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1. Introduction

A general theory of HK manifolds was first developed thirty years ago by Bogomolov, Fujiki and

Beauville. Verbitsky and Salamon added key results on the topology of HK’s, and Verbitsky developed

other aspects such as the theory of hyperholomorphic sheaves. Roughly ten years ago Huybrechts

made huge steps ahead in the general theory, and quite recently Verbitsky added a global Torelli

Theorem. Many interesting consequences of Global Torelli have been obtained by Markman, Mongardi

and Bayer-Hassett-Tshinkel. A key ingredient in many of these developments is the existence of twistor

families of HK manifolds (a consequence of Yau’s solution of the Calabi conjecture): these are families

parametrized by P1, with the generic element of the family being a non-projective HK.

2. Yau’s Theorem and its implications

Let X be a compact Kähler manifold with cR1 (X) = 0 where cR1 (X) is the first Chern class in De

Rham cohomology - equivalently the integral first Chern class c1(X) ∈H2(X;Z) is torsion. A Calabi-

Yau metric on X is a Hermitian metric h such that the unique connection ∇ on KX compatible with

the holomorphic structure and the metric h (see [11]) is flat i.e. its curvature F∇ vanishes. Vanishing

of F∇ is equivalent to vanishing of the Ricci curvature of the riemannian metric associated to h, for

that reason a Calabi-Yau metric is also called a Ricci-flat metric. Below is Yau’s celebrated Theorem

on existence of Calabi-Yau metrics.

Theorem 2.1 (Yau [38]). Let (X,ω) be a compact Kähler manifold with cR1 (X) = 0. There exists a

unique Calabi-Yau metric h such that the Kähler form ωh of h is cohomologous to ω.

Example 2.2. Let X = Cn/L be a compact torus. In this case the statement of Theorem 2.1 follows

from the fact that every cohomology class is represented by a form on Cn with constant coefficients,

moreover the connection on the tangent space itself is flat.

In general Yau’s theorem is a pure existence result - as far as I know no one ever wrote down a

Calabi-Yau metric of a single K3 surface. Yau’s Theorem has some very strong consequences - we will

go over these results for HK manifolds.
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2.1. Holonomy. Let (M,g) be a Riemannian manifold. Let p, q ∈ M and γ∶ [a, b] → M a piecewise-

smooth path from p to q: parallel transport with respect to the Levi-Civita connection defines an

isometry

ϕγ ∶TpM Ð→ TpM.

(We let TpM be the real tangent space to M at p.) The holonomy group Hp at p is defined to be

Hp ∶= {ϕγ ∣ γ(a) = γ(b) = p} < O(TpM).

Forgetting about the point p we may view the holonomy group as a subgroup H < O(n) (here n ∶=
dimM) well-defined modulo conjugation (we assume that M is connected).

Example 2.3. Let X be a compact Kähler manifold with Kähler metric h. One identifies ΘpX (the

holomorphic tangent space to X at p) and TpX by mapping v ∈ ΘpX to (v + v)/2. Given the above

identification multiplication by −
√
−1 on ΘpX gets identified with an endomorphism I ∶TpX → TpX

whose square is − Id. Since h is Kähler the endomorphism I is invariant under the holonomy group [19]:

it follows that Hp is a subgroup of U(ΘpX,hp) (again we identify TpX with ΘpX).

The group Hp and its representation on TpM encodes information on the geometry of M as follows.

Let Γpar(M ;TM⊗a ⊗ T ∨M⊗b) be the space of parallel tensors.

Holonomy Principle 2.4. Let (M,g) be a connected riemannian manifold and p ∈M . The evaluation

map

Γpar(M ;TM⊗a ⊗ T ∨M⊗b) Ð→ TpM
⊗a ⊗ T ∨pM⊗b

is injective with image the subspace of tensors invariant under the action of Hp.

Next we recall Bochner’s principle [4].

Bochner’s Principle 2.5. Let X be a compact Kähler manifold and suppose that h is a Calabi-Yau

metric. Let σ be a holomorphic tensor i.e. a global holomorphic section of Θ⊗a
X ⊗ Ω⊗b

X . Then σ is

parallel.

Example 2.6. Let X be a compact Kähler manifold with cR1 (X) = 0 and ω be a Kähler class on

X. By Yau’s Theorem there exists a unique CY metric h such that ωh is in the class of ω. Let

0 /= α ∈ H0(KX). By Bochner’s principle α is parallel: it follows that Hp < SU(ΘpX) (recall that

Hp < U(ΘpX) by Example 2.3).

