On the semiampleness of the positive part of CKM Zariski decompositions

Salvatore Cacciola
(Università Roma Tre)

GAeL, Géométrie algébrique en liberté
Berlin - 22 July 2011

Preliminaries(1)

Convention

X is a normal complex projective variety. K_{X} is the canonical divisor on X.

We recall some definitions:

Preliminaries(1)

Convention

X is a normal complex projective variety. K_{X} is the canonical divisor on X.

We recall some definitions:

- A \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$ is a \mathbb{Q}-linear combination of prime Weil divisors;

Preliminaries(1)

Convention

X is a normal complex projective variety. K_{X} is the canonical divisor on X.

We recall some definitions:

- A \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$ is a \mathbb{Q}-linear combination of prime Weil divisors;
- Given a \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$, the round down of D is

$$
[D]=\sum\left[a_{i}\right] D_{i}
$$

Preliminaries(1)

Convention

X is a normal complex projective variety.
K_{X} is the canonical divisor on X.
We recall some definitions:

- A \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$ is a \mathbb{Q}-linear combination of prime Weil divisors;
- Given a \mathbb{Q}-divisor $D=\sum a_{i} D_{i}$, the round down of D is

$$
[D]=\sum\left[a_{i}\right] D_{i}
$$

- A \mathbb{Q}-divisor D is \mathbb{Q}-Cartier if there exists a multiple $m D$ which is a Cartier divisor.

Preliminaries(2)

- A \mathbb{Q}-Cartier divisor D is nef if $(D \cdot C) \geq 0$ for every irreducible curve $C \subseteq X$.

Preliminaries(2)

- A \mathbb{Q}-Cartier divisor D is nef if $(D \cdot C) \geq 0$ for every irreducible curve $C \subseteq X$.
- A \mathbb{Q}-Cartier divisor D is big if there exists $C>0$ such that

$$
h^{0}\left(X, \mathcal{O}_{X}(m D)\right) \geq C \cdot m^{\operatorname{dim} X}
$$

for all sufficiently divisible $m \in \mathbb{N}$.

Graded rings

Definition

Given a \mathbb{Q}-Cartier divisor D on X we can consider the graded ring

$$
R(X, D):=\bigoplus_{m D \text { Cartier }} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

where the multiplication is given by :

$$
H^{0}\left(X, \mathcal{O}_{X}(m D)\right) \otimes H^{0}\left(X, \mathcal{O}_{X}(n D)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}((m+n) D)\right)
$$

Graded rings

Definition

Given a \mathbb{Q}-Cartier divisor D on X we can consider the graded ring

$$
R(X, D):=\bigoplus_{m D \text { Cartier }} H^{0}\left(X, \mathcal{O}_{X}(m D)\right),
$$

where the multiplication is given by :

$$
H^{0}\left(X, \mathcal{O}_{X}(m D)\right) \otimes H^{0}\left(X, \mathcal{O}_{X}(n D)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}((m+n) D)\right)
$$

- The graded ring of a \mathbb{Q}-Cartier divisor is not finitely generated in general as a \mathbb{C}-algebra.

Graded rings

Definition

Given a \mathbb{Q}-Cartier divisor D on X we can consider the graded ring

$$
R(X, D):=\bigoplus_{m D \text { Cartier }} H^{0}\left(X, \mathcal{O}_{X}(m D)\right),
$$

where the multiplication is given by :

$$
H^{0}\left(X, \mathcal{O}_{X}(m D)\right) \otimes H^{0}\left(X, \mathcal{O}_{X}(n D)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}((m+n) D)\right)
$$

- The graded ring of a \mathbb{Q}-Cartier divisor is not finitely generated in general as a \mathbb{C}-algebra.
- The finite generation of the graded ring associated to the (log) canonical divisor has been proved recently (Birkar, Cascini, Hacon, McKernan) and it has a fundamental role in the context of the Minimal Model Program.

