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(Università Roma Tre)

GAeL, Géométrie algébrique en liberté
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Preliminaries(1)

Convention

X is a normal complex projective variety.
KX is the canonical divisor on X .

We recall some definitions:

• A Q-divisor D =
∑

aiDi is a Q-linear combination of prime
Weil divisors;

• Given a Q-divisor D =
∑

aiDi , the round down of D is

[D] =
∑

[ai ]Di .

• A Q-divisor D is Q-Cartier if there exists a multiple mD which
is a Cartier divisor.
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Preliminaries(2)

• A Q-Cartier divisor D is nef if (D · C ) ≥ 0 for every irreducible
curve C ⊆ X .

• A Q-Cartier divisor D is big if there exists C > 0 such that

h0(X ,OX (mD)) ≥ C ·mdim X ,

for all sufficiently divisible m ∈ N.
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Graded rings

Definition

Given a Q-Cartier divisor D on X we can consider the graded ring

R(X ,D) :=
⊕

mD Cartier

H0(X ,OX (mD)),

where the multiplication is given by :

H0(X ,OX (mD))⊗ H0(X ,OX (nD)) −→ H0(X ,OX ((m + n)D))

• The graded ring of a Q-Cartier divisor is not finitely generated
in general as a C-algebra.

• The finite generation of the graded ring associated to the
(log) canonical divisor has been proved recently (Birkar,
Cascini, Hacon, McKernan) and it has a fundamental role in
the context of the Minimal Model Program.
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Zariski decomposition

Definition

A big Q-Cartier divisor D admits a Zariski decomposition in the
sense of Cutkoski-Kawamata-Moriwaki (or a CKM-Zariski
decomposition) if there exist two Q-Cartier divisors P,N such that:

1. D = P + N;

2. P is nef and N is effective;

3. H0(X ,OX ([mP])) ' H0(X ,OX ([mD])) for all m ∈ N.

Remarks:

• Every big Q-Cartier divisor on a surface admits a CKM-Zariski
decomposition, in fact this is the classical Zariski
decomposition;

• CKM-Zariski decompositions do not exist in general
(Cutkoski’s and Nakayama’s counterexamples).
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Graded rings and Zariski decomposition

• Let D be a big Q-Cartier divisor. If D = P + N is a
CKM-Zariski decomposition, then R(X ,D) ' R(X ,P).

• Thus in order to check the finite generation of R(X ,D) we
can study the finite generation of R(X ,P).

• This might be easier because P is nef. In particular
R(X ,P) ' R(X ,D) is finitely generated if and only if mP is
base point free for some m ∈ N.

Definition

If P is a Q-Cartier divisor such that, for some integer m, mP is
Cartier and base point free, then P is said to be semiample.
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Kawamata’s theorem (1)

The starting point of our work is an important theorem by
Kawamata. Let us begin with a less general version of it:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If

1. KX is the canonical divisor on X ;

2. KX is big;

3. KX = P + N is a CKM-Zariski decomposition;

then the positive part P is semiample.
In particular the canonical ring R(X ,KX ) is finitely generated.

In fact by Birkar, Cascini, Hacon, McKernan R(X ,KX ) is always
finitely generated and a birational pullback of KX admits a Zariski
decomposition whenever KX is big.



Kawamata’s theorem (1)

The starting point of our work is an important theorem by
Kawamata. Let us begin with a less general version of it:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If

1. KX is the canonical divisor on X ;

2. KX is big;

3. KX = P + N is a CKM-Zariski decomposition;

then the positive part P is semiample.
In particular the canonical ring R(X ,KX ) is finitely generated.

In fact by Birkar, Cascini, Hacon, McKernan R(X ,KX ) is always
finitely generated and a birational pullback of KX admits a Zariski
decomposition whenever KX is big.



Kawamata’s theorem (1)

The starting point of our work is an important theorem by
Kawamata. Let us begin with a less general version of it:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If

1. KX is the canonical divisor on X ;

2. KX is big;

3. KX = P + N is a CKM-Zariski decomposition;

then the positive part P is semiample.
In particular the canonical ring R(X ,KX ) is finitely generated.