Example 2.7. Let X be a HK manifold and ω be a Kähler class on X. Let h be the unique CY metric

such that ωh is in the class of ω. Let σ be a holomorphic symplectic form. By Bochner’s principle

we get that Hp < (U(ΘpX,hp) ∩ Sp(ΘpX,σp)) where Sp(ΘpX,σp) is the symplectic group of C-linear

automorphisms preserving the symplectic form σp on ΘpX. Actually [4]

Hp = U(ΘpX,hp) ∩ Sp(ΘpX,σp). (2.1.1)

Theorem 2.8. Let X be a HK manifold of dimension 2n and σ a holomorphic 2-form. Then

H0(ΩqX) =
⎧⎪⎪⎨⎪⎪⎩

Cσi if q = 2i for 0 ≤ i ≤ n,

0 otherwise.
(2.1.2)

Proof. Let p ∈ X. Every holomorphic global form on X is parallel by Bochner’s principle: it follows

that we have an isomorphism

H0(ΩqX) ∼Ð→ (⋀q ΩpX)Hp
ϕ ↦ ϕp

(2.1.3)

where (⋀q ΩpX)Hp is the space of Hp-invariant elements of ⋀q ΩpX. The right-hand side of (2.1.3) is

generated by ⋀m σ(p) if q = 2m and is zero otherwise: the theorem follows. �

Corollary 2.9. Let X be a HK manifold of dimension 2n. Then χ(OX) = n + 1.
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2.2. Twistor families. Let X be a HK manifold of dimension 2n. Let ω be a Käbler class on X. Let

h be the unique CY metric such that ωh is in the class of ω and let g be the associated riemannian

metric (the real part of h). One identifies the holonomy group Hp = U(ΘpX,hp) ∩Sp(ΘpX,σp) with a

group acting on Hn (here H is the algebra of quaternions) as follows. Recall that H is the associative

real algebra with R-basis {1, i, j, k} such that

−1 = i2 = j2 = k2, ij = k, ji = −k, jk = i, kj = −i.

The conjugate of x = x1+x2i+x3j+x4k is x = x1−x2i−x3j−x4k; notice that x ⋅ y = y ⋅x. Multiplication

on the right gives Hn the structure of an H-module. Let w, z ∈ Hn: for s = 1, . . . , n we write ws = as+jbs
and zs = cs + jds where as, bs, cs, ds ∈ C. The standard hermitian quaternionic product on Hn is given

by

⟨w, z⟩ ∶=
n

∑
s=1

wszs =
n

∑
s=1

(ascs + bsds) + j
n

∑
s=1

(asds − bscs) = h0(z,w) + jσ0(z,w) (2.2.1)

where h0 and σ0 are the standard hermitian and symplectic form on Hn viewed as complex vector-space

(multiplication on the right). Notice that for every z,w ∈ Hn we have

h0(z,wj) = σ0(z,w). (2.2.2)

(Notice the analogy with the decomposition of a hermitian positive definite form on a complex vector

space ⟨, ⟩ as (g0 −
√
−1ω0) where g0 is a euclidean product and ω0 is a symplectic real form such that

g0(iv,w) = σ0(v,w)). Let U(n,H) be the group of H-linear automorphisms f ∶Hn → Hn which preserve

⟨, ⟩. Then

U(n,H) = U(2n) ∩ Sp(2n). (2.2.3)

In fact the left-hand side is clearly contained in the right-hand side. In order to prove that the right-hand

side is contained in the left-hand side it suffices to prove that if T ∈ U(2n)∩Sp(2n) then T (vj) = (Tv)j
for all v ∈ Hn: that follows easily from (2.2.2). Now suppose that µ ∈ H and that µ2 = −1. Then right

multiplication by µ, call it Rµ, defines a complex structure on Hn. Thus we have a family of complex

structures on Hn parametrized by

{(x1i + x2j + x3k) ∣ (x1, x2, x3) ∈ R3, x2
1 + x2

2 + x2
3 = 1} ≅ S2. (2.2.4)

Notice that Rµ commutes with U(n,H) and that it is an isometry for the euclidean product on Hn

defined by

(w, z) ∶=R⟨w, z⟩ =
n

∑
s=1

(wszs + zsws). (2.2.5)

Moreover every complex structure on Hn is equal to Rµ for some µ ∈ H such that µ2 = −1. Now let

p ∈ X and let h be the Calabi-Yau metric. There exists an hp-orthonormal basis of Θp such that

the symplectic form σp is in standard form, i.e. we may identify hp and σp with h0 and σ0 of (2.2.1).

