Russell's hypersurface

Isac Hedén
Uppsala University
Department of Mathematics

Advisor: Prof. Karl-Heinz Fieseler

Russell's hypersurface and the linearization conjecture

R USSELL'S hypersurface X is defined by $X=V\left(x+x^{2} y+z^{3}+t^{2}\right) \subset \mathbb{C}^{4}$.
It satisfies $X \stackrel{\text { diff }}{\cong} \mathbb{R}^{6}$, but does also $X \stackrel{\text { iso }}{\cong} \mathbb{C}^{3}$ hold? If so, this would imply a counterexample to the linearization conjecture, which states that every \mathbb{C}^{*}-action on \mathbb{C}^{n} is linearizable (i.e. that it becomes linear after a polynomial change of variables on \mathbb{C}^{n}). Namely, the action

$$
\begin{aligned}
\mathbb{C}^{*} \times X & \longrightarrow X \\
(\lambda,(x, y, z, t)) & \mapsto\left(\lambda^{6} x, \lambda^{-6} y, \lambda^{2} z, \lambda^{3} t\right)
\end{aligned}
$$

restricts to an action of the group of sixth roots of unity $C_{6} \times X \longrightarrow X$ with invariant set

$$
X^{C_{6}}=V\left(\mathbb{C}^{2} ; x(1+x y)\right) \times 0 \times 0 \cong \mathbb{C} \dot{\cup} \mathbb{C}^{*}
$$

This is not connected, and therefore the induced action on X is not linear.
The linearization conjecture has been shown for $n \leq 3$, using Makar-Limanov's result that
$\operatorname{ML}(X):=\bigcap_{\text {all }}^{\mathbb{C}^{+} \text {-actions }} 0 \mathcal{O}(X)^{\mathbb{C}^{+}} \neq \mathbb{C}=\operatorname{ML}\left(\mathbb{C}^{3}\right)$

- in particular $X \not \approx \mathbb{C}^{3}$.

A way of calculating ML (X)

THE reson that $\operatorname{ML}\left(\mathbb{C}^{3}\right)=\mathbb{C}$ is that there are no nonconstant polynomials in three variables that are invariant with respect to all \mathbb{C}^{+}-actions (e.g. translations) on \mathbb{C}^{3}. Calculating ML (X), and being able to distinguish it from \mathbb{C}, is harder but it can be done by showing that the coodinate function $x \in \mathcal{O}(X)$ is an invariant with respect to all \mathbb{C}^{+}-actions on X. This implies that the \mathbb{C}-algebra $\operatorname{ML}(X)$ has transcendence degree at least one. An

GAeL XIX, Berlin, 2011
argument goes like follows: X can be realized as an open part of a blowup M of \mathbb{C}^{3} with center at the Niel parabola $N:=$ $V\left(\mathbb{C}^{3} ; x^{2}, x+z^{3}+t^{2}\right) \subset\{0\} \times \mathbb{C}^{2}$

and it turns out that the result $x \in \operatorname{ML}(X)$ follows from the fact that every \mathbb{C}^{+}-action on X descends to \mathbb{C}^{3}. This in turn follows from the fact that any nontrivial \mathbb{C}^{+}-action on X induces a nontrivial \mathbb{C}^{+}-action on $W:=\operatorname{Sp}(B)$, where B is the graded algebra associated to the filtration of $\mathcal{O}(X)$ given by the pole order along the divisor $M \backslash X$ at infinity, and that the degre k of homogeneity of its corresponding locally nilpotent derivation is negative.

Figure 1: Quotient projections of the canonical \mathbb{C}^{*}-action on W with $k<0$ resp. $k>0$.

My research

AMONG my research interests are mainly topics in affine algebraic geometry: The linearization conjecture, Algebraic group actions on varieties, Invariant theory, The Makar-Limanov invariant, Locally nilpotent derivations. Also: Is Russell's hypersurface analytically isomorphic to \mathbb{C}^{3} ?