In fact by Birkar, Cascini, Hacon, McKernan R(X ,KX ) is always
finitely generated and a birational pullback of KX admits a Zariski
decomposition whenever KX is big.



Pairs

In the context of the Minimal Model Program instead of simply
working with a variety, it is usual to work with pairs, given by a
variety and a Q-divisor on it.
The motivation is that the canonical divisor KX is not a Cartier (or
a Q-Cartier) divisor in general.
This leads to the following definition:

Definition

Let X be a variety and let ∆ =
∑

aiDi be an effective Q-divisor
on X such that all ai ≤ 1. We say that (X ,∆) is a pair if KX + ∆
is Q-Cartier.

The idea is that we add a “small” divisor to KX to make it
Q-Cartier.
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SNCS divisors and log-resolutions

Let ∆ =
∑

aiDi be a Q-divisor on a smooth variety X . We say
that ∆ has simple normal crossing support (SNCS) if each Di is
smooth and the components of ∆ intersect“as transversely as
possible”.
Thanks to Hironaka’s theorem we can turn every divisor into a
SNCS one, by performing a suitable birational morphism:

Definition

Let (X ,∆) be a pair. A log resolution of (X ,∆) is a birational
morphism µ : X ′ → X such that X ′ is smooth and µ∗(∆) + exc(µ)
has SNCS. Here we denote by exc(µ) the sum of all the
exceptional divisors of µ.
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LC centers
Given a pair (X ,∆) we can consider some subvarieties of X that
are special with respect to it:

Definition

A subvariety V ⊆ X is a LC center of the pair (X ,∆) if there
exists a log resolution µ : X ′ → X such that if we write

KX ′ − µ∗(KX + ∆) =
∑

aEE

then there exists E , prime divisor on X ′, such that µ(E ) = V and
aE ≤ −1.
We say that V is a pure LC center if aE = −1 for every such E .

Definition

A pair (X ,∆) is Kawamata log terminal (KLT) if it has no LC
centers.
It is log canonical (LC) if it has only pure LC centers.
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Example 1: Take X to be smooth and suppose ∆ =
∑

aiDi has
SNCS (and ai ≤ 1). Then µ = id : X → X is a log resolution.
Note that

KX − µ∗(KX + ∆) = −∆ = −
∑

aiDi .

It follows that the LC centers of (X ,∆) are the divisors
{Di : ai = 1} and all the irreducible components of finite
intersections of these divisors.
Hence (X ,∆) is KLT if and only if ai < 1 for every i and (X ,∆) is
always LC as long as all ai ≤ 1.

From this example we see that:

Remark

One reason for a subvariety V ⊆ X to be an LC center of (X ,∆) is
that V is a divisor with coefficient 1 in ∆, or an irreducible
component of an intersection of divisors with coefficient 1.
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Example 2: Let X ⊆ Pn+1 be a (n-dimensional) hypersurface that
is smooth except for an ordinary d-fold point, say p, so that
multpX = d . Consider the pair (X , 0).
Then µ : X ′ = BlpX → X is a log-resolution and it is easy to see
that

KX ′ − µ∗(KX ) = (n − d)E ,

where E is the exceptional divisor of µ, so that µ(E ) = p.
Then p is an LC center of (X , 0) if and only if d ≥ n + 1.

From this example we see that:

Remark

Another reason for V ⊆ X to be an LC center is that X is “very
singular” along V (or ∆ is “very singular” along V ).
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Kawamata’s theorem(2)

Now we can give a more general version of Kawamata’s theorem,
working in the context of pairs:

Theorem (Kawamata, 1987)

Let X be a smooth variety. If D is a Q-Cartier divisor such that

1. D = KX ;

2. D is big;

3. D = P + N is a CKM-Zariski decomposition;

then the positive part P is semiample.

In particular the graded ring R(X ,D) is finitely generated.
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LC case

Question

What happens if we take (X ,∆) to be a LC pair? Does the result
still hold?

Note that LC pairs are usually much more difficult to treat than
KLT pairs.
In fact:

• KLTness is an open condition, it is maintained if we slightly
perturb the divisor of the pair. LCness is not.

