Convex and Projective Duality : Different Points of Views on the Theorems on Tangencies

Roland Abuaf

Under the direction of Laurent Manivel
Institut Fourier, Université Joseph Fourier, Grenoble, France.

Abstract

We discuss phenomena of tangency in Convex Optimization and Projective Geometry. Both theories We discuss phenomena of tangengy of duality. In both cases, the duality allows a nice interpretation of the contact locus of a hyperplane with an embedded variety. In this poster, we try to investigate of the contact locus of a hyperplane with an embedded variety. In this poster, we try to investigate
more precisely the similarities between the theorems on tangencies existing in both theories. We focus in particular on a theorem of Anderson and Klee and its reformulation in the context of Algebraic Geometry, known as a conjecture of Ranestad and Sturmfels. If true, this conjecture would have significant consequences for Projective Geometry.

1 Introduction

Let $X \subset \mathbb{R}^{n}$ be a compact convex body whose interior contains 0 . There have been considerable efforts to classify the singularities of the points lying in the boundary of X. A clear picture of the n for the first time by Anderson and Klee [AK52]
Definition 1.0.1 Let $X \subset \mathbb{R}^{n}$ be a compact convex body whose interior contains 0 , let if the exposed face of X^{*} relative to x^{\perp} has dimension at least r.
Theorem 1.0.2 Let $X \subset \mathbb{R}^{n}$ be a compact convex body whose interior contains 0 and let $r \in\{0, \ldots, n-1\}$. The set of r-singular points of X can be covered by countably many compact subsets of finite $n-r-1$-dimensional Hausdorff measure.
Now we turn to a similar situation in Projective Geometry. Let $X \subset \mathbb{P}_{\mathbb{C}}^{n}$ be an irreducible, nondegenerate proiective variety. Zak found a bound for the dimension of the contact locus of any linear space with X [Zak93].
Theorem 1.0.3 Let $X \subset \mathbb{P}_{\mathbb{C}}^{n}$ be an irreducible, non degenerate projective variety and let $L \subset \mathbb{P}_{\mathbb{C}}^{N}$ be a linear space. Denote by $X_{L}=\left\{x \in X, T_{X, x} \subset L\right\}$, we have the inequality: $\operatorname{dim}\left(X_{L}\right) \leq \operatorname{dim}(L)-\operatorname{dim}(X)+b+1$,
where $b=\operatorname{dim} X_{\text {sing }}$
Both theorems tell us that support loci are subject to dimensional constraints. However, theorem 1.0 .2 bounds the dimension of a family of hyperplanes when the dimension of the contact locus of
the general member is known, whereas theorem 1.0 .3 bounds the dimension of the contact locus of a single hyperplane. Theorem 1.0.2 has no proven analogue in Algebraic Geometry and the equivalent statement is known as a conjecture of Ranestad and Sturmfels [RS10a].
Conjecture 1.0.4 Let $X \subset \mathbb{P}_{\mathbb{C}}^{n}$ be a non-degenerate, irreducible projective variety and let $X^{*} \subset \mathbb{P}_{\mathbb{C}}^{N}$ be its projective dual. Let $r \in\{0, \ldots, n-1\}$ and denote by $X^{*}\langle r\rangle=\left\{H^{\perp} \in\right.$ $\left.X^{*}, \operatorname{dim}\left\langle X_{H}\right\rangle \geq r\right\}$, where \langle.$\rangle denotes the scheme-theoretic linear span and X_{H}$ is the tan gency locus of H with X. We have the inequality.
$\operatorname{dim} X^{*}\langle r\rangle \leq n-r-1$.
Most of the content exposed here (except proposition 2.2.4 and section 3) is well known, either from Most of the content exposed here (except proposition 2.2 .4 and section 3) is well known, either fron of work [RS10a], [RS10b] and discussions with Kristian Ranestad and Bernd Sturmfels. I am grateful to them for sharing their ideas with me. I would also like to thank the GAeL organizers for giving me the opportunity to attend the 2011 issue.

2 Dualities and Contact Loci

2.1 A Common Setting for the Dualities

Here we will formulate, in a common language, the duality for convex bodies and for projective varieties. In the following, the space \mathbb{E}^{n} either denotes the complex projective space $\mathbb{P}_{\mathbb{C}}^{n}$ or the real euclidean space \mathbb{R}^{n}. An object $X \subset \mathbb{E}^{n}$ refers to a compact convex body in \mathbb{R}^{n} whose interior contains or to a reduced (irreducible) projective scheme in $\mathbb{P}_{\mathbb{C}}^{n}$. If X is a convex body, then ∂X is the or the Zariski closure of an object $Z \subset \mathbb{E}^{n}$.

