Stability conditions on Kummer surfaces

Magnus Engenhorst

Adviser: Prof. Katrin Wendland

Moduli spaces of SCFTs

Mirror symmetry and Bridgeland's stability conditions are mathematical theories motivated by superconformal field theories (SCFT) associated to Calabi-Yau varieties. It is a non-trivial task to give a rigorous geometric interpretation of a SCFT. This is understood in the case of complex tori [1] and progress has been made for certain K3 surfaces [2] and Borcea-Voisin 3-folds (Khalid/Wendland) using realizations by non-linear σ models of orbifold conformal field theories.

Bridgeland stability conditions 3

Definition 3.1. [5] A stability condition on a triangulated category \mathscr{D} consists of a group homomorphism $Z: K(\mathscr{D}) \to \mathbb{C}$ called the *central charge* and of full additive subcategories $\mathscr{P}(\phi) \subset \mathscr{D}$ for each $\phi \in \mathbb{R}$, satisfying the following axioms:

1. if $0 \neq E \in \mathscr{P}(\phi)$, then $Z(E) = m(E)exp(i\pi\phi)$ for some $m(E) \in \mathbb{R}_{>0}$;

2. $\forall \phi \in \mathbb{R}, \mathscr{P}(\phi+1) = \mathscr{P}(\phi)[1];$

A N = (2,2) superconformal field theory is roughly a conformal field theory with the left- and right-handed Virasoro algebra extended to commuting N=2 super-Virasoro algebra and a \mathbb{Z} grading $\mathscr{H} = \mathscr{H}_B \oplus \mathscr{H}_F$. In general, we have another compatible $\mathbb{Z}_2 \times \mathbb{Z}_2$ grading $\mathscr{H} = \mathscr{H}_{NS,NS} \oplus \mathscr{H}_{R,R} \oplus \mathscr{H}_{NS,R} \oplus \mathscr{H}_{R,NS}$.

A toroidal CFT with central charges $c = \bar{c} = 3$ is uniquely determined by its charge lattice $\Gamma \subset \mathbb{R}^{2,2}$ with Euclidean scalar product. Each $p, \bar{p} \in \Gamma$ labels a vertex operator of same charge with respect to the real and imaginary part of bosonic currents arising from the definition. The charge lattice can be defined by two moduli $\tau, \rho \in \mathbb{H}$. The parameter $\tau \in \mathbb{H}$ is interpreted as the period of the elliptic curve E_{τ} , fixing its complex structure and the parameter $\tau \in \mathbb{H}$ gives the Kahler structure as $\mathfrak{I}(\tau) > 0$ is the volume of the elliptic curve E_{τ} . The moduli space of SCFTs associated to elliptic curves is

 $\mathcal{M} = (PSL_2(\mathbb{Z}) \setminus \mathbb{H} \times PSL_2(\mathbb{Z}) \setminus \mathbb{H}) / \mathbb{Z}_2^2.$

Two-dimensional Calabi-Yau manifolds are complex tori and K3 surfaces. The moduli space of SCFTs with central charge c=6 is given by the following

Theorem 1.1. [3] Every connected component of the moduli space of SCFTs associated to Calabi-Yau 2-folds is either of the form $\mathcal{M}_{tori} = \mathcal{M}_0$ or $\mathcal{M}_{K3} = \mathcal{M}_{16}$ where:

 $\mathscr{M}^{\delta} \cong O^+(4,4+\delta;\mathbb{Z}) \setminus O^+(4,4+\delta;\mathbb{R}) / SO(4) \times O(4+\delta).$

Points $x \in \tilde{\mathscr{M}}^{\delta}$ in the Grassmannian $\tilde{\mathscr{M}}^{\delta} = O^+(4, 4 + \delta; \mathbb{R})/SO(4) \times O(4 + \delta)$ correspond to positive definite oriented four-planes in $\mathbb{R}^{4,4+\delta}$. Let $x \subset H^{even}(X,\mathbb{R})$ be a positive oriented four-plane specifying a SCFT on X. A geometric interpretation of this SCFT is a choice of null vectors v^0 , $v \in H^{even}(X,\mathbb{Z})$ along with a decomposition of x into two perpendicular oriented two-planes $x = \Omega \perp U$ such that $\langle v^0, v^0 \rangle = \langle v, v \rangle = 0$, $\langle v^0, v \rangle = 1$, and $\Omega \perp v^0, v$.