Zariski decomposition

Definition

A big \mathbb{Q}-Cartier divisor D admits a Zariski decomposition in the sense of Cutkoski-Kawamata-Moriwaki (or a CKM-Zariski decomposition) if there exist two \mathbb{Q}-Cartier divisors P, N such that:

1. $D=P+N$;
2. P is nef and N is effective;
3. $H^{0}\left(X, \mathcal{O}_{X}([m P])\right) \simeq H^{0}\left(X, \mathcal{O}_{X}([m D])\right)$ for all $m \in \mathbb{N}$.

Zariski decomposition

Definition

A big \mathbb{Q}-Cartier divisor D admits a Zariski decomposition in the sense of Cutkoski-Kawamata-Moriwaki (or a CKM-Zariski decomposition) if there exist two \mathbb{Q}-Cartier divisors P, N such that:

1. $D=P+N$;
2. P is nef and N is effective;
3. $H^{0}\left(X, \mathcal{O}_{X}([m P])\right) \simeq H^{0}\left(X, \mathcal{O}_{X}([m D])\right)$ for all $m \in \mathbb{N}$.

Remarks:

- Every big \mathbb{Q}-Cartier divisor on a surface admits a CKM-Zariski decomposition, in fact this is the classical Zariski decomposition;

Zariski decomposition

Definition

A big \mathbb{Q}-Cartier divisor D admits a Zariski decomposition in the sense of Cutkoski-Kawamata-Moriwaki (or a CKM-Zariski decomposition) if there exist two \mathbb{Q}-Cartier divisors P, N such that:

1. $D=P+N$;
2. P is nef and N is effective;
3. $H^{0}\left(X, \mathcal{O}_{X}([m P])\right) \simeq H^{0}\left(X, \mathcal{O}_{X}([m D])\right)$ for all $m \in \mathbb{N}$.

Remarks:

- Every big \mathbb{Q}-Cartier divisor on a surface admits a CKM-Zariski decomposition, in fact this is the classical Zariski decomposition;
- CKM-Zariski decompositions do not exist in general (Cutkoski's and Nakayama's counterexamples).

Graded rings and Zariski decomposition

- Let D be a big \mathbb{Q}-Cartier divisor. If $D=P+N$ is a CKM-Zariski decomposition, then $R(X, D) \simeq R(X, P)$.

Graded rings and Zariski decomposition

- Let D be a big \mathbb{Q}-Cartier divisor. If $D=P+N$ is a CKM-Zariski decomposition, then $R(X, D) \simeq R(X, P)$.
- Thus in order to check the finite generation of $R(X, D)$ we can study the finite generation of $R(X, P)$.

Graded rings and Zariski decomposition

- Let D be a big \mathbb{Q}-Cartier divisor. If $D=P+N$ is a CKM-Zariski decomposition, then $R(X, D) \simeq R(X, P)$.
- Thus in order to check the finite generation of $R(X, D)$ we can study the finite generation of $R(X, P)$.
- This might be easier because P is nef. In particular $R(X, P) \simeq R(X, D)$ is finitely generated if and only if $m P$ is base point free for some $m \in \mathbb{N}$.

Graded rings and Zariski decomposition

- Let D be a big \mathbb{Q}-Cartier divisor. If $D=P+N$ is a CKM-Zariski decomposition, then $R(X, D) \simeq R(X, P)$.
- Thus in order to check the finite generation of $R(X, D)$ we can study the finite generation of $R(X, P)$.
- This might be easier because P is nef. In particular $R(X, P) \simeq R(X, D)$ is finitely generated if and only if $m P$ is base point free for some $m \in \mathbb{N}$.

Definition

If P is a \mathbb{Q}-Cartier divisor such that, for some integer $m, m P$ is Cartier and base point free, then P is said to be semiample.

Kawamata's theorem (1)

The starting point of our work is an important theorem by Kawamata. Let us begin with a less general version of it:

finitely generated and a birational pullback of K_{X} admits a Zariski
decomposition whenever K_{X} is big.

Kawamata's theorem (1)

The starting point of our work is an important theorem by Kawamata. Let us begin with a less general version of it:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If

1. K_{X} is the canonical divisor on X;
2. K_{X} is big;
3. $K_{X}=P+N$ is a CKM-Zariski decomposition;
then the positive part P is semiample. In particular the canonical ring $R\left(X, K_{X}\right)$ is finitely generated.