Definition 2.1.1 Let $X \subset \mathbb{R}^{n}$ be a compact convex body whose interior contains 0 , let $y \in X$ and let $H \subset \mathbb{R}^{n}$ be a hyperplane. We say that H has contact with X at y, if for all $x \in X$ we have $\left\langle H^{\perp}, x\right\rangle \leq 1$, and $\left\langle H^{\perp}, y\right\rangle=1$, where $\langle. .$,$\rangle is the evaluation$
Definition 2.1.2 Let $X \subset \mathbb{P}^{n}$ be a reduced (irreducible) projective scheme and let $H \subset \mathbb{P}_{\mathrm{C}}^{n}$ be a hyperplane.
Let $y \in X_{\text {smooth }}$. We say that H has contact with X at y if $T_{X, y} \subset H$
Let $y \in X_{\text {sing. }}$. We say that H has contact with X at y if there exist sequences $\left(y_{m}\right) \in X_{\text {smooth }}$ and $\left(H_{m}{ }^{\perp}\right) \in \mathbb{P}_{\mathbb{C}}^{n^{*}}$ such that $H^{\perp}=\lim H_{m}^{\perp}, y=\lim y_{m}$ and H_{m} has contact with X at y_{m} for all $m \in \mathbb{N}$.
Now we can state both dualities in a common setting
Theorem 2.1.3 (Duality) Let $X \subset \mathbb{E}^{n}$ be an object. Consider the incidence:

$$
I_{X}=\left\{\left(H^{\perp}, x\right) \in \mathbb{E}^{n *} \times \partial X, H \text { has contact with } X \text { at } x\right\},
$$

and the natural diagram

Let $X^{*}=\overline{q\left(I_{X}\right)}$. We have $I_{X^{*}}=I_{X}$. As a consequence, we have $X^{* *}=X$ and $q\left(I_{X}\right)=\partial\left(X^{*}\right)$. Note that if $X \subset \mathbb{E}^{n}$ is a reduced projective scheme, then $q\left(I_{X}\right)$ is obviously Zariski closed. In this case, the equality $q\left(I_{X}\right)=\partial\left(X^{*}\right)$ is a bit meaningless since, in our notations, $\partial X^{*}=X^{*}$. Note also that, by construction, for all $H^{\perp} \in q\left(I_{X}\right)$, we have:

$$
x \in p\left(q^{-1}\left(H^{\perp}\right)\right) \Leftrightarrow H \text { has contact with } X \text { at } x .
$$

The object $p\left(q^{-1}\left(H^{\perp}\right)\right)$ is called the contact locus of H along X. In Convex Geometry, the set $p\left(q^{-1}\left(H^{\perp}\right)\right)$ is often called the exposed face of X relative to H, while in Projective Geometry it is known as the tangency locus of H along X. The duality says that the set of hyperplanes which have contact with X at x is equal to the contact locus of x^{\perp} along X^{*}. That is, for all $x \in X$, we have:

$$
H^{\perp} \in p\left(q^{-1}(x)\right) \Leftrightarrow x^{\perp} \text { has contact with } X^{*} \text { at } H^{\perp}
$$

2.2 The Principle of Anderson and Klee

 In this section, we formulate theGeometry and Convex Geometry.
Notations 2.2.1 Let $X \subset \mathbb{E}^{n}$ be an object. The linear span of X, which we denote by $\langle X\rangle$ is the smallest linear subspace of \mathbb{E}^{n} which contains X
In the case $Z \subset \mathbb{E}^{n}$ is a non-reduced scheme, the subspace $\langle Z\rangle$ is the scheme-theoretic linear span of
Definition 2.2.2 Let $X \subset \mathbb{E}^{n}$ be an object. A point $x \in X$ is said to be a r-singular point in X if $\operatorname{dim}\left\langle q\left(p^{-1}(x)\right)\right\rangle \geq r$. The set of r-singular points of X is denoted by $X\langle r\rangle$. The following result is the archetype of the theorem on tangencies which should be true in all geometries. It was proven by Anderson and Klee (see [AK52], or [Sch93] for a modern presentation) in the context of Convex Geometry and it is known as a conjecture of Ranestad and Sturmfels [RS10a] in
Projective Geometry
Conjecture 2.2.3 Let $X \subset \mathbb{E}^{n}$ be an object, we have the inequality:

$$
\operatorname{dim} X\langle r\rangle \leq n-r-1
$$

Here the dimension must be understood as the Hausdorff dimension or the algebraic dimension, depending on the context.
Using the theory developped by Hironaka around the notion of normal flatness [Hir64] and a result of Lê-Teissier [LT88], one can prove the following statement in Projective Geometry.
Proposition 2.2.4 Let $X \subset \mathbb{E}^{n}$ be an irreducible, reduced projective variety. Let
$X\langle r\rangle_{\text {top }}=\left\{x \in X, \operatorname{dim} \mid\left\langle\left. q\left(p^{-1}(x)\right)\right|_{\text {red }}\right\rangle \geq r\right\}$
where $|Y|_{\text {red }}$ denotes the reduced space underlying the scheme Y. We have the inequality:
$\operatorname{dim} X\langle r\rangle_{\text {top }} \leq n-r-1$.

3 Applications to Projective Geometry

If true, the conjecture of Ranestad and Sturmfels would have significant consequences for Projective Geometry. In fact, even proposition 2.2 .4 can be used to prove a generalization of Severi's theorem. Notations 3.0.5 Let $X \subset \mathbb{P}_{\mathbb{C}}^{n}$ be an irreducible projective variety. We denote by $\widetilde{X}(r)$ the set $\widetilde{X}(r)=\left\{x \in X, \operatorname{dim} q\left(p^{-1}(x)\right) \geq r\right\}$
Theorem 3.0.6 Let $X \subset \mathbb{P}_{\mathbb{C}}^{5}$ be a smooth, irreducible, non-degenerate projective surface and let $X^{*} \subset \mathbb{P}^{5}{ }^{*}$ its projective dual. We have $\operatorname{dim} \widetilde{X^{*}}(1) \leq 2$, with equality if and only if X is the Veronese surface.
$\frac{\text { Sketch of the proof : }}{\text { By assumption } X \neq \mathbb{P}^{2} \text {, so } X \text { does not contain a } 2 \text {-dimensional family of lines. As a consequence }}$ of proposition 2.2.4, we see that dim $\widetilde{X^{*}(1) \leq 2}$.
Assume that $\operatorname{dim} \widehat{X^{*}}(1)=2$, proposition 2.2.4 again shows that for all $H^{\perp} \in \widetilde{X^{*}}(1)$, the curvecomponents of $(H \cap X)_{\text {sing }}$ are plane curves.
Let $H^{\perp} \in \widehat{X^{*}}(1)$ be a general point and let k be the maximum of the degree of the curve-components of $\left|(H \cap X)_{\text {sing }}\right|$ red. Assume that $k \geq 3$. Then, there is a plane curve, say C, in $\left|(H \cap X)_{\text {sing }}\right|_{\text {ree }}$ such that all lines in $\langle C\rangle$ are trisecants to X. But this is true for general $H^{\perp} \in \widetilde{X^{*}}(1)$, so that a areful count of dimension shows that we have a 4 -dimensional family of trisecants to X. This is mpossible by the trisecants lemm
As a consequence, the smooth surface X is covered by a 2 -dimensional family of conics, it is the Veronese surface.
Note that Theorem 3.0.6 obviously implies Severi's original result. Indeed, if $X \subset \mathbb{P}_{\mathbf{C}}^{5}$ is a smooth, irreducible, non-degenerate surface whose secant variety does not cover the ambiant space then Terracini's lemma implies that dim $\widetilde{X}^{*}(1)=2$. Another proof of Severi's result, relying on similai techniques as the above ones, is due to Zak and is a consequence of theorem 1.0.3. Hence, one may hope that theorem 1.0.3 and theorem 2.2 .3 could be considered in a common setting. As such, these results are perhaps incarnations of a deeper principle, which has yet to be discovered.

References

AK52] R. D. Anderson and V. L. Klee, Jr. Convex functions and upper semi-continuous collections Duke Math. J., 19:349-357, 1952
[Hir64] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of character istic zero. I, II. Ann. of Math. (2) 79 (1964), 109-203; ibid. (2), 79:205-326, 1964.
[LT88] Dũng Tráng Lê and Bernard Teissier. Limites d'espaces tangents en géométrie analytique
Comment. Math. Helv., 63(4):540-578, 1988.
[RS10a] Kristian Ranestad and Bernd Sturmfels. The convex hull of a variety. arXiv, 2010 arXiv:1004.3018
[RS10b] Philipp Rostalski and Bernd Sturmfels. Dualities in convex algebraic geometry. arXiv, 2010 arXiv:1006 4894
[Sch93] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
Zak93] F. L. Zak. Tangents and secants of algebraic varieties, volume 127 of Translations of
Mathematical Monographs. American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author