• If (X ,∆) is KLT than X has only rational singularities. The
same is not true for LC pairs.

Answer

No, the result does not hold in general! But...
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Counterexample (Zariski-Mumford)
Let C0 ⊆ P2 be a smooth cubic curve and let L be the hyperplane
class on P2. Take 12 points p1, . . . , p12 on C0 such that
OC0(p1 + · · ·+ p12 − 4L) is a non-torsion line bundle of degree
zero on C0.
Consider the blow-up along the 12 points:

µ : X = Bl12P2 → P2

and denote by E =
∑12

i=1 Ei the sum of the exceptional divisors.

We put D = 4µ∗(L) + E and ∆ = C̃0 ∼ 3µ∗(L)− E = −KX .
It is easy to see that

• The pair (X ,∆) is LC;

• D is big and nef (D = P is a trivial CKM Zariski
decomposition);

• D − (KX + ∆) ∼ D is nef;

• Bs(|mP|) = ∆ for all m ∈ N, so that P is not semiample.
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Logbig divisors

In the previous example, the only LC center of the pair (X ,∆) is
V = Supp(∆).
The positive part of the Zariski decomposition P = D is such that
H0(mP|V ,V ) = 0.
In other words, though asymptotically P has a lot of sections (it is
big), it loses all its positivity when we restrict it to V .
We try to consider big divisors that “behave well” with respect to
the LC centers of the given pair:

Definition (Miles Reid)

Let (X ,∆) be an LC pair and let P be a big Q-divisor on X . Then
P is said to be logbig with respect to the pair (X ,∆) if P|V is big
for every LC center V ⊆ X .
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Logbig LC case

Kawamata’s theorem

Let (X ,∆) be a KLT pair and let D be a big Q-divisor on X such
that

1. aD − (KX + ∆) is nef for some a ≥ 0;

2. D is big;

3. D = P + N is a CKM-Zariski decomposition;

Then P is semiample.

Remark: The conjecture holds if

• N=0 (Ambro, 2003)

• X is smooth and ∆ has SNCS (Fujino, 2007)

Theorem(C.)

The conjecture holds if dim X ≤ 3.
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Idea of the proof

We treat in a different way LC centers of different dimensions.
What we use is the following claim (in any dimension):

Claim

Under the usual assumptions we can prove semiampleness of P if

1. P|V is big for every V divisorial LC center;

2. P|Z is semiample, where Z =
⋃

V LC center of codim.≥2 V .

If dimX ≤ 3 and P is logbig then hypothesis 1. holds by
logbigness.

Hypothesis 2. holds because every V of codim ≥ 2 is a curve or a
point.
Thus P|V is big implies that P|V is ample, so that P|Z is ample.
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Proof of the claim
We reduce our claim to the following:

Theorem (Ambro)

Under the usual assumptions P is semiample if we know that
Bs(|mP|) ∩ Nklt(X ,∆) = ∅, where Nklt(X ,∆) =

⋃
V LC center V

• We use the bigness of P when restricted to the divisorial LC
centers to construct an “almost” LC pair (X ,∆′) such that
aD − (KX + ∆′) is ample.

• We consider µ : (Y ,∆Y )→ (X ,∆′) a log-resolution, so that
Y is smooth and ∆Y is SNCS;

• By the above ampleness we can slightly perturb ∆Y so that
all the divisorial LC centers of (Y ,∆Y ) are contracted by µ;

• The hypothesis on the LC centers of lower dimensions implies
that µ∗(P)|Nklt(Y ,∆Y )

is semiample;

• We can lift sections thanks to Kawamata-Viehweg vanishing,
so that we can apply Ambro’s theorem.
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Remarks

• We also proved the conjecture in any dimension if the pair
(X ,∆) is divisorial log terminal (DLT);

• We proved a similar statement with the additional hypothesis
that (1− ε)∆ is KLT for some ε > 0 and in some particular
non-LC cases;

• Most of our theorems work also for some a < 0 (in the
hypothesis aD − (KX + ∆) nef).
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Thank you!