By (2.1.1) and (2.2.3) we may identify Hp with the unitary quaternionic group. It follows that there is a

well-defined S2 parametrizing complex structures on ΘpX which commute with Hp. Each such complex

structure µ is an isometry and is parallel for the Levi-Civita connection of g (because it commutes with

Hp), it follows that it defines an integrable complex structure Xµ and g is the real part of a (unique)

Kähler hermitian metric for that complex structure. Of course the complex structure Xi is the one we

started from (and the corresponding Kähler metric is h), the others are new complex structures. The

complex manifolds Xµ fit together: there exist a complex manifold X (ω) (diffeomorphic to X × S2)

and a holomorphic map

π∶X (ω) → P1
C (2.2.6)

such thet the fiber of π over µ is isomorphic to Xµ (we identify S2 with P1
C by the obvious procedure),

see [33]. The family (2.2.6) is the twistor fibration associated to (X,ω) and X (ω) is the twistor

space. The remarkable feature is that we get a global deformation of X starting from the datum of

a Kähler class. Given µ ∈ P1
C the complex manifold has the Kähler form ωµ(v,w) = g(µv,w). Since

X (ω) is diffeomorphic to X × S2 it makes sense to consider the cohomology class [ωµ] ∈ H2(X;R)
of ωµ: as µ varies these classes span a 3-dimensional subspace H2

+
(X;R) and they belong to an

S2 ⊂H2
+
(X;R). Similarly we may consider a holomorphic symplectic form σµ on Xµ, it is well-defined

up to rescaling. Their cohomology classes in H2(X;R) span H2
+
(X;R) ⊗ C and the image in the

projectivization PH2
+
(X;R) ⊗C is a conic.
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2.3. Deformations are unobstructed. Let X be a HK manifold. Let σ be a symplectic holomorphic

form on X. Contraction of tangent vectors with σ defines an isomorphism of vector-bundles

ΘX

Lσ
∼Ð→ Ω1

X

v ↦ v ⌟ σ.
(2.3.1)

Thus H0(ΘX) ≅ H0(Ω1
X) and the latter space vanishes because by definition X is simpy connnected.

Thus deformation theory gives that there exists a universal deformation space Def(X) of X.

Theorem 2.10 (Bogomolov [5]). The deformation space of a HK manifold X is unobstructed.

Explicitly Theorem 2.10 asserts the following: There exist a submersive map f ∶X → U of complex

manifolds and a point 0 ∈ U such that U is a polydisc, F −1(0) ≅ X and the Kodaira-Spencer map

Θ0U →H1(ΘX) is an isomorphism.

Remark 2.11. Deformation theory gives that a representative of Def(X) is the zero-locus of an analytic

obstruction map Φ∶B → H2(ΘX) where B is a polydisc of dimension h1(ΘX). Thus Bogomolov’s

Theorem follows from general deformation theory if H2(ΘX) = 0. Notice that by (2.3.1) we have

H2(ΘX) ≅ H2(Ω1
X) ≅ H1,2(X). Thus H2(ΘX) = 0 if and only if b3(X) = 0 (recall that h3,0(X) = 0

by Theorem 2.8). This is the case if X is a deformation of (K3)[n] but not if it is a deformation

of a generalized Kummer. Similarly we expect that H2(ΘX) /= 0 if X is our 6-dimensional example

of Theorem ??.

Proof of Theorem 2.10 according to Fujiki [10]. We must prove tha the obstruction map Φ∶B →
H2(ΘX) vanishes. By (2.3.1) we have an isomorphism H1(ΘX) ≅ H1(Ω1

X) ≅ H1,1(X). Thus we may

view H1,1
R (X) as a subspace of H1(ΘX) and H1(ΘX) as the complexification of H1,1

R (X): since Φ is

analytic it will suffice to show that the restriction of Φ to H1,1
R (X) vanishes. Let KX ⊂ H1,1

R (X) be

the Kähler cone. If ω ∈ KX then there is a 1-parameter deformation of X whose associated class is

equal to ω: in fact this is trivial if ω = 0 and if ω /= 0 such a family is provided by the twistor family (of

course this needs to be proved: follow the variation of a holomorphic symplectic form on the fibers of

the twistor family). It follows that the restriction of Φ to KX vanishes; since KX is open in H1,1
R (X)

we get that Φ vanishes on H1,1
R (X). �

Corollary 2.12. The deformation space of a HK manifold X has dimension equal to (b2(X) − 2).