Kawamata's theorem (1)

The starting point of our work is an important theorem by Kawamata. Let us begin with a less general version of it:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If

1. K_{X} is the canonical divisor on X;
2. K_{X} is big;
3. $K_{X}=P+N$ is a CKM-Zariski decomposition;
then the positive part P is semiample. In particular the canonical ring $R\left(X, K_{X}\right)$ is finitely generated.

In fact by Birkar, Cascini, Hacon, McKernan $R\left(X, K_{X}\right)$ is always finitely generated and a birational pullback of K_{X} admits a Zariski decomposition whenever K_{X} is big.

Pairs

In the context of the Minimal Model Program instead of simply working with a variety, it is usual to work with pairs, given by a variety and a \mathbb{Q}-divisor on it.

Pairs

In the context of the Minimal Model Program instead of simply working with a variety, it is usual to work with pairs, given by a variety and a \mathbb{Q}-divisor on it.
The motivation is that the canonical divisor K_{X} is not a Cartier (or a \mathbb{Q}-Cartier) divisor in general.

Pairs

In the context of the Minimal Model Program instead of simply working with a variety, it is usual to work with pairs, given by a variety and a \mathbb{Q}-divisor on it.
The motivation is that the canonical divisor K_{X} is not a Cartier (or a \mathbb{Q}-Cartier) divisor in general.
This leads to the following definition:

Definition

Let X be a variety and let $\Delta=\sum a_{i} D_{i}$ be an effective \mathbb{Q}-divisor on X such that all $a_{i} \leq 1$. We say that (X, Δ) is a pair if $K_{X}+\Delta$ is \mathbb{Q}-Cartier.

Pairs

In the context of the Minimal Model Program instead of simply working with a variety, it is usual to work with pairs, given by a variety and a \mathbb{Q}-divisor on it.
The motivation is that the canonical divisor K_{X} is not a Cartier (or a \mathbb{Q}-Cartier) divisor in general.
This leads to the following definition:

Definition

Let X be a variety and let $\Delta=\sum a_{i} D_{i}$ be an effective \mathbb{Q}-divisor on X such that all $a_{i} \leq 1$. We say that (X, Δ) is a pair if $K_{X}+\Delta$ is \mathbb{Q}-Cartier.

The idea is that we add a "small" divisor to K_{X} to make it \mathbb{Q}-Cartier.

SNCS divisors and log-resolutions

Let $\Delta=\sum a_{i} D_{i}$ be a \mathbb{Q}-divisor on a smooth variety X. We say that Δ has simple normal crossing support (SNCS) if each D_{i} is smooth and the components of Δ intersect "as transversely as possible".

SNCS divisors and log-resolutions

Let $\Delta=\sum a_{i} D_{i}$ be a \mathbb{Q}-divisor on a smooth variety X. We say that Δ has simple normal crossing support (SNCS) if each D_{i} is smooth and the components of Δ intersect "as transversely as possible".
Thanks to Hironaka's theorem we can turn every divisor into a SNCS one, by performing a suitable birational morphism:

SNCS divisors and log-resolutions

Let $\Delta=\sum a_{i} D_{i}$ be a \mathbb{Q}-divisor on a smooth variety X. We say that Δ has simple normal crossing support (SNCS) if each D_{i} is smooth and the components of Δ intersect "as transversely as possible".
Thanks to Hironaka's theorem we can turn every divisor into a SNCS one, by performing a suitable birational morphism:

Definition

Let (X, Δ) be a pair. A \log resolution of (X, Δ) is a birational morphism $\mu: X^{\prime} \rightarrow X$ such that X^{\prime} is smooth and $\mu^{*}(\Delta)+\operatorname{exc}(\mu)$ has SNCS. Here we denote by $\operatorname{exc}(\mu)$ the sum of all the exceptional divisors of μ.

