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Main Result

A line bundle L on X is q-ample if for every coherent
sheaf F on X, there exists an integer m0 such that
m ≥ m0 implies H i(X,F ⊗ L⊗m) = 0 for i > q.
Totaro showed that this property is equivalent to other
previously studied properties in characteristic 0, most no-
tably the property of uniform q-amplitude studied by De-
mailly, Peternell and Schneider in [2]. In particular, the
q-amplitude of a line bundle depends only on its numeri-
cal class, and the cone of such bundles is open.
This means that there is some hope of recovering geo-
metric and numerical information about X and its sub-
varieties from knowing when a line bundle is q-ample,
though at present such results are known only in limited
cases. In general much is known about the 0-ample cone
(which is the ample cone) and the (n− 1)-ample cone of
an n dimensional variety X is the negative of the comple-
ment of the pseudoeffective cone of X. For intermediate
values of q the relation between numerical and cohomo-
logical data remains mysterious.
I would like to thank my advisor David Eisenbud as well
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helpful discussions and comments.

Theorem. [1] Let X be complex projective scheme, and
let L be a line bundle on X. Then L is q-ample on X
if and only if the restriction of L to the augmented base
locus of L is q-ample.

When q = 0, the Kleiman criterion says that we can
check when a bundle is in the closure of the ample
cone by checking its positivity on the curves of X. Us-
ing our theorem, we get an analogous criterion for when
q = n− 2.

Corollary. Let X be a nonsingular projective variety. A
big line bundle L on X is (n− 2)-ample iff the restriction
of L∗ to every irreducible codimension 1 subvariety is not
pseudoeffective.

Example

Totaro [3] has given an example of a smooth toric 3-fold
with a line bundle L which is not in the closure of the
1-ample cone, but the restriction of L to every 2 dimen-
sional subvariety is in the closure of the 1-ample cone of
each subvariety.
Let X be the projectivization of the rank 2 vector bundle
O ⊕O(1,−1) on P1 × P1. Then X is a smooth toric Fano
3-fold, and the associated fan Σ has 6 rays, which we la-
bel f1 . . . f6. On the left is a picture of the dual polytope
to Σ. We can think of a torus invariant divisor on X as
an integral combination of the codimension 1 torus orbits.
Denote by Fi the torus orbit corresponding to the ray fi.
The divisor Fi can be thought of as a piecewise linear
function on |Σ| which sends fi to 1 and the other rays to
0. Two divisors are linearly equivalent iff their functions
differ by a linear function.
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The second figure shows a slice of N 1(X) ⊗ R, where
the effective cone is shaded. The numbers in each re-
gion are the largest q such that a linebundle in the inte-
rior of that region is q-ample. Each dividing hyperplane
is a minimal linear dependence among the rays fi. One
can show that L′ = 3F1 + 3F2 − F3 − F4 − F5 − F6 is not
1-ample on X but is 1-ample when restricted to any of
the Fi, and the same is true for any other divisor in the
top middle region of the second figure.
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