Proof. By Theorem 2.10 the deformation space of X has dimension h1(ΘX) and the latter equals

h1(ΩX) by (2.3.1). Now h1(ΩX) = h1,1(X) and by Hodge Theory b2(X) = 2h2,0(X) + h1,1(X), thus

the corollary follows from h2,0(X) = 1. �

Remark 2.13. Corollary 2.12 shows that if n ≥ 2 then the generic deformation of K(3)[n] is not

isomorphic to K(3)[n]. In fact Corollary 2.12 gives that a K3 surface has 20 moduli (the second

Betti number of a K3 surface equals 22 by Noether’s formula) while K(3)[n] has 21 moduli because

b2(K(3)[n]) = 23. Similar considerations apply to the other known examples of higher-dimensional

(meaning of dimension greater than 2) HK manifolds: they are all obtained starting from a (projective)

K3 or an abelian surface but a dimension count shows that the generic deformation cannot be obtained

by deforming the surface.

3. The local period map and the B-B quadratic form

3.1. The local period map. Let π∶X → B be a holomorphic submersive map of analytic spaces such

that each fiber Xt ∶= π−1(t) is a HK manifold. We assume that B is connected and hence all the Xt

are deformation equivalent. In particular there exists a finitely generated torsion-free abelian group Λ

such that H2(Xt;Z) is isomorphic to Λ for every t ∈ B. Suppose that the local system R2π∗Z is trivial,

this is the case if B is simply connected. Choose a trivialization of F ∶R2π∗Z
∼Ð→ B × Λ; it defines an

isomorphism ft∶H2(Xt;Z) ∼Ð→ Λ for each t ∈ B. Let ΛC ∶= Λ ⊗Z C; abusing notation we denote by ft
also the map H2(Xt;C) ∼Ð→ ΛC obtained by extension of scalars. The period map is defined by

B
PπÐ→ P(ΛC)

t ↦ ft(H2,0(Xt)).
(3.1.1)

(Of course Pπ depends on the trivialization chosen, our notation is somewhat imprecise.) Fundamental

results of Griffiths [39] (valid for arbitrary families of Kähler manifolds) asserts that the period map
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is holomorphic and computes its differential as follows. Let 0 ∈ B. The differential of Pπ at 0 has

codomain

Hom(Pπ(0),ΛC/Pπ(0))≅Hom(H2,0
(X0),H

2
(X0)/H

2,0
(X0))=Hom(H2,0

(X0),H
1,1

(X0))⊕Hom(H2,0
(X0),H

0,2
(X0)).

(3.1.2)

Griffiths’ first result is that the image of the differential lies in Hom(H2,0(X0),H1,1(X0)). The second

result expresses the differential in terms of the Kodaira-Spencer map

Θ0B
κÐ→H1(X0; ΘX0) (3.1.3)

associated to the family X . Let σ be a holomorphic symplectic form on X0 and Lσ be Isomorph-

ism (2.3.1): then

⟨dPπ(v), σ⟩ =H1(Lσ)(κ(v)). (3.1.4)

Theorem 3.1 (Infinitesimal Torelli). Let X be a HK manifold and π∶X → B be a representative of

Def(X) with 0 ∈ B the point such that X0 ≅ X - thus B is smooth by Theorem 2.10. Suppose in

addition that R2π∗Z is trivial and let F ∶R2π∗Z
∼Ð→ Λ be a trivialization of R2π∗Z. Then Pπ ∶B →

P(ΛC) is an isomorphism of a neighborhood of 0 onto a smooth analytic hypersurface in a neighborhood

of Pπ(0).