LC centers

Given a pair (X, Δ) we can consider some subvarieties of X that are special with respect to it:

LC centers

Given a pair (X, Δ) we can consider some subvarieties of X that are special with respect to it:

Definition

A subvariety $V \subseteq X$ is a $L C$ center of the pair (X, Δ) if there exists a \log resolution $\mu: X^{\prime} \rightarrow X$ such that if we write

$$
K_{X^{\prime}}-\mu^{*}\left(K_{X}+\Delta\right)=\sum a_{E} E
$$

then there exists E, prime divisor on X^{\prime}, such that $\mu(E)=V$ and $a_{E} \leq-1$.
We say that V is a pure LC center if $a_{E}=-1$ for every such E.

LC centers

Given a pair (X, Δ) we can consider some subvarieties of X that are special with respect to it:

Definition

A subvariety $V \subseteq X$ is a $L C$ center of the pair (X, Δ) if there exists a log resolution $\mu: X^{\prime} \rightarrow X$ such that if we write

$$
K_{X^{\prime}}-\mu^{*}\left(K_{X}+\Delta\right)=\sum a_{E} E
$$

then there exists E, prime divisor on X^{\prime}, such that $\mu(E)=V$ and $a_{E} \leq-1$.
We say that V is a pure LC center if $a_{E}=-1$ for every such E.

Definition

A pair (X, Δ) is Kawamata log terminal ($K L T$) if it has no LC centers.
It is log canonical ($L C$) if it has only pure LC centers.

Example 1: Take X to be smooth and suppose $\Delta=\sum a_{i} D_{i}$ has SNCS (and $a_{i} \leq 1$). Then $\mu=i d: X \rightarrow X$ is a \log resolution.

Example 1: Take X to be smooth and suppose $\Delta=\sum a_{i} D_{i}$ has SNCS (and $a_{i} \leq 1$). Then $\mu=i d: X \rightarrow X$ is a \log resolution. Note that

$$
K_{X}-\mu^{*}\left(K_{X}+\Delta\right)=-\Delta=-\sum a_{i} D_{i}
$$

Example 1: Take X to be smooth and suppose $\Delta=\sum a_{i} D_{i}$ has SNCS (and $a_{i} \leq 1$). Then $\mu=i d: X \rightarrow X$ is a \log resolution. Note that

$$
K_{X}-\mu^{*}\left(K_{X}+\Delta\right)=-\Delta=-\sum a_{i} D_{i}
$$

It follows that the LC centers of (X, Δ) are the divisors $\left\{D_{i}: a_{i}=1\right\}$ and all the irreducible components of finite intersections of these divisors.

Example 1: Take X to be smooth and suppose $\Delta=\sum a_{i} D_{i}$ has SNCS (and $a_{i} \leq 1$). Then $\mu=i d: X \rightarrow X$ is a \log resolution. Note that

$$
K_{X}-\mu^{*}\left(K_{X}+\Delta\right)=-\Delta=-\sum a_{i} D_{i}
$$

It follows that the LC centers of (X, Δ) are the divisors $\left\{D_{i}: a_{i}=1\right\}$ and all the irreducible components of finite intersections of these divisors. Hence (X, Δ) is KLT if and only if $a_{i}<1$ for every i and (X, Δ) is always LC as long as all $a_{i} \leq 1$.

Example 1: Take X to be smooth and suppose $\Delta=\sum a_{i} D_{i}$ has SNCS (and $a_{i} \leq 1$). Then $\mu=i d: X \rightarrow X$ is a \log resolution.
Note that

$$
K_{X}-\mu^{*}\left(K_{X}+\Delta\right)=-\Delta=-\sum a_{i} D_{i}
$$

It follows that the LC centers of (X, Δ) are the divisors
$\left\{D_{i}: a_{i}=1\right\}$ and all the irreducible components of finite intersections of these divisors.
Hence (X, Δ) is KLT if and only if $a_{i}<1$ for every i and (X, Δ) is always LC as long as all $a_{i} \leq 1$.

From this example we see that:

Remark

One reason for a subvariety $V \subseteq X$ to be an LC center of (X, Δ) is that V is a divisor with coefficient 1 in Δ, or an irreducible component of an intersection of divisors with coefficient 1.

Example 2: Let $X \subseteq \mathbb{P}^{n+1}$ be a (n-dimensional) hypersurface that is smooth except for an ordinary d-fold point, say p, so that mult $_{p} X=d$. Consider the pair $(X, 0)$.

