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Abstract

We discuss phenomena of tangency in Convex Optimization and Projective Geometry. Both theories
have at disposal a powerful theory of duality. In both cases, the duality allows a nice interpretation
of the contact locus of a hyperplane with an embedded variety. In this poster, we try to investigate
more precisely the similarities between the theorems on tangencies existing in both theories. We focus
in particular on a theorem of Anderson and Klee and its reformulation in the context of Algebraic
Geometry, known as a conjecture of Ranestad and Sturmfels. If true, this conjecture would have
significant consequences for Projective Geometry.

1 Introduction

Let X ⊂ Rn be a compact convex body whose interior contains 0. There have been considerable
efforts to classify the singularities of the points lying in the boundary of X . A clear picture of the
situation was probably given for the first time by Anderson and Klee [AK52].

Definition 1.0.1 Let X ⊂ Rn be a compact convex body whose interior contains 0, let
X∗ ⊂ Rn∗ be its dual body and let x ∈ ∂X. We say that x is an r-singular point of X
if the exposed face of X∗ relative to x⊥ has dimension at least r.

Theorem 1.0.2 Let X ⊂ Rn be a compact convex body whose interior contains 0 and let
r ∈ {0, ..., n− 1}. The set of r-singular points of X can be covered by countably many compact
subsets of finite n− r − 1-dimensional Hausdorff measure.

Now we turn to a similar situation in Projective Geometry. Let X ⊂ Pn
C be an irreducible, non-

degenerate projective variety. Zak found a bound for the dimension of the contact locus of any linear
space with X [Zak93].

Theorem 1.0.3 Let X ⊂ Pn
C be an irreducible, non degenerate projective variety and let

L ⊂ PN
C be a linear space. Denote by XL = {x ∈ X, TX,x ⊂ L}, we have the inequality:

dim(XL) ≤ dim(L)− dim(X) + b + 1,

where b = dim Xsing.

Both theorems tell us that support loci are subject to dimensional constraints. However, theorem
1.0.2 bounds the dimension of a family of hyperplanes when the dimension of the contact locus of
the general member is known, whereas theorem 1.0.3 bounds the dimension of the contact locus of a
single hyperplane. Theorem 1.0.2 has no proven analogue in Algebraic Geometry and the equivalent
statement is known as a conjecture of Ranestad and Sturmfels [RS10a].

Conjecture 1.0.4 Let X ⊂ Pn
C be a non-degenerate, irreducible projective variety and let

X∗ ⊂ PN
C be its projective dual. Let r ∈ {0, ..., n − 1} and denote by X∗〈r〉 = {H⊥ ∈

X∗, dim〈XH〉 ≥ r}, where 〈.〉 denotes the scheme-theoretic linear span and XH is the tan-
gency locus of H with X. We have the inequality:

dim X∗〈r〉 ≤ n− r − 1.

Most of the content exposed here (except proposition 2.2.4 and section 3) is well known, either from
the analyst or the algebraic geometer. The idea for this presentation was inspired both by the body
of work [RS10a], [RS10b] and discussions with Kristian Ranestad and Bernd Sturmfels. I am grateful
to them for sharing their ideas with me. I would also like to thank the GAeL organizers for giving me
the opportunity to attend the 2011 issue.

2 Dualities and Contact Loci

2.1 A Common Setting for the Dualities

Here we will formulate, in a common language, the duality for convex bodies and for projective va-
rieties. In the following, the space En either denotes the complex projective space Pn

C or the real
euclidean space Rn. An object X ⊂ En refers to a compact convex body in Rn whose interior con-
tains 0 or to a reduced (irreducible) projective scheme in Pn

C. If X is a convex body, then ∂X is the

boundary of X . If X is a reduced projective scheme, then ∂X = X . We denote by Z the convex hull
or the Zariski closure of an object Z ⊂ En.

Definition 2.1.1 Let X ⊂ Rn be a compact convex body whose interior contains 0, let y ∈ X
and let H ⊂ Rn be a hyperplane. We say that H has contact with X at y, if for all x ∈ X we
have 〈H⊥, x〉 ≤ 1, and 〈H⊥, y〉 = 1, where 〈., .〉 is the evaluation pairing between Rn∗ and Rn.

Note that if H has contact with X at y, then necessarily y ∈ ∂X .

Definition 2.1.2 Let X ⊂ Pn
C be a reduced (irreducible) projective scheme and let H ⊂ Pn

C be
a hyperplane.
Let y ∈ Xsmooth. We say that H has contact with X at y if TX,y ⊂ H.
Let y ∈ Xsing. We say that H has contact with X at y if there exist sequences (ym) ∈ Xsmooth

and (Hm
⊥) ∈ Pn

C
∗

such that H⊥ = lim H⊥m, y = lim ym and Hm has contact with X at ym for
all m ∈ N.

Now we can state both dualities in a common setting.

