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Introduction
Motivation

Quantum cohomology has been extensively studied for

I homogeneous spaces ;

I toric varieties.

But

I very few explicit formulas for non-homogeneous non-toric
varieties ;

I quasi-homogeneous varieties (e.g odd symplectic
Grassmannians) should provide interesting examples.
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Introduction
What are odd symplectic Grassmannians ?

Studied by Mihai (2007).

Definition
ω antisymmetric form of maximal rank on C2n+1.

IGω(m, 2n + 1) := {Σ ∈ G(m, 2n + 1) | Σ is isotropic for ω} .

Remarks

1. independant of the form ω ;

2. endowed with an action of the odd symplectic group :

Sp2n+1 := {g ∈ GL(2n + 1) | ∀u, v ∈ V ω(gu, gv) = ω(u, v)} ;

3. odd symplectic Grassmannians of lines are the m = 2 case.
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Introduction
What are odd symplectic Grassmannians ?

Properties (of IG(m, 2n + 1))

1. smooth subvariety of dimension m(2n + 1−m)− m(m−1)
2 of

G(m, 2n + 1).

2. two orbits under the action of Sp2n+1 :
I closed orbit O := {Σ ∈ IG(m, 2n + 1) | Σ ⊃ K}, isomorphic to

IG(m − 1, 2n) ;
I open orbit {Σ ∈ IG(m, 2n + 1) | Σ 6⊃ K}, isomorphic to the

dual of the tautological bundle over IG(m, 2n) ;

where K = Ker(ω).



Classical cohomology
Schubert varieties for the symplectic Grassmannian

Schubert varieties of the symplectic Grassmannian IG(m, 2n)

I are subvarieties defined by incidence conditions with respect
to an isotropic flag ;

I can be indexed by k-strict partitions
(cf Buch-Kresch-Tamvakis), i.e

λ = (2n−m ≥ λ1 ≥ · · · ≥ λm ≥ 0) such that λj > k ⇒ λj > λj+1,

with k = n −m ;

I correspond to classes σλ ∈ H|λ|(IG,Z) generating the
cohomology ring H∗(IG,Z) as a Z-module.



Classical cohomology
Schubert varieties for IG(m, 2n + 1)

Embedding in the symplectic Grassmannian :

I IG(m, 2n + 1) ↪→ IG(m, 2n + 2) identifies IG(m, 2n + 1) with
a Schubert variety of IG(m, 2n + 2) (Mihai) ;

I hence “induced” Schubert varieties for IG(m, 2n + 1) and
decomposition H∗(IG(m, 2n + 1),Z) =

⊕
λ Zσλ.

For IG(2, 2n + 1), Schubert varieties are indexed by

I “usual” (n− 2)-strict partitions λ = (2n− 1 ≥ λ1 ≥ λ2 ≥ 0) ;

I the “partition” λ = (2n − 1,−1) corresponding to the class of
the closed orbit O.
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Classical cohomology
Presentation

H∗(IG(2, 2n + 1),Z) is generated as a ring by two sets of special
Schubert classes :

1. “rows” σp for 1 ≤ p ≤ 2n − 1, plus the class σ2n−1,−1 ;

2. “columns” σ1 and σ1,1.

Proposition (Presentation of H∗ (IG(2, 2n + 1),Z))

The ring H∗ (IG(2, 2n + 1),Z) is generated by the classes σ1, σ1,1
and the relations are

det (σ11+j−i )1≤i ,j≤2n = 0

1

σ1
det (σ11+j−i )1≤i ,j≤2n+1 = 0
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Quantum cohomology
Moduli space of stable maps

Consider

I X smooth projective Fano variety over C with Picard rank 1

I n, d integers.

A stable map of degree d with n marked points is a map
f : (C ; p1, . . . , pn)→ X , where

I C is a tree of projective curves with n smooth marked points
p1, . . . , pn ;

I f∗[C ] = d · [hyperplane] ;

I stability condition : each contracted component of C has at
least 3 special points.

The corresponding moduli space is denoted by M0,n(X , d).
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Quantum cohomology
An example of a stable map
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Quantum cohomology
Gromov-Witten invariants

Evaluation maps

evi : M0,n(X , d) −→ X
[f : (C ; p1, . . . , pn)→ X ] 7→ f (pi )

Definition
The degree d GW invariant associated to classes γ1, . . . , γn is

Id(γ1, . . . , γn) =

∫
[M0,n(X ,d)]

vir
ev∗1γ1 ∪ · · · ∪ ev∗nγn,

where
[
M0,n(X , d)

]vir
is the virtual fundamental cycle.

