

Frobenius-stable Lattices in *p*-adic Cohomology

Moritz Minzlaff 💙 @mminzlaff Advisors: Florian Hess & Remke Kloosterman

Problem statement

$$Z_{\overline{C}}(t) = \frac{\det\left(1 - \operatorname{Frob} \cdot t \mid \operatorname{H}_{p}^{1}(\overline{C})\right)}{(1 - t)(1 - qt)}$$

Given a smooth, projective, integral curve C/\mathbf{F}_q the Frobenius action on its first *p*-adic cohomology group completely determins its Zeta function. Can we find a natural, Frobenius-stable lattice inside $H^1_n(\overline{C})$ together with

- ▶ an explicit description of the lattice
- ▶ a Frobenius action is "easy" to define and compute.

The generalised Bogaart's Lemma below gives such an explicit description of the log-crystalline cohomology and relates it to an integral version of Monsky-Washnitzer cohomology where a Frobenius action can be computed using a Newton iteration.

The map φ

$$\mathrm{H}^{0}(\Omega((\ell+1)D)) \stackrel{\varphi}{\longrightarrow} \Upsilon = \bigoplus_{j} \bigoplus_{i=-(\ell+1)}^{z} (\mathbf{Z}_{q}/(i+1)) t_{j}^{i} dt_{j}$$

The map sends a differential to the formal sum of its Laurent series expansions with respect to the t_i . Here, the t_i are rational functions on C such that $\{p, t_j\}$ is a coordinate system for \mathcal{O}_{C,P_j} and P_j runs through all points in the support of D.

The isomorphism $\operatorname{Coker} d|_{d^{-1}(\operatorname{Ker} \varphi)} \xrightarrow{\sim} \operatorname{H}^{1}_{\operatorname{dR}}(C, D)$

idea to compare the hypercohomology of The is $\Omega(\log D)^{\bullet}: \mathcal{O}_{C} \to \Omega(\log D) \to 0$ to the hypercohomlogy of $\Omega^{\bullet}: \mathcal{O}_{C}(\ell D) \rightarrow \Omega((\ell + 1)D)$. The latter complex consists of nonspecial sheaves, so it is easier to analyse. The long exact sequence to the short exact sequence $0 \to \Omega(\log D)^{\bullet} \to \Omega^{\bullet} \to \mathcal{Q}^{\bullet} \to 0$ yields the following diagram with exact row and column and thus the desired isomorphism.

Mathematical

A generalised Bogaart's Lemma [1]

Let C/\mathbb{Z}_q be a smooth, proper lifting of $\overline{C}/\mathbb{F}_q$, D an effective normal crossings divisor $D \neq 0$, and $U = C \setminus D$. Let $d: \mathrm{H}^0(\mathcal{O}_C(\ell D)) \to \mathrm{H}^0(\Omega((\ell+1)D))$ be the universal derivation. If ℓ is an integer such that $\mathcal{O}_{\overline{C}}(\ell D)$ is nonspecial, then there is the commutative diagram on the right hand side, functorial in (C, D), and with inclusions equivariant with respect to the Frobenius actions on $\mathrm{H}^{1}_{\mathrm{cr}}(\overline{C},\overline{D})$ and $\mathrm{H}^{1}_{\mathrm{MW}}(\overline{U})/(\mathrm{tor})$.

What's next?

- Fleshing out the details in a chapter of my forthcoming thesis. • Explaining how an explicit smooth, proper lifting of \overline{C} can be
- approximated. (It's already implemented!)
- Using both to actually compute a basis of a Frobenius-stable lattice.

(The Frobenius action on) Monsky-Washnitzer cohomology [2]

If $\overline{A}/\mathbf{F}_q$ is the affine coordinate ring of \overline{U} and A/\mathbf{Z}_q is a smooth lifting, say $A = \mathbf{Z}_q[\underline{x}]/(\underline{f})$, then $\mathrm{H}^1_{\mathrm{MW}}(\overline{U}) = \left(\Omega_A \otimes A^\dagger\right)/dA^\dagger$, where $A^\dagger = {f Z}_q[{m x}]^\dagger/({m f})$. The elements of ${f Z}_q[{m x}]^\dagger$ are formal power series in ${m x}$ over \mathbf{Z}_q converging on a radius greater than 1. Roughly speaking, this allows Newton iteration style computations to lift the Frobenius action from A to A^{\dagger} and $\Omega_A \otimes A^{\dagger}$.

References

[1] If D consist of a single \mathbb{Z}_{q} -point, then the top row of the diagram is Lemma 3.3.10 of

T. van den Bogaart, Links between cohomology and arithmetic, PhD Thesis at Universiteit Leiden, 2008.

[2] P. Monsky and G. Washnitzer, *Formal Cohomology I*, Ann. of Math. (2) Vol. 88, 1968.

[3] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory, 1989.