Example 2: Let $X \subseteq \mathbb{P}^{n+1}$ be a (n-dimensional) hypersurface that is smooth except for an ordinary d-fold point, say p, so that mult $_{p} X=d$. Consider the pair $(X, 0)$.
Then $\mu: X^{\prime}=B l_{p} X \rightarrow X$ is a log-resolution and it is easy to see that

$$
K_{X^{\prime}}-\mu^{*}\left(K_{X}\right)=(n-d) E
$$

where E is the exceptional divisor of μ, so that $\mu(E)=p$.

Example 2: Let $X \subseteq \mathbb{P}^{n+1}$ be a (n-dimensional) hypersurface that is smooth except for an ordinary d-fold point, say p, so that $m^{\prime} t_{p} X=d$. Consider the pair $(X, 0)$.
Then $\mu: X^{\prime}=B l_{p} X \rightarrow X$ is a log-resolution and it is easy to see that

$$
K_{X^{\prime}}-\mu^{*}\left(K_{X}\right)=(n-d) E
$$

where E is the exceptional divisor of μ, so that $\mu(E)=p$. Then p is an LC center of $(X, 0)$ if and only if $d \geq n+1$.

Example 2: Let $X \subseteq \mathbb{P}^{n+1}$ be a (n-dimensional) hypersurface that is smooth except for an ordinary d-fold point, say p, so that mult $_{p} X=d$. Consider the pair $(X, 0)$.
Then $\mu: X^{\prime}=B I_{p} X \rightarrow X$ is a log-resolution and it is easy to see that

$$
K_{X^{\prime}}-\mu^{*}\left(K_{X}\right)=(n-d) E
$$

where E is the exceptional divisor of μ, so that $\mu(E)=p$. Then p is an LC center of $(X, 0)$ if and only if $d \geq n+1$.

From this example we see that:

Remark

Another reason for $V \subseteq X$ to be an LC center is that X is "very singular" along V (or Δ is "very singular" along V).

Kawamata's theorem(2)

Now we can give a more general version of Kawamata's theorem, working in the context of pairs:

Theorem (Kawamata, 1987) Let X be a smooth variety. If D is a \mathbb{Q}-Cartier divisor such that D is big; $D=P+N$ is a CKM-Zariski decomposition then the positive part n is semiample

Kawamata's theorem(2)

Now we can give a more general version of Kawamata's theorem, working in the context of pairs:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If D is a \mathbb{Q}-Cartier divisor such that 1. $D=K_{X}$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition; then the positive part P is semiample.

Kawamata's theorem(2)

Now we can give a more general version of Kawamata's theorem, working in the context of pairs:

Theorem (Kawamata, 1987)

Let (X, Δ) be a KLT pair. If D is a \mathbb{Q}-Cartier divisor such that 1. $D=K_{X}+\Delta$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
then the positive part P is semiample.

Kawamata's theorem(2)

Now we can give a more general version of Kawamata's theorem, working in the context of pairs:

Theorem (Kawamata, 1987)

Let (X, Δ) be a KLT pair. If D is a \mathbb{Q}-Cartier divisor such that 1. $a D-\left(K_{X}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
then the positive part P is semiample.

Kawamata's theorem(2)

Now we can give a more general version of Kawamata's theorem, working in the context of pairs:

Theorem (Kawamata, 1987)

Let (X, Δ) be a KLT pair. If D is a \mathbb{Q}-Cartier divisor such that 1. $a D-\left(K_{X}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition; then the positive part P is semiample.

In particular the graded ring $R(X, D)$ is finitely generated.

LC case

Question

What happens if we take (X, Δ) to be a LC pair? Does the result still hold?

LC case

Question

What happens if we take (X, Δ) to be a LC pair? Does the result still hold?

Note that LC pairs are usually much more difficult to treat than KLT pairs.

LC case

Question

What happens if we take (X, Δ) to be a LC pair? Does the result still hold?

Note that LC pairs are usually much more difficult to treat than KLT pairs.
In fact:

- KLTness is an open condition, it is maintained if we slightly perturb the divisor of the pair. LCness is not.

LC case

Question

What happens if we take (X, Δ) to be a LC pair? Does the result still hold?