Theorem 2.1.3 (Duality) Let X ⊂ En be an object. Consider the incidence:

IX = {(H⊥, x) ∈ En∗ × ∂X,H has contact with X at x},
and the natural diagram:

IX
q
↙

p
↘

En∗ ∂X ⊂ En

Let X∗ = q(IX). We have IX∗ = IX. As a consequence, we have X∗∗ = X and q(IX) = ∂(X∗).

Note that if X ⊂ En is a reduced projective scheme, then q(IX) is obviously Zariski closed. In this
case, the equality q(IX) = ∂(X∗) is a bit meaningless since, in our notations, ∂X∗ = X∗. Note also
that, by construction, for all H⊥ ∈ q(IX), we have:

x ∈ p(q−1(H⊥))⇔ H has contact with X at x.

The object p(q−1(H⊥)) is called the contact locus of H along X . In Convex Geometry, the set
p(q−1(H⊥)) is often called the exposed face of X relative to H , while in Projective Geometry it is
known as the tangency locus of H along X . The duality says that the set of hyperplanes which have
contact with X at x is equal to the contact locus of x⊥ along X∗. That is, for all x ∈ X , we have:

H⊥ ∈ p(q−1(x))⇔ x⊥ has contact with X∗ at H⊥.

2.2 The Principle of Anderson and Klee

In this section, we formulate the principle of Anderson and Klee in a common setting for Projective
Geometry and Convex Geometry.

Notations 2.2.1 Let X ⊂ En be an object. The linear span of X, which we denote by 〈X〉
is the smallest linear subspace of En which contains X.

In the case Z ⊂ En is a non-reduced scheme, the subspace 〈Z〉 is the scheme-theoretic linear span of
Z.

Definition 2.2.2 Let X ⊂ En be an object. A point x ∈ X is said to be a r-singular point
in X if dim〈q(p−1(x))〉 ≥ r. The set of r-singular points of X is denoted by X〈r〉.
The following result is the archetype of the theorem on tangencies which should be true in all geome-
tries. It was proven by Anderson and Klee (see [AK52], or [Sch93] for a modern presentation) in the
context of Convex Geometry and it is known as a conjecture of Ranestad and Sturmfels [RS10a] in
Projective Geometry.

Conjecture 2.2.3 Let X ⊂ En be an object, we have the inequality:

dim X〈r〉 ≤ n− r − 1.

Here the dimension must be understood as the Hausdorff dimension or the algebraic dimension, de-
pending on the context.
Using the theory developped by Hironaka around the notion of normal flatness [Hir64] and a result of
Lê-Teissier [LT88], one can prove the following statement in Projective Geometry.

Proposition 2.2.4 Let X ⊂ En be an irreducible, reduced projective variety. Let

X〈r〉top = {x ∈ X, dim |〈q(p−1(x))|red〉 ≥ r},
where |Y |red denotes the reduced space underlying the scheme Y . We have the inequality:

dim X〈r〉top ≤ n− r − 1.

3 Applications to Projective Geometry

If true, the conjecture of Ranestad and Sturmfels would have significant consequences for Projective
Geometry. In fact, even proposition 2.2.4 can be used to prove a generalization of Severi’s theorem.

Notations 3.0.5 Let X ⊂ Pn
C be an irreducible projective variety. We denote by X̃(r) the set

X̃(r) = {x ∈ X, dim q(p−1(x)) ≥ r}.
Theorem 3.0.6 Let X ⊂ P5

C be a smooth, irreducible, non-degenerate projective surface and

let X∗ ⊂ P5∗ its projective dual. We have dim X̃∗(1) ≤ 2, with equality if and only if X is the
Veronese surface.

Sketch of the proof :

I By assumption X 6= P2, so X does not contain a 2-dimensional family of lines. As a consequence
of proposition 2.2.4, we see that dim X̃∗(1) ≤ 2.

Assume that dim X̃∗(1) = 2, proposition 2.2.4 again shows that for all H⊥ ∈ X̃∗(1), the curve-
components of (H ∩X)sing are plane curves.

Let H⊥ ∈ X̃∗(1) be a general point and let k be the maximum of the degree of the curve-components
of |(H ∩X)sing|red. Assume that k ≥ 3. Then, there is a plane curve, say C, in |(H ∩X)sing|red
such that all lines in 〈C〉 are trisecants to X . But this is true for general H⊥ ∈ X̃∗(1), so that a
careful count of dimension shows that we have a 4-dimensional family of trisecants to X . This is
impossible by the trisecants lemma.

As a consequence, the smooth surface X is covered by a 2-dimensional family of conics, it is the
Veronese surface.

J
Note that Theorem 3.0.6 obviously implies Severi’s original result. Indeed, if X ⊂ P5

C is a smooth,
irreducible, non-degenerate surface whose secant variety does not cover the ambiant space, then Ter-
racini’s lemma implies that dim X̃∗(1) = 2. Another proof of Severi’s result, relying on similar
techniques as the above ones, is due to Zak and is a consequence of theorem 1.0.3. Hence, one may
hope that theorem 1.0.3 and theorem 2.2.3 could be considered in a common setting. As such, these
results are perhaps incarnations of a deeper principle, which has yet to be discovered.
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