$ш(A / K)$ of non-square order

Stefan Keil
Humboldt-Universität zu Berlin
Institut für Mathematik
Advisor: Prof. Dr. Remke Kloosterman

The Tate-Shafarevich group

LET A be an abelian variety over a number field K. The Tate-Shafarevich group $\amalg(A / K)$ of A over K can be defined in terms of Galois cohomology as
$Ш(A / K):=\operatorname{ker}\left(H^{1}\left(G_{K}, A(\bar{K})\right) \rightarrow \prod_{\text {all } v} H^{1}\left(G_{K_{v}}, A\left(\bar{K}_{v}\right)\right)\right)$ where in the product v runs over all (finite and infinite) places of K, and G_{K} and $G_{K_{v}}$ are the absolute Galois groups of K and of its completion K_{v} at v.
It is known that $\amalg(A / K)$ is an abelian torsion group. Geometrically, the non-trivial elements of $\amalg(A / K)$ are those torsors (i.e. principal homogeneous spaces) of A / K for which the Hasse-principle fails, i.e. they have a point in any completion K_{v}, but not a rational point.
Conjecture 1. $\amalg(A / K)$ is a finite group.
This important conjecture is related to the Birch and Swinnerton-Dyer conjecture and will underline all what follows. In case of an elliptic curve E / \mathbb{Q}, the conjecture is known to be true if the so called analytic rank of E is zero or one, which conjecturally holds for 100% of all elliptic curves over \mathbb{Q}.

Order of \amalg

ASSUMING Conjecture 1, then for an elliptic curve E / K it is known that

$$
\# \amalg(E / K)=\square .
$$

This is no longer true in higher dimensions. With the Cassels-Tate pairing, one can prove a necessary condition concerning the non-square part of the order of \amalg.

Theorem 2. [Ste04] Assuming Conjecture 1, if an odd prime p divides the non-square part of the order of $\amalg(A / K)$, then p divides the degree of all polarizations of A / K.
Corollary 3. [PS99] Assuming Conjecture 1, then for a principally polarized abelian variety A / K we have

$$
\# Ш(A / K)=\square \text { or } 2 \square, \text { (and both occur). }
$$

A computation of Stein [Ste04] leads to the conjecture
Conjecture 4. Assuming Conjecture 1, as one ranges over all abelian varieties A over all number fields K, then every non-square natural number can appear as the nonsquare part of the order of $\amalg(A / K)$.

So the natural question arising is
Question 5. Assuming Conjecture 1, what are the possible non-square parts of the order of \amalg for abelian varieties of fixed dimension over a fixed number field? Is this a finite list?

An equation of Cassels and Tate

TO show the invariance under isogenies of the Birch and Swinerton-Dyer conjecture, Cassels (the elliptic curve case) and Tate (the general case) proved the following theorem.
Theorem 6. [Cas65] [Tat66] Assuming Conjecture 1, let $\phi: A \rightarrow B$ be a K-isogeny between two abelian varieties A, B over a number field K. Then

$$
\frac{\# Ш(A / K)}{\# Ш(B / K)}=\frac{R_{B} P_{B} \# A(K)_{\text {tor }} \# A^{\vee}(K)_{\text {tor }}}{R_{A} P_{A} \# B(K)_{\text {tor }} \# B^{\vee}(K)_{\text {tor }}} \prod_{v \text { bad }} \frac{c_{B, v}}{c_{A, v}}
$$

Here R_{A} and P_{A} are the regulator and period of A, which are complex transcendental numbers, but their quotient is rational. $A(K)_{t o r}$ are the finitely many K-rational torsion points of A, A^{\vee} is the dual abelian variety, and the $c_{A, v} \in \mathbb{N}$ are the local Tamagawa numbers of A at a finite place v of bad reduction.

My goals

ASSUMING Conjecture 1, I would like to give an answer to Question 5 for abelian surfaces over \mathbb{Q}.
For the moment I am trying to construct an example of $\# Ш(A / \mathbb{Q})=5 \square$, with $\operatorname{dim}(A)=2$. A strategy to get such an example is to start with a well understood principally polarized abelian surface A and an isogenous abelian surface B which fulfills Theorem 2 for $p=5$. Then one tries to compute all quotients in the Cassels-Tate equation in Theorem $6 \bmod \square$ to know $\amalg(B / K) \bmod \square$.

References

[Cas65] Cassels, J. W. S.: Arithmetic on curves of genus 1, VIII. In: Journal f. reine und angew. Math. 217 (1965)
[PS99] Poonen, B. ; Stoll, M.: The Cassels-Tate pairing on polarized abel. varieties. In: Ann. of Math. 150 (1999)
[Ste04] Stein, W. A.: Shafarevich-Tate Groups of Nonsquare Order. In: Progress in Mathematics 224 (2004)
[Tat66] TATE, J.: On the conj. of Birch and Swinnerton-Dyer and a geom. analog. In: Sém. Bourbaki 306 (1964-1966)