Note that LC pairs are usually much more difficult to treat than KLT pairs.
In fact:

- KLTness is an open condition, it is maintained if we slightly perturb the divisor of the pair. LCness is not.
- If (X, Δ) is KLT than X has only rational singularities. The same is not true for LC pairs.

LC case

Question

What happens if we take (X, Δ) to be a LC pair? Does the result still hold?

Note that LC pairs are usually much more difficult to treat than KLT pairs.
In fact:

- KLTness is an open condition, it is maintained if we slightly perturb the divisor of the pair. LCness is not.
- If (X, Δ) is KLT than X has only rational singularities. The same is not true for LC pairs.

Answer

No, the result does not hold in general! But...

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.
We put $D=4 \mu^{*}(L)+E$ and $\Delta=\widetilde{C_{0}} \sim 3 \mu^{*}(L)-E=-K_{X}$.

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.
We put $D=4 \mu^{*}(L)+E$ and $\Delta=\widetilde{C_{0}} \sim 3 \mu^{*}(L)-E=-K_{X}$.
It is easy to see that

- The pair (X, Δ) is LC;

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.
We put $D=4 \mu^{*}(L)+E$ and $\Delta=\widetilde{C_{0}} \sim 3 \mu^{*}(L)-E=-K_{X}$.
It is easy to see that

- The pair (X, Δ) is LC;
- D is big and nef ($D=P$ is a trivial CKM Zariski decomposition);

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.
We put $D=4 \mu^{*}(L)+E$ and $\Delta=\widetilde{C_{0}} \sim 3 \mu^{*}(L)-E=-K_{X}$.
It is easy to see that

- The pair (X, Δ) is LC;
- D is big and nef ($D=P$ is a trivial CKM Zariski decomposition);
- $D-\left(K_{X}+\Delta\right) \sim D$ is nef;

Counterexample (Zariski-Mumford)

Let $C_{0} \subseteq \mathbb{P}^{2}$ be a smooth cubic curve and let L be the hyperplane class on \mathbb{P}^{2}. Take 12 points p_{1}, \ldots, p_{12} on C_{0} such that $\mathcal{O}_{C_{0}}\left(p_{1}+\cdots+p_{12}-4 L\right)$ is a non-torsion line bundle of degree zero on C_{0}.
Consider the blow-up along the 12 points:

$$
\mu: X=B I_{12} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}
$$

and denote by $E=\sum_{i=1}^{12} E_{i}$ the sum of the exceptional divisors.
We put $D=4 \mu^{*}(L)+E$ and $\Delta=\widetilde{C_{0}} \sim 3 \mu^{*}(L)-E=-K_{X}$.
It is easy to see that

- The pair (X, Δ) is LC;
- D is big and nef ($D=P$ is a trivial CKM Zariski decomposition);
- $D-\left(K_{X}+\Delta\right) \sim D$ is nef;
- $B s(|m P|)=\Delta$ for all $m \in \mathbb{N}$, so that P is not semiample.

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.
The positive part of the Zariski decomposition $P=D$ is such that $H^{0}\left(m P_{\left.\right|_{V}}, V\right)=0$.

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.
The positive part of the Zariski decomposition $P=D$ is such that $H^{0}\left(m P_{\left.\right|_{V}}, V\right)=0$.
In other words, though asymptotically P has a lot of sections (it is big), it loses all its positivity when we restrict it to V.

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.
The positive part of the Zariski decomposition $P=D$ is such that $H^{0}\left(m P_{\left.\right|_{V}}, V\right)=0$.
In other words, though asymptotically P has a lot of sections (it is big), it loses all its positivity when we restrict it to V. We try to consider big divisors that "behave well" with respect to the LC centers of the given pair:

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.
The positive part of the Zariski decomposition $P=D$ is such that $H^{0}\left(m P_{\left.\right|_{V}}, V\right)=0$.
In other words, though asymptotically P has a lot of sections (it is big), it loses all its positivity when we restrict it to V.
We try to consider big divisors that "behave well" with respect to the LC centers of the given pair:

Definition (Miles Reid)

Let (X, Δ) be an LC pair and let P be a big \mathbb{Q}-divisor on X. Then P is said to be logbig with respect to the pair (X, Δ) if $P_{l_{V}}$ is big for every LC center $V \subseteq X$.