Proof. By Corollary 2.12 we get that dim0B = b2(X) − 2 = dimP(ΛC) − 1. Thus it suffices to prove

that the differential dPπ(0) is injective. That follows immediately from (3.1.4). �

3.2. The Bogomolov-Beauville quadratic form. Let X be a HK-manifold of dimension 2n. Beau-

ville [4] and Fujiki [10] proved that there exist an integral indivisible quadratic form

qX ∶H2(X) → C (3.2.1)

(cohomology is with complex coefficients) and cX ∈ Q+ such that

∫
X
α2n = cX

(2n)!
n!2n

qX(α)n, α ∈H2(X). (3.2.2)

The above equation determines cX and qX with no ambiguity unless n is even. If n is even then qX is

determined up to ±1: one singles out one of the two choices by imposing the inequality

qX(σ + σ) > 0, 0 /= σ ∈H2,0(X). (3.2.3)

The Beauville-Bogomolov form and the Fujiki constant of X are qX and cX respectively. We notice

that the equation in (3.2.2) is equivalent (by polarization) to

∫
X
α1 ∧ . . . ∧ α2n = cX ∑

σ∈R2n

(ασ(1), ασ(2))X ⋅ (ασ(3), ασ(4))X ⋅ . . . ⋅ (ασ(2n−1), ασ(2n))X (3.2.4)

where (⋅, ⋅)X is the symmetric bilinear form associated to qX and R2n is a set of representatives for

the left cosets of the subgroup G2n < S2n of permutations of {1, . . . ,2n} generated by transpositions

(2i − 1,2i) and by products of transpositions (2i − 1,2j − 1)(2i,2j) - in other words in the right-hand

side of (3.2.4) we avoid repeating addends which are formally equal. In defining cX we have introduced

a normalization which is not standard in order to avoid a combinatorial factor in Equation (3.2.4).

Proof of existence of qX and cX . Let π∶X → B be a deformation of X representing Def(X) with

0 ∈ B and X0
∼Ð→ X. By Theorem 2.10 we know that B is smooth at 0. We may assume that B is

contractible and hence there exists a trivialization F ∶R2π∗Z
∼Ð→ B ×Λ where Λ is a finitely generated

torsion-free abelian group. Let Pπ be the period map (3.1.1). By Infintesimal Torelli, see Theorem

3.1, ImPπ is an analytic hypersurface in an open (classical topology) neighborhood of Pπ(0) and

hence its Zariski closure V = Imπ is either all of P(H2(X)) or a hypersurface. One shows that the

latter holds by considering the (non-zero) degree-2n homogeneous polynomial

H2(X) GÐ→ C
α ↦ ∫X α2n

(3.2.5)

In fact if σt ∈H2,0(Xt) then

∫
Xt
σ2n
t = 0 (3.2.6)

by type consideration. It follows by Gauss-Manin parallel transport that G vanishes on V . Thus

I(V ) = (F ) where F is an irreducible homogeneous polynomial. By considering the derivative of the
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period map (3.1.1) one checks easily that V is not a hyperplane and hence degF ≥ 2. On the other

hand type consideration gives something stronger than (3.2.6), namely

∫
Xt
σn+1
t ∧ α1⋯∧ αn−1 = 0 α1, . . . , αn−1 ∈H2(Xt). (3.2.7)

It follows that all the derivatives of G up to order (n − 1) included vanish on V . Since degG = 2n and

degF ≥ 2 it follows that G = c ⋅ Fn and degF = 2. By integrality of G there exists λ ∈ C∗ such that

cX ∶= λc is rational positive, qX ∶= λ ⋅ F is integral indivisible and (3.2.2) is satisfied. �

Remark 3.2. Let X be a HK manifold of dimension 2n and ω ∈H1,1
R (X) be a Kähler class.

(1) Equation (3.2.2) gives that with respect to (, )X we have

Hp,q(X)�Hp′,q′(X) unless (p′, q′) = (2 − p,2 − q). (3.2.8)

(2) qX(ω) > 0. In fact let σ be generator of H2,0(X); by Equation (3.2.4) and Item (1) above we

have

0 < ∫
X
σn−1 ∧ σn−1 ∧ ω2 = cX(n − 1)!(σ,σ)XqX(ω). (3.2.9)

Since cX > 0 and (σ,σ)X > 0 we get that qX(ω) > 0 as claimed.