3. if $\phi_1 > \phi_2$ and $A_j \in \mathscr{P}(\phi_j)$, then $Hom_{\mathscr{D}}(A_1, A_2) = 0$;

4. for $0 \neq E \in \mathscr{D}$, there is a finite sequence of real numbers $\phi_1 > \cdots > \phi_n$ and a collection of triangles

 $E_{i-1} \longrightarrow E_i \longrightarrow A_i$

with $E_0 = 0$, $E_n = E$ and $A_i \in \mathscr{P}(\phi_i)$ for all j.

Example: Let C be a smooth projective curve over \mathbb{C} . The central charge Z(E) = -deg(E) + irk(E) is a stability function on the Abelian category of coherent sheaves on C Coh(C) with the HN property. There is only one stability condition up to the action of $GL^+(2,\mathbb{R})$ which is free and transitive on Stab(E) [5, 6]. Thus

 $Stab(C) \cong \widetilde{GL^+(2,\mathbb{R})} \cong \mathbb{C} \times \mathbb{H}.$

For an elliptic curve E we find

 $Aut(E) \setminus Stab(E) / \mathbb{C} \cong \mathbb{H} / PSL(2, \mathbb{Z})$

where Aut(E) is the group of auto equivalences of $D^b(E)$. If we compare this to the moduli space of SCFTs associated to elliptic curves we can interpret the Kahler moduli space of the elliptic curve as a subspace of this quotient.

Stability conditions on K3 surfaces 4

We are interested in the bounded derived category of coherent sheaves $D^b(X)$ on a projective K3 surface or an Abelian surface X over the complex numbers. In this case we say a stability condition is numerical if the

Lemma 1.2. [3] Let $x \in H^{even}(X,\mathbb{R})$ be a positive oriented four-plane with geometric interpretation $v^0, v \in V$ $H^{even}(X,\mathbb{Z})$, which are interpreted as generators of $H^0(X,\mathbb{Z})$ and $H^4(X,\mathbb{Z})$, respectively, and a decomposition $x = \Omega \perp \mho$. Then one finds uniquely $\omega \in H^{even}(X, \mathbb{R})$ (up to scaling) and $B \in H^2(X, \mathbb{R})$ with

 $\mho = \mathbb{R}\left\langle \omega - \langle \omega, B \rangle, \xi_4 = \upsilon^0 + B + \left(V - \frac{1}{2} \langle B, B \rangle \right) \upsilon \right\rangle$

with $V \in \mathbb{R}_+$ and $\omega^2 \in \mathbb{R}_+$. It is important to note that the mentioned moduli space of SCFTs associated to K3 surfaces also contains ill-defined conformal field theories. Namely, a positive oriented four-plane $x \in M^{16}$ corresponds to such an theory if and only if there is a $\delta \in x^{\perp} \subset \mathbb{R}^{4,20}$ with $\langle \delta, \delta \rangle = -2$. The physics behind this tells us that the field theory gets extra massless particles at certain points in the moduli space and breaks down.

Orbifold conformal field theories

Given a finite group G that acts nicely on the Hilbert space of a SCFT one can construct an orbifold conformal field theory by projecting onto G invariant representations of the superconformal algebra and adding so-called twisted representations. We are interested in the case of a complex torus T with \mathbb{Z}_2 action and its associated Kummer surface X. The twisted representations correspond to the exceptional divisors E_i , i = 1, ..., 26 of the blow up. Let $\pi: T \to X$ be the induced rational map of degree |G| defined outside the fixed points of the G action. The induced map on the cohomology gives an embedding into a lattice that is isometric to the even cohomology $H^{even}(X,\mathbb{Z})$: $\pi_*: H^{even}(T,\mathbb{Z})(2) \hookrightarrow L(X)$ [4, 2].

