathrm{IG}, 1)$ and $\overline{\mathcal{M}}_{0,3}$ (IG, 1) are smooth (as stacks) and of the expected dimension.
Idea of proof: We prove that $\mathrm{H}^{1}\left(f^{*} \mathrm{~T} \mathrm{IG}\right)=0$ for each stable f.

- If no irreducible component of the source of f is entirely mapped into \mathbb{O}, use the generic global generation of $f^{*} \mathrm{~T}$ IG due to the transitive $\mathrm{Sp}_{2 n+1}$-action on $\mathrm{IG} \backslash \mathbb{O}$;
- Else use the tangent exact sequence of the closed orbit and prove that $\mathrm{H}^{1}\left(f^{*} \mathrm{~T} \mathcal{N}_{\mathbb{O}}\right)=0$.

Quantum cohomology

Graber's lemma

For homogeneous varieties, enumerativity of GW invariants comes from Kleiman's lemma. For quasi-homogeneous spaces there is a version by Graber :

Lemma

- G a connected algebraic group ;
- X a quasi-G-homogeneous variety ;
- $f: Z \rightarrow X$ a morphism from an irreducible scheme ;
- $Y \subset X$ intersecting the orbit stratification properly.

Then there exists a dense open subset U of G such that $\forall g \in U$, $f^{-1}(g Y)$ is either empty or has pure dimension $\operatorname{dim} Y+\operatorname{dim} Z-\operatorname{dim} X$.

Quantum cohomology

Enumerativity theorem

Theorem

- $r=2$ or 3 ;
- Y_{1}, \ldots, Y_{r} cycles in IG representing $\gamma_{1}, \ldots, \gamma_{r}$ and intersecting \mathbb{O} generically transversely ;
- deg $\gamma_{i} \geq 2$ for all i;
- $\sum_{i=1}^{r} \operatorname{deg} \gamma_{i}=\operatorname{dim} \overline{\mathcal{M}}_{0, r}($ IG, 1$)$.

Then there exists a dense open subset $U \subset \operatorname{Sp}_{2 n+1}^{r}$ such that for all $g_{1}, \ldots, g_{r} \in U$, the Gromov-Witten invariant $I_{1}\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ is equal to the number of lines of IG incident to the translates $g_{1} Y_{1}, \ldots, g_{r} Y_{r}$.

Quantum cohomology

Enumerativity theorem

Theorem

- $r=2$ or 3 ;
- Y_{1}, \ldots, Y_{r} cycles in IG representing $\gamma_{1}, \ldots, \gamma_{r}$ and intersecting $\mathbb{0}$ generically transversely ;
- deg $\gamma_{i} \geq 2$ for all i;
- $\sum_{i=1}^{r} \operatorname{deg} \gamma_{i}=\operatorname{dim} \overline{\mathcal{M}}_{0, r}($ IG, 1$)$.

Then there exists a dense open subset $U \subset \operatorname{Sp}_{2 n+1}^{r}$ such that for all $g_{1}, \ldots, g_{r} \in U$, the Gromov-Witten invariant $I_{1}\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ is equal to the number of lines of IG incident to the translates $g_{1} Y_{1}, \ldots, g_{r} Y_{r}$.
Idea of proof : We get rid of the last three obstructions to enumerativity using Graber's lemma.

Quantum cohomology

Finding subvarieties with transverse intersection

Problem :

- To compute an invariant with the enumerativity theorem we need transverse cycles.
- Schubert varieties can never be made to intersect transversely.

Quantum cohomology

Finding subvarieties with transverse intersection

Problem :

- To compute an invariant with the enumerativity theorem we need transverse cycles.
- Schubert varieties can never be made to intersect transversely.

Solution :

- Use pullbacks of the Schubert varieties of the type A Grassmannian $\mathrm{G}(2,2 n+1)$;
- They can be made to intersect transversely on the homogeneous space $\mathrm{G}(2,2 n+1)$;
- Corresponding pullbacks to $\operatorname{IG}(2,2 n+1)$ stay transverse.

Quantum cohomology

Quantum presentation

Proposition (Presentation of $\left.\mathrm{QH}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})\right)$
The ring $\mathrm{QH}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})$ is generated by the classes σ_{1}, $\sigma_{1,1}$ and the quantum parameter q. The relations are

$$
\begin{array}{r}
\operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n}=0 \\
\frac{1}{\sigma_{1}} \operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n+1}+q=0
\end{array}
$$

Quantum cohomology

Quantum presentation

Proposition (Presentation of $\left.\mathrm{QH}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})\right)$
The ring $\mathrm{QH}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})$ is generated by the classes σ_{1}, $\sigma_{1,1}$ and the quantum parameter q. The relations are

$$
\begin{array}{r}
\operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n}=0 \\
\frac{1}{\sigma_{1}} \operatorname{det}\left(\sigma_{1^{1+j-i}}\right)_{1 \leq i, j \leq 2 n+1}+q=0
\end{array}
$$

Corollary

1. $\mathrm{QH}^{*}(\operatorname{IG}(2,2 n+1), \mathbb{Z})_{q \neq 0}$ is semisimple ;
2. hence Dubrovin's conjecture holds for $\operatorname{IG}(2,2 n+1)$.

Conclusion

Other results :

- Quantum Pieri formula ;
- J-function.

Next step :

- The $m>2$ case ?