(3) The index of qX is (3, b2(X) − 3) (i.e. that is the index of its restriction to H2(X;R)). In

fact applying Equation (3.2.4) to α1 = . . . = α2n−1 = ω and arbitrary α2n we get that ω� is

equal to the primitive cohomology H2
pr(X) (primitive with respect to ω). On the other hand

Equation (3.2.4) with α1 = . . . = α2n−2 = ω and α2n−1, α2n ∈ ω� gives that a positive multiple

of qX ∣ω� is equal to the standard quadratic form on H2
pr(X). By the Hodge index Theorem it

follows that the restriction of qX to ω� ∩H2(X;R) has index (2, b2(X) − 3). Since qX(ω) > 0

it follows that qX has index (3, b2(X) − 3).
(4) Let D be an effective divisor on X; then (ω,D)X > 0. In fact the inequality follows from the

inequality ∫D ω2n−1 > 0 together with (3.2.4) and Item (2) above.

(5) Let f ∶X ⇢ Y be a birational map where Y is a HK manifold. Since X and Y have trivial

canonical bundle f defines an isomorphism U
∼Ð→ V where U ⊂ X and V ⊂ Y are open

sets with complements of codimension at least 2. It follows that f induces an isomorphism

f∗∶H2(Y ;Z) ∼Ð→H2(X;Z); f∗ is an isometry of lattices, see Lemma 2.6 of [14].

Of course if X is a K3 then qX is the intersection form of X (and cX = 1). In general qX gives

H2(X;Z) a structure of lattice just as in the well-known case of K3 surfaces. Suppose that X and

Y are deformation equivalent HK-manifolds: it follows from (3.2.2) that cX = cY and the lattices

H2(X;Z),H2(Y ;Z) are isometric (see the comment following (3.2.2) if n is even). The Fujiki constant

and B-B quadratic form of the known HK manifolds of dimension greater than 2 are given in Table (1).

A word about notation: H is the hyperbolic lattice i.e. H ≅ Z2 with a basis e, f such that 0 = (e, e) =
(f, f) and (e, f) = 1, E8(−1) is the unique negative definite even unimodular lattice of rank 8 (a root

system of type E8 gives a basis of E8(−1), provided we change sign to every product of roots), A2(−1)
is given by the root system A2 with signs changed, and for d ∈ Z we let (d) be the rank-1 lattice with

generator of square d. For (K3)[n] and K[n](T ) the result is folklore, for the 6 and 10-dimensional

examples of O’Grady the proofs are due to Rapagnetta [32].

Remark 3.3. Let X be a HK manifold of dimension 2n. Existence of the B-B quadratic form and Fujiki

constant is a rather strong topological condition. Salamon [34] proved the following relation between

Betti numbers of X:

nb2n(X) = 2
2n

∑
i=1

(−1)i(3i2 − n)b2n−i(X). (3.2.10)

Is it possible to obtain other topological constraints on HK manifolds? In particular: can we bound

rank, discriminant of the B-B quadratic form and Fujiki constant in a given dimension? That would

give that the number of deformation classes of a given dimension is finite, see [16] for related work.

Salamon’s relation (3.2.10) gives (Beauville (unpublished) and Guan [13]) that if X is a HK 4-fold

then b2(X) ≤ 23 (notice that b2(K3[2]) = 23) and that if equality holds then cup-product defines an

isomorphism S2H2(X;Q) ∼Ð→H4(X;Q). Guan [13] has obtained other restrictions on b2(X) for a HK

four-fold X: for example either b2(X) ≤ 8 or b2(X) = 23.

The proof of existence of qX and cX may be adapted to prove the following useful generalization

of (3.2.2).
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Table 1. Fujiki constant and B-B form of the known examples of dim > 2.

X dim(X) b2(X) cX H2(X,Z)

(K3)[n] 2n 23 1 H3 ⊕E8(−1)2 ⊕ (−2(n − 1))

K[n](T ) 2n 7 (n + 1) H3 ⊕ (−2(n + 1))

M̃S(2v0) 10 24 1 H3 ⊕E8(−1)2 ⊕A2(−1)

M̃T (2v0)0 6 8 4 H3 ⊕ (−2)2

Proposition 3.4. Let X be a HK manifold of dimension 2n. Let X → T be a representative of the

deformation space of X. Suppose that 0 /= γ ∈ Hp,p(X) is a class which remains of type (p, p) under

Gauss-Manin parallel transport (e.g. the Chern class cp(X)).

