Rational points of varieties over $\mathbb{C}(t))$

Annabelle Hartmann

Universität Duisburg Essen
Essener Seminar für Algebraische Geomerie und Arithmetik
Advisor: Prof. Dr. Esnault

Motivation

WHICH class of algebraic varieties over a given field automatically has a rational point?
This is a question of current research. For example there is the following result in [1]:

Theorem. Every projective rationally connected variety X over $\mathbb{C}(t)$ has a rational point.
The same is true for $K:=\mathbb{C}((t))$. But for example it is not known what happens if we weaken the assumption on X slightly.

How can one detect rational points of a given K variety X ?
The idea is to look at a model \mathcal{X} of X, i.e. an S-variety, $S:=\operatorname{Spec}\left(\mathcal{O}_{K}\right)$, whose generic fiber is isomorphic to X. If \mathcal{X} is proper over S, we get the following one-to-one correspondence:

$$
K \text {-points of } X \stackrel{\text { 1:1 }}{\longleftrightarrow} S \text {-points of } \mathcal{X}
$$

To find an S-points of \mathcal{X}, look at the special fiber $\mathcal{X}_{\mathbb{C}}:=\mathcal{X} \times{ }_{S} \operatorname{Spec}(\mathbb{C})$ of \mathcal{X}. We have a reduction map $\phi: \mathcal{X}(S) \rightarrow \mathcal{X}_{\mathbb{C}}(\mathbb{C})$. As \mathcal{O}_{K} is Henselian, we have $\operatorname{Sm}\left(\mathcal{X}_{\mathbb{C}}\right)(\mathbb{C}) \subset \phi(\mathcal{X}(S))$. If \mathcal{X} is regular, we even get an equality, so in this case \mathcal{X} has an S-point if and only if $\mathcal{X}_{\mathbb{C}}$ has a reduced component. In general it is not known if a given singular point $x \in \mathcal{X}_{\mathbb{C}}$ lies in the image of ϕ.
To find a nice model of X it is sometimes easier to look for a nice model \mathcal{Y} of $X_{L}:=X \times_{\operatorname{Spec}(K)} \operatorname{Spec}(L)$, with L over K a finite field extension, for example one can demand the special fiber of \mathcal{Y} to be a reduced simple normal crossing divisor (semistable reduction).
In order to be able to construct a model \mathcal{X} of X from a model \mathcal{Y} of X_{L}, assume that the diagonal action of $G:=\operatorname{Gal}(L / K)$ on $X_{L} \subset \mathcal{Y}$ extends to a G-action on \mathcal{Y}, which is compatible with the G-action on $T:=\operatorname{Spec}\left(\mathcal{O}_{L}\right)$ given by restriction of the Galois action of G on L to $\mathcal{O}_{L} \subset L$. Then $\mathcal{X}:=\mathcal{Y} / G$ is an $S=T / G$-scheme with generic fiber X, i.e. a model of X.
The aim of my work is to understand a model of a K variety X constructed as described above.

My Research

FIX a regular T-scheme \mathcal{Y} with a G-action which is compatible with the G-action on T. Let $\operatorname{Sm}(\mathcal{Y}) \subset \mathcal{Y}$ be the smooth locus of the structure map of \mathcal{Y}.

Proposition. $\mathcal{X}:=\mathcal{Y} / G$ has an S-point if and only if there exists a closed fixed point $x \in \operatorname{Sm}(\mathcal{Y})$.
The most interesting part of the proof is the "if"-part, done by constructing an S-point of \mathcal{X} / G through the image of the fixed point $x \in \operatorname{Sm}(X)$ under the quotient map. This is done by constructing a G-invariant T-point of \mathcal{X} through x using the fact that the G-action is diagonalizable on the complete local ring and a kind of weighted, G-equivariant blowup.
Note that the constructed S-point might be in the singular locus of \mathcal{X} / G. To see this look at the following example:

Example. Look at the $G=\mathbb{Z} / 2 \mathbb{Z}$-action on the smooth T-scheme $\mathbb{A}_{T}^{1}=\operatorname{Spec}(\mathbb{C} \llbracket u \rrbracket[x])$ given by
$g: \mathbb{C} \llbracket u \rrbracket[x] \rightarrow \mathbb{C} \llbracket u \rrbracket[x] ; P(u, x) \rightarrow P(-u,-x)$
This action is compatible with the G-action on T, given by $g_{T}: \mathbb{C} \llbracket u \rrbracket \rightarrow \mathbb{C} \llbracket u \rrbracket ; P(u) \rightarrow P(-u)$. The closed point $Q=(0,0)$ is fixed.
$\mathbb{A}_{T}^{1} / G \cong \mathbb{C}[[t]][b, c] /\left(t b-c^{2}\right)$ is singular in the image $Q^{\prime}=(0,0,0)$ of Q under the quotient map.

FOR a given K-variety X one can define the Serre invariant as follows: One takes a weak Néron model \mathcal{X} of X, i.e. \mathcal{X} is smooth over S and $\mathcal{X}(S)=X(K)$. Such a model always exists, but is not unique. The Serre invariant $S(X)$ is the special fiber of \mathcal{X} in $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}-1)$, which is independent of the choice of a weak Néron model. Here $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ is the Grothendieck Ring of varieties, generated by isomorphism classes [Z] of separated \mathbb{C}-schemes of finite type and for every closed immersion $Z^{\prime} \rightarrow Z$ relations $[Z]=\left[Z \backslash Z^{\prime}\right]+\left[Z^{\prime}\right]$, with multiplication given by fiber product over \mathbb{C}, and $\mathbb{L}=\left[\mathbb{A}_{\mathbb{C}}^{1}\right]$. For the construction see [2].
Now take a finite field extension L of K and a model \mathcal{Y} of X_{L} with a G-action as above. Let $\mathcal{Y}^{G} \subset \mathcal{Y}$ be the fixed point locus of this action. By the Proposition we have that $S(X)=0$ if and only if $\left[\mathcal{Y}^{G}\right]=0 \in K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}-1)$.

Question. Do we have $S(X)=\left[\mathcal{Y}^{G}\right] \in K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}-1)$?

References

[1] Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57-67 (electronic). MR 1937199 (2003m:14081)
[2] Johannes Nicaise, A trace formula for varieties over a discretely valued field, J. Reine Angew. Math. 650 (2011), 193-238. MR 2770561