Remark : GW invariants are integers.
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Quantum cohomology
Quantum product

The small quantum product of classes γ1 and γ2 is

γ1 ? γ2 =
∑
β

∑
qd Id(γ1 · γ2 · γ̌3)︸ ︷︷ ︸

Gromov-Witten invariant

γ3,

I q is the quantum parameter and has degree the index of X ;

I γ3 runs over a basis of H∗(X ,C) ; γ̌3 runs over the
corresponding dual basis.

Properties

1. The quantum product is commutative, degree-preserving,
associative, with unit 1 ∈ H∗(X ,C).

2. It is a deformation of the cup-product.
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Quantum cohomology
Enumerativity of GW invariants

What does it mean ?

Id(γ1, γ2, γ3) = number of degree d rational curves through Γ1, Γ2, Γ3,

where Γi ’s are cycles Poincaré dual to the classes γi .

What are the obstructions ?

1. moduli space may not have the expected dimension ;

2. maybe Γi ’s can’t be made to intersect transversely ;

3. stable maps with reducible source may contribute ;

4. a curve may cut one of the Γi ’s in several points, contributing
several times to the invariant ;

5. similarly a curve may cut one of the Γi ’s with multiplicities.
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Quantum cohomology
The moduli spaces M0,2(IG, 1) and M0,3(IG, 1)

Proposition

The moduli spaces M0,2(IG, 1) and M0,3(IG, 1) are smooth (as
stacks) and of the expected dimension.

Idea of proof : We prove that H1(f ∗T IG) = 0 for each stable f .

I If no irreducible component of the source of f is entirely
mapped into O, use the generic global generation of f ∗T IG
due to the transitive Sp2n+1-action on IG \O ;

I Else use the tangent exact sequence of the closed orbit and
prove that H1(f ∗T NO) = 0.
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Quantum cohomology
Graber’s lemma

For homogeneous varieties, enumerativity of GW invariants comes
from Kleiman’s lemma. For quasi-homogeneous spaces there is a
version by Graber :

Lemma

I G a connected algebraic group ;

I X a quasi-G -homogeneous variety ;

I f : Z → X a morphism from an irreducible scheme ;

I Y ⊂ X intersecting the orbit stratification properly.

Then there exists a dense open subset U of G such that ∀g ∈ U,
f −1(gY ) is either empty or has pure dimension
dim Y + dim Z − dim X .



Quantum cohomology
Enumerativity theorem

Theorem

I r = 2 or 3 ;

I Y1, . . . ,Yr cycles in IG representing γ1, . . . , γr and
intersecting O generically transversely ;

I deg γi ≥ 2 for all i ;

I
∑r

i=1 deg γi = dimM0,r (IG, 1).

Then there exists a dense open subset U ⊂ Spr2n+1 such that for
all g1, . . . , gr ∈ U, the Gromov-Witten invariant I1(γ1, . . . , γr ) is
equal to the number of lines of IG incident to the translates
g1Y1, . . . , grYr .

Idea of proof : We get rid of the last three obstructions to
enumerativity using Graber’s lemma.
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Quantum cohomology
Finding subvarieties with transverse intersection

Problem :

I To compute an invariant with the enumerativity theorem we
need transverse cycles.

I Schubert varieties can never be made to intersect transversely.

Solution :

I Use pullbacks of the Schubert varieties of the type A
Grassmannian G(2, 2n + 1) ;

I They can be made to intersect transversely on the
homogeneous space G(2, 2n + 1) ;

I Corresponding pullbacks to IG(2, 2n + 1) stay transverse.
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Quantum cohomology
Quantum presentation

Proposition (Presentation of QH∗ (IG(2, 2n + 1),Z))

The ring QH∗ (IG(2, 2n + 1),Z) is generated by the classes σ1,
σ1,1 and the quantum parameter q. The relations are

det (σ11+j−i )1≤i ,j≤2n = 0

1

σ1
det (σ11+j−i )1≤i ,j≤2n+1 + q = 0

Corollary

1. QH∗ (IG(2, 2n + 1),Z)q 6=0 is semisimple ;

2. hence Dubrovin’s conjecture holds for IG(2, 2n + 1).
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Conclusion

Other results :

I Quantum Pieri formula ;

I J-function.

Next step :

I The m > 2 case ?
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