Rational points of varieties over $\mathbb{C}((t))$

Annabelle Hartmann

Universität Duisburg Essen Essener Seminar für Algebraische Geomerie und Arithmetik

Advisor: Prof. Dr. Esnault

Motivation

WHICH class of algebraic varieties over a given field automatically has a rational point?

This is a question of current research. For example there is the following result in [1]:

Theorem. Every projective rationally connected variety X over $\mathbb{C}(t)$ has a rational point.

The same is true for $K := \mathbb{C}((t))$. But for example it is not known what happens if we weaken the assumption on X slightly.

 \square OW can one detect rational points of a given *K*-variety *X*?

The idea is to look at a model \mathcal{X} of X, i.e. an S-variety, $S := \operatorname{Spec}(\mathcal{O}_K)$, whose generic fiber is isomorphic to X. If \mathcal{X} is proper over S, we get the following one-to-one correspondence:

K-points of $X \xleftarrow{1:1} S$ -points of \mathcal{X}

To find an *S*-points of \mathcal{X} , look at the special fiber $\mathcal{X}_{\mathbb{C}} := \mathcal{X} \times_S \operatorname{Spec}(\mathbb{C})$ of \mathcal{X} . We have a reduction map $\phi : \mathcal{X}(S) \to \mathcal{X}_{\mathbb{C}}(\mathbb{C})$. As \mathcal{O}_K is Henselian, we have $\operatorname{Sm}(\mathcal{X}_{\mathbb{C}})(\mathbb{C}) \subset \phi(\mathcal{X}(S))$. If \mathcal{X} is regular, we even get an equality, so in this case \mathcal{X} has an *S*-point if and only if $\mathcal{X}_{\mathbb{C}}$ has a reduced component. In general it is not known if a given singular point $x \in \mathcal{X}_{\mathbb{C}}$ lies in the image of ϕ .

To find a nice model of X it is sometimes easier to look for a nice model \mathcal{Y} of $X_L := X \times_{\text{Spec}(K)} \text{Spec}(L)$, with L over K a finite field extension, for example one can demand the special fiber of \mathcal{Y} to be a reduced simple normal crossing divisor (semistable reduction).

In order to be able to construct a model \mathcal{X} of X from a model \mathcal{Y} of X_L , assume that the diagonal action of $G := \operatorname{Gal}(L/K)$ on $X_L \subset \mathcal{Y}$ extends to a G-action on \mathcal{Y} , which is compatible with the G-action on $T := \operatorname{Spec}(\mathcal{O}_L)$ given by restriction of the Galois action of G on L to $\mathcal{O}_L \subset L$. Then $\mathcal{X} := \mathcal{Y}/G$ is an S = T/G-scheme with

My Research

Fix a regular *T*-scheme \mathcal{Y} with a *G*-action which is compatible with the *G*-action on *T*. Let $Sm(\mathcal{Y}) \subset \mathcal{Y}$ be the smooth locus of the structure map of \mathcal{Y} .

Proposition. $\mathcal{X} := \mathcal{Y}/G$ has an *S*-point if and only if there exists a closed fixed point $x \in Sm(\mathcal{Y})$.

The most interesting part of the proof is the "if"-part, done by constructing an *S*-point of \mathcal{X}/G through the image of the fixed point $x \in Sm(X)$ under the quotient map. This is done by constructing a *G*-invariant *T*-point of \mathcal{X} through *x* using the fact that the *G*-action is diagonalizable on the complete local ring and a kind of weighted, *G*-equivariant blowup.

Note that the constructed *S*-point might be in the singular locus of \mathcal{X}/G . To see this look at the following example:

Example. Look at the $G = \mathbb{Z}/2\mathbb{Z}$ -action on the smooth T-scheme $\mathbb{A}^1_T = \operatorname{Spec}(\mathbb{C}\llbracket u \rrbracket [x])$ given by

 $g: \mathbb{C}[\![u]\!][x] \to \mathbb{C}[\![u]\!][x]; P(u,x) \to P(-u,-x)$

This action is compatible with the *G*-action on *T*, given by $g_T : \mathbb{C}\llbracket u \rrbracket \to \mathbb{C}\llbracket u \rrbracket; P(u) \to P(-u)$. The closed point Q = (0,0) is fixed.

 $\mathbb{A}_T^1/G \cong \mathbb{C}[[t]][b,c]/(tb - c^2)$ is singular in the image Q' = (0,0,0) of Q under the quotient map.

COR a given *K*-variety *X* one can define the Serre invariant as follows: One takes a weak Néron model \mathcal{X} of *X*, i.e. \mathcal{X} is smooth over *S* and $\mathcal{X}(S) = X(K)$. Such a model always exists, but is not unique. The Serre invariant S(X) is the special fiber of \mathcal{X} in $K_0(\operatorname{Var}_{\mathbb{C}})/(\mathbb{L}-1)$, which is independent of the choice of a weak Néron model. Here $K_0(\operatorname{Var}_{\mathbb{C}})$ is the Grothendieck Ring of varieties, generated by isomorphism classes [Z] of separated \mathbb{C} -schemes of finite type and for every closed immersion $Z' \to Z$ relations $[Z] = [Z \setminus Z'] + [Z']$, with multiplication given by fiber product over \mathbb{C} , and $\mathbb{L} = [\mathbb{A}^1_{\mathbb{C}}]$. For the construction see [2].

Now take a finite field extension L of K and a model \mathcal{Y} of X_L with a G-action as above. Let $\mathcal{Y}^G \subset \mathcal{Y}$ be the fixed point locus of this action. By the Proposition we have that S(X) = 0 if and only if $[\mathcal{Y}^G] = 0 \in K_0(\text{Var}_{\mathbb{C}})/(\mathbb{L} - 1)$.

generic fiber X, i.e. a model of X. The aim of my work is to understand a model of a K-variety X constructed as described above.

Question. Do we have $S(X) = [\mathcal{Y}^G] \in K_0(Var_{\mathbb{C}})/(\mathbb{L}-1)$?

References

[1] Tom Graber, Joe Harris, and Jason Starr, *Families of rationally connected varieties*, J. Amer. Math. Soc. **16** (2003), no. 1, 57–67 (electronic). MR 1937199 (2003m:14081)

[2] Johannes Nicaise, A trace formula for varieties over a discretely valued field, J. Reine Angew. Math. 650 (2011), 193–238. MR 2770561