Groups Acting Freely on Calabi-Yau

Threefolds Embedded in a Product of

del Pezzo Surfaces

Filippo Francesco Favale
University of Pavia
Department of Mathematics "F. Casorati"
Advisor: Prof. Gian Pietro Pirola

My research

AMONG my research interests there is the classification of smooth Calabi-Yau threefolds, in particular the ones with "low" height. A Calabi-Yau threefold is a projective complex threefold Y with trivial canonical divisor and $\mathrm{h}^{1,0}(Y)=\mathrm{h}^{2,0}(Y)=0$. The height $\mathrm{h}(Y)$ of a Calabi-Yau is defined as the sum $\mathrm{h}^{1,1}(Y)+\mathrm{h}^{1,2}(Y)$. Most of the known Calabi-Yau have heigth between 30 and 502. Not a single Calabi-Yau is known with $\mathrm{h}>502$ whereas a few have height less than 30. Among those, many of them are obtained by taking the quotient of a Calabi-Yau with greater height by a finite group acting freely. Several recent works in this direction are, for example, [1], [2] and [3].

In [4], a work in collaboration with Gilberto Bini, from University of Milan, I have investigated the quotients of Calabi-Yau manifolds Y embedded in a Fano variety X which is a product of two del Pezzo surfaces with respect to a group $G \leq \operatorname{Stab}_{\operatorname{Aut}(X)}(Y)$ that acts freely on Y. A pair (Y, G) is said to be admissible if it satisfies these requests. We say that Y / G is a Calabi-Yau of minimal height if the height of Y / G is minimal among all the quotients where (Y, G) is an ammissible pair. In particular it can be interesting to determine what are the values of $\operatorname{minh}(Y / G)$ where $Y \subseteq X$ and (Y, G) is an ammissible pair. To ob-
tain this number we first observe that the order of G has to be as big as possible (this follows from the choices made on X). We estimate the maximum order $m(Y)$ of G such that (Y, G) is an ammissible pair with

$$
M:=\operatorname{gcd}\left(\chi(Y) / 2, \chi\left(-\left.K_{X}\right|_{Y}\right)\right)
$$

This estimate is obtained by checking some numerical conditions and depends only on X whereas $m(Y)$ depends on Y and on the particular embedding of Y in X. There are cases for which $M=m$ (for example if $S_{1}=S_{2}$ del Pezzo surfaces of degree 6 one has $M=m=12$) and cases for which $M \neq m(M=16$ and $m=1$ for $X=S_{1} \times S_{2}$ with $S_{1}=S_{2}$ del Pezzo surfaces of degree 8).

We obtain several quotients with minimal heigth and, among those, there are three pairs $\left(h^{1,1}, h^{1,2}\right)$ of Hodge numbers never observed before and with low height.

Current research

AT the moment I am interested in studying when $\operatorname{Aut}(Y)$ is an epimorphic image of $\operatorname{Stab}_{\operatorname{Aut}(X)}(Y)$ where Y is a Calabi-Yau and X is a product of two del Pezzo surfaces. This is interesting because, if this is the case, the results about the minimality will be independent on the particular embedding chosen.

References

[1] Volker Braun, The 24-cell and calabi-yau threefolds with hodge numbers (1,1), (2011).
[2] Volker Braun, Philip Candelas, and Rhys Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, Fortschr. Phys. 58 (2010), no. 4-5, 467-502. MR 2662013
[3] Rhys Davies, The expanding zoo of calabi-yau threefolds, (2011).
[4] Filippo Francesco Favale and Gilberto Bini, Groups acting freely on calabi-yau threefolds embedded in a product of del pezzo surfaces, (2011).