Theorem 2.1. [2] For a geometric interpretation of a N=(2,2) SCFT on a complex torus T with ω, V_T, B_T as in lemma (1.2) the corresponding orbifold conformal field theory has a geometric interpretation \hat{v} , $\hat{\upsilon}^0 \in H^{even}(X,\mathbb{Z})$ with $\pi_*\omega, V = \frac{V_T}{2}, B$ where

central charge $Z: K(X) \to \mathbb{C}$ factors through the quotient group $\mathscr{N}(X) = K(X)/K(X)^{\perp} = \mathbb{Z} \oplus NS(X) \oplus \mathbb{Z}$. **Theorem 4.1.** [5] For each connected compenent $Stab^*(X) \subset Stab(X)$, there is a linear subspace $V \subset$ $\mathcal{N}(X) \otimes \mathbb{C}$ such that

$$\pi: Stab^*(X) \longrightarrow \mathscr{N}(X) \otimes \mathbb{C}$$

is a local homeomorphism onto an open subset of the subspace V. In particular, $Stab^*(X)$ is a finite-dimensional complex manifold.

We have the following description of the stability manifold for algebraic K3 surfaces:

Theorem 4.2. [7] There is a distinguished connected component $Stab^{\dagger}(X) \subset Stab(X)$ which is mapped by π onto the open subset $\mathscr{P}_0^+(X)$.

The induced map π : $Stab(X) \to \mathscr{P}_0^+(X)$ is a covering map, and the subgroup of $Aut^0(\mathscr{D}(X))$ which preserves the connected component $\operatorname{Stab}^{\dagger}(X)$ acts freely on $\operatorname{Stab}^{\dagger}(X)$ and is the group of deck transformations of π . Here $\mathscr{P}_0^+(X)$ is one component of the vectors in $\mathscr{N} \otimes \mathbb{C}$ whose real and imaginary part span positive 2-planes without ill-defined CFTs.

We noticed that the orbifold conformal field theories coming from a complex torus are all well-defined. For an Abelian surface and the Kummer surface X = Km A we have an embedding $\pi_* : \mathscr{P}^+(A) \hookrightarrow \mathscr{P}^+_0(X)$. This can be liftet to the stability manifold:

Theorem 4.3. Let $Stab^{\dagger}(A)$ the unique maximal connected component $Stab^{\dagger}(A)$ of the space of stability conditions of an Abelian surface A and Stab[†](X) the distinguished connected component of Stab(x) of the Kummer surface X = KMA. Then there is an embedding $Stab^{\dagger}(A) \hookrightarrow Stab^{\dagger}(X)$.

$$B = \frac{1}{2}\pi_*B_T + \frac{1}{2}B_{\mathbb{Z}}, B_{\mathbb{Z}} = \frac{1}{2}\sum_{i\in\mathbb{F}_2^4}\hat{E}_i.$$

 $x^{\perp} \cap H^{even}(X,\mathbb{Z})$ does not contain (-2) classes.

Here $\pi_*\omega$ is an orbifold Kahler class on the boundary of the Kahler cone.

Furthermore we have an injective homomorphism from the group of Deckbewegungen of $Stab^{\dagger}(A)$ (generated by the double shift) to the group of Deckbewegungen of $Stab^{\dagger}(X)$.

Question: Is $Stab^{\dagger}(X)$ for a projective Kummer surface simply connected? The positive answer would provide information on the group of auto equivalences of $D^b(X)$.

References	[3] P. ASPINWALL & D. MORRISON: String Theory on K3 Surfaces,	Ann. of Math., 166(2), 2007, 317-345.
 [1] K. NARAIN: New Heterotic String Theories in uncompactified Dimensions <10, <i>Phys. Lett.</i> 169B(1986), 41-46. [2] W. NAUM & K. WENDLAND: A Hikor's guide to K3: Aspects 	in: Mirror Symmetry II (B. Greene and ST. Yau, eds.), Cambridge 1997, 703-716. [4] V. NIKULIN: On Kummer Surfaces, Math. USSR Isv. 9(1975), 261-	[6] E. MACRI: Stability Conditions on Curves, <i>Math. Res. Lett.</i> , 14 (2007) 657-672.
of N=(4,4) Superconformal Field Theory with central charge c=6, Comm. Math. Phys. 216(2001),85-138.	275. [5] T. BRIDGELAND: Stability Conditions on Triangulated Categories,	 [7] T. BRIDGELAND: Stability Conditions on K3 Surfaces, <i>Duke Math.</i> J., 141(2), 2008, 241-291.