Logbig divisors

In the previous example, the only LC center of the pair (X, Δ) is $V=\operatorname{Supp}(\Delta)$.
The positive part of the Zariski decomposition $P=D$ is such that $H^{0}\left(m P_{\left.\right|_{V}}, V\right)=0$.
In other words, though asymptotically P has a lot of sections (it is big), it loses all its positivity when we restrict it to V.
We try to consider big divisors that "behave well" with respect to the LC centers of the given pair:

Definition (Miles Reid)

Let (X, Δ) be an LC pair and let P be a big \mathbb{Q}-divisor on X. Then P is said to be logbig with respect to the pair (X, Δ) if $P_{l_{V}}$ is big for every LC center $V \subseteq X$.

Logbig LC case

Kawamata's theorem

Let (X, Δ) be a KLT pair and let D be a big \mathbb{Q}-divisor on X such that

1. $a D-\left(K_{X}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;

Then P is semiample.

Logbig LC case

Conjecture (C.)

Let (X, Δ) be a LC pair and let D be a big \mathbb{Q}-divisor on X such that

1. $a D-\left(K_{X}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
4. P is logbig with respect to the pair (X, Δ).

Then P is semiample.

Logbig LC case

Conjecture (C.)

Let (X, Δ) be a LC pair and let D be a big \mathbb{Q}-divisor on X such that

1. $a D-\left(K_{x}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
4. P is logbig with respect to the pair (X, Δ).

Then P is semiample.
Remark: The conjecture holds if

- $\mathrm{N}=0$ (Ambro, 2003)

Logbig LC case

Conjecture (C.)

Let (X, Δ) be a LC pair and let D be a big \mathbb{Q}-divisor on X such that

1. $a D-\left(K_{x}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
4. P is logbig with respect to the pair (X, Δ).

Then P is semiample.
Remark: The conjecture holds if

- $\mathrm{N}=0$ (Ambro, 2003)
- X is smooth and Δ has SNCS (Fujino, 2007)

Logbig LC case

Conjecture (C.)

Let (X, Δ) be a LC pair and let D be a big \mathbb{Q}-divisor on X such that

1. $a D-\left(K_{X}+\Delta\right)$ is nef for some $a \geq 0$;
2. D is big;
3. $D=P+N$ is a CKM-Zariski decomposition;
4. P is logbig with respect to the pair (X, Δ).

Then P is semiample.
Remark: The conjecture holds if

- $\mathrm{N}=0$ (Ambro, 2003)
- X is smooth and Δ has SNCS (Fujino, 2007)

Theorem(C.)

The conjecture holds if $\operatorname{dim} X \leq 3$.

Idea of the proof

We treat in a different way LC centers of different dimensions.

Idea of the proof

We treat in a different way LC centers of different dimensions. What we use is the following claim (in any dimension):

Claim

Under the usual assumptions we can prove semiampleness of P if

1. $P_{l_{V}}$ is big for every V divisorial LC center;
2. $P_{l_{z}}$ is semiample, where $Z=\bigcup_{V L C}$ center of codim. ≥ 2.

Idea of the proof

We treat in a different way LC centers of different dimensions. What we use is the following claim (in any dimension):

Claim

Under the usual assumptions we can prove semiampleness of P if

1. $P_{l_{V}}$ is big for every V divisorial LC center;
2. $P_{l_{Z}}$ is semiample, where $Z=\bigcup_{V \text { LC center of codim. } \geq 2} V$.

If $\operatorname{dim} X \leq 3$ and P is logbig then hypothesis 1 . holds by logbigness.

Idea of the proof

We treat in a different way LC centers of different dimensions. What we use is the following claim (in any dimension):

Claim

Under the usual assumptions we can prove semiampleness of P if

1. $P_{l_{V}}$ is big for every V divisorial LC center;
2. $P_{l_{z}}$ is semiample, where $Z=\bigcup_{V \text { LC center of codim. } \geq 2} V$.

