Frobenius-stable Lattices in p-adic Cohomology

Moritz Minzlaff ©mminzlaff Advisors: Florian Hess \& Remke Kloosterman

Problem statement

$$
Z_{\bar{C}}(t)=\frac{\operatorname{det}\left(1-\operatorname{Frob} \cdot t \mid \mathrm{H}_{p}^{1}(\bar{C})\right)}{(1-t)(1-q t)}
$$

Given a smooth, projective, integral curve \bar{C} / \mathbf{F}_{q} the Frobenius action on its first p-adic cohomology group completely determins its Zeta function. Can we find a natural, Frobenius-stable lattice inside $\mathrm{H}_{p}^{1}(\bar{C})$ together with

- an explicit description of the lattice
- a Frobenius action is "easy" to define and compute.

The generalised Bogaart's Lemma below gives such an explicit description of the log-crystalline cohomology and relates it to an integral version of Monsky-Washnitzer cohomology where a Frobenius action can be computed using a Newton iteration.

The map φ

$$
\mathrm{H}^{0}(\Omega((\ell+1) D)) \xrightarrow{\varphi} \Upsilon=\bigoplus_{j} \bigoplus_{i=-(\ell+1)}^{2}\left(\mathbf{Z}_{q} /(i+1)\right) t_{j}^{i} d t_{j}
$$

The map sends a differential to the formal sum of its Laurent series expansions with respect to the t_{j}. Here, the t_{j} are rational functions on C such that $\left\{p, t_{j}\right\}$ is a coordinate system for $\mathcal{O}_{C, P_{j}}$ and P_{j} runs through all points in the support of D.

The isomorphism Coker $\left.d\right|_{d^{-1}(\operatorname{Ker} \varphi)} \xrightarrow{\sim} \mathrm{H}_{\mathrm{dR}}^{1}(C, D)$
The idea is to compare the hypercohomology of $\Omega(\log D)^{\bullet}: \mathcal{O}_{C} \rightarrow \Omega(\log D) \rightarrow 0$ to the hypercohomlogy of $\widetilde{\Omega}^{\bullet}: \mathcal{O}_{C}(\ell D) \rightarrow \Omega((\ell+1) D)$. The latter complex consists of nonspecial sheaves, so it is easier to analyse. The long exact sequence to the short exact sequence $0 \rightarrow \Omega(\log D)^{\bullet} \rightarrow \widetilde{\Omega}^{\bullet} \rightarrow \mathcal{Q}^{\bullet} \rightarrow 0$ yields the following diagram with exact row and column and thus the desired isomorphism.

A generalised Bogaart's Lemma [1]

Let C / \mathbf{Z}_{q} be a smooth, proper lifting of $\bar{C} / \mathbf{F}_{q}, D$ an effective normal crossings divisor $D \neq 0$, and $U=C \backslash D$. Let $d: \mathrm{H}^{0}\left(\mathcal{O}_{C}(\ell D)\right) \rightarrow H^{0}(\Omega((\ell+1) D))$ be the universal derivation. If ℓ is an integer such that $\mathcal{O}_{\bar{C}}(\ell \bar{D})$ is nonspecial, then there is the commutative diagram on the right hand side, functorial in (C, D), and with inclusions equivariant with respect to the Frobenius actions on $\mathrm{H}_{\text {cr }}^{1}(\bar{C}, \bar{D})$ and $\mathrm{H}_{\mathrm{MW}}^{1}(\bar{U}) /($ tor $)$.

What's next?

- Fleshing out the details in a chapter of my forthcoming thesis.
- Explaining how an explicit smooth, proper lifting of \bar{C} can be approximated. (It's already implemented!)
- Using both to actually compute a basis of a Frobenius-stable lattice.

(The Frobenius action on) Monsky-Washnitzer cohomology [2]

If \bar{A} / \mathbf{F}_{q} is the affine coordinate ring of \bar{U} and A / \mathbf{Z}_{q} is a smooth lifting, say $A=\mathbf{Z}_{q}[\underline{x}] /(\boldsymbol{f})$, then $\mathrm{H}_{\mathrm{MW}}^{1}(\bar{U})=\left(\Omega_{A} \otimes A^{\dagger}\right) / d A^{\dagger}$, where $\left.A^{\dagger}=\mathbf{Z}_{q} \underline{x}\right]^{\dagger} /(\underline{f})$. The elements of $\mathbf{Z}_{q}[\underline{x}]^{\dagger}$ are formal power series in \underline{x} over \mathbf{Z}_{q} converging on a radius greater than 1. Roughly speaking, this allows Newton iteration style computations to lift the Frobenius action from A to A^{\dagger} and $\Omega_{A} \otimes A^{\dagger}$.

References

[1] If D consist of a single \mathbf{Z}_{q}-point, then the top row of the diagram is Lemma 3.3.10 of
T. van den Bogaart, Links between cohomology and arithmetic, PhD Thesis at Universiteit Leiden, 2008.
[2] P. Monsky and G. Washnitzer, Formal Cohomology I, Ann. of Math. (2) Vol. 88, 1968.
[3] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory, 1989.