If $\operatorname{dim} X \leq 3$ and P is logbig then hypothesis 1 . holds by logbigness.

Hypothesis 2. holds because every V of codim ≥ 2 is a curve or a point.
Thus $P_{l_{V}}$ is big implies that $P_{l_{V}}$ is ample, so that $P_{l_{z}}$ is ample.

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

- We use the bigness of P when restricted to the divisorial LC centers to construct an "almost" LC pair $\left(X, \Delta^{\prime}\right)$ such that $a D-\left(K_{X}+\Delta^{\prime}\right)$ is ample.

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

- We use the bigness of P when restricted to the divisorial LC centers to construct an "almost" LC pair $\left(X, \Delta^{\prime}\right)$ such that $a D-\left(K_{X}+\Delta^{\prime}\right)$ is ample.
- We consider $\mu:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta^{\prime}\right)$ a log-resolution, so that Y is smooth and Δ_{Y} is SNCS;

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

- We use the bigness of P when restricted to the divisorial LC centers to construct an "almost" LC pair $\left(X, \Delta^{\prime}\right)$ such that $a D-\left(K_{X}+\Delta^{\prime}\right)$ is ample.
- We consider $\mu:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta^{\prime}\right)$ a log-resolution, so that Y is smooth and Δ_{Y} is SNCS;
- By the above ampleness we can slightly perturb Δ_{Y} so that all the divisorial LC centers of $\left(Y, \Delta_{Y}\right)$ are contracted by μ;

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

- We use the bigness of P when restricted to the divisorial LC centers to construct an "almost" LC pair $\left(X, \Delta^{\prime}\right)$ such that $a D-\left(K_{X}+\Delta^{\prime}\right)$ is ample.
- We consider $\mu:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta^{\prime}\right)$ a log-resolution, so that Y is smooth and Δ_{Y} is SNCS;
- By the above ampleness we can slightly perturb Δ_{Y} so that all the divisorial LC centers of $\left(Y, \Delta_{Y}\right)$ are contracted by μ;
- The hypothesis on the LC centers of lower dimensions implies that $\mu^{*}(P)_{\left.\right|_{N_{k t t}\left(Y, \Delta_{Y}\right)}}$ is semiample;

Proof of the claim

We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that $B s(|m P|) \cap \operatorname{Nklt}(X, \Delta)=\emptyset$, where $\operatorname{Nklt}(X, \Delta)=\bigcup_{V \text { LC center }} V$

- We use the bigness of P when restricted to the divisorial LC centers to construct an "almost" LC pair $\left(X, \Delta^{\prime}\right)$ such that $a D-\left(K_{X}+\Delta^{\prime}\right)$ is ample.
- We consider $\mu:\left(Y, \Delta_{Y}\right) \rightarrow\left(X, \Delta^{\prime}\right)$ a log-resolution, so that Y is smooth and Δ_{Y} is SNCS;
- By the above ampleness we can slightly perturb Δ_{Y} so that all the divisorial LC centers of $\left(Y, \Delta_{Y}\right)$ are contracted by μ;
- The hypothesis on the LC centers of lower dimensions implies that $\mu^{*}(P)_{\left.\right|_{N k t\left(Y, \Delta_{Y}\right)}}$ is semiample;
- We can lift sections thanks to Kawamata-Viehweg vanishing, so that we can apply Ambro's theorem.

Remarks

- We also proved the conjecture in any dimension if the pair (X, Δ) is divisorial log terminal (DLT);

Remarks

- We also proved the conjecture in any dimension if the pair (X, Δ) is divisorial log terminal (DLT);
- We proved a similar statement with the additional hypothesis that $(1-\epsilon) \Delta$ is KLT for some $\epsilon>0$ and in some particular non-LC cases;

Remarks

- We also proved the conjecture in any dimension if the pair (X, Δ) is divisorial log terminal (DLT);
- We proved a similar statement with the additional hypothesis that $(1-\epsilon) \Delta$ is KLT for some $\epsilon>0$ and in some particular non-LC cases;
- Most of our theorems work also for some $a<0$ (in the hypothesis $a D-\left(K_{X}+\Delta\right)$ nef $)$.

Thank you!