(1) If p is odd then

∫
X
γ ∧ α2n−p = 0 ∀α ∈H2(X). (3.2.11)

(2) If p is even there exists cγ ∈ R such that

∫
X
γ ∧ α2n−p = cγqX(α)n−p/2 ∀α ∈H2(X). (3.2.12)

3.3. Matsushita’s Theorem. Matsushita’s Theorem 3.5 is a perfect illustration of how one may

use the B-B quadratic form in order to get strong geometric results. Let X be a HK manifold. A

subvariety Y ⊂ X is lagrangian if 2 dimY = dimX and the restriction to the smooth locus of Y of a

holomorphic symplectic form on X is zero.

Theorem 3.5 (Matsushita [25, 26]). Suppose that X is a HK manifold and that f ∶X → B is a surjective

map with connected fibers to a Kähler manifold B such that 0 < dimB < dimX. Then 2 dimB = dimX

and the generic fiber of f is a lagrangian torus in X. Moreover b2(B) = 1.

Proof. Suppose that 0 /= α ∈ H0(Ω2
B). Then f∗α is a non-zero degenerate holomorphic 2-forms on X,

that contradicts the definition of HK manifold. Thus H2,0(B) = 0 and hence B is a smooth projective

variety. Let dimX = 2n and dimB = m. If α ∈ H2(B) then ∫X f∗α2n = 0 because m < 2n and hence

qX(f∗α) = 0 by (3.2.2). Let H be an ample divisor on B and α ∶= c1(OB(H)). Let ω be a Kähler form

on X: then

∫
X
(f∗α)m ∧ ω2n−m > 0. (3.3.1)

Suppose that m > n: since qX(α) = 0 Equation (3.2.2) gives that the left-hand side of (3.3.1) vanishes,

that contradicts (3.3.1). This proves that m ≤ n. Next notice that f∗α /= 0 because H is ample (and

m > 0). Since the B-B form is non-degenerate there exists β ∈ H2(X) such that 0 /= (f∗α,β)X . Since

qX(f∗α) = 0 Equation (3.2.2) gives that

∫
X
(f∗α)n ∧ ωn = n!(f∗α,β)nX /= 0. (3.3.2)

It follows that m ≥ n. Thus m = n. Let b ∈ B be generic and Xb ∶= f−1(b). Then 2 dimXb = dimX

because 2 dimB = dimX. Let’s prove that Xb is lagrangian. Letσ be a holomorphic symplectic form

on X: it suffices to prove that

∫
Xb
σ ∧ σ ∧ ωn−2 = 0 (3.3.3)

where ω is a Kähler form on X. Let H be an ample divisor on B and α ∶= c1(OB(H)): then

∫
X
(f∗α)n ∧ σ ∧ σ ∧ ωn−2 = deg(H ⋅ . . . ⋅H

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)∫
Xb
σ ∧ σ ∧ ωn−2. (3.3.4)

On the other hand Equation (3.2.2) gives that the left-hand side of (3.3.4) vanishes because qX(f∗α) = 0

and 0 = (f∗α,σ)X = (f∗α,σ)X (see Remark 3.2). This proves (3.3.3), thus Xb is lagrangian. Since

Xb is lagrangian the symplectic form defines an isomorphism between the tangent bundle of Xb and the

conormal of Xb in X: the latter is trivial because Xb is a regular fiber of f . Hence the tangent bundle

of Xb is trivial and therefore Xb is a torus. Lastly we notice that since B is a smooth projective variety
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the pull-back H2
R(f)∶H2(B;R) →H2(X;R) is injective. We have proved that the image is isotropic for

the B-B quadratic form. The image of H2
R(f) lies in H1,1

R (X). By Remark 3.2 the restriction of qX
to H1,1

R (X) has signature (1, b2(X) − 3) and hence the maximum dimension of an isotropic subspace

is 1: it follows that b2(B) = 1. �

Example 3.6. Let S be a K3 surface and v ∈ H̃(S) be a Mukai vector as in (??) with r = 0, i.e. v = `+η.

Assume that MS(v) is not empty and that MS(v) = MS(v)st so that MS(v) is a HK variety. Let’s

suppose also that ` = c1(OS(D)) where D is an ample divisor on S. Then MS(v) has a lagrangian

fibration f ∶MS(v) → ∣D∣ defined by mapping [E] ∈ MS(v) to the schematic support of E. Let us check

that 2 dim ∣D∣ = dimMS(v). Let g be the arithmetic genus of curves in ∣D∣. Then dim ∣D∣ = g. On the

other hand if C ∈ ∣D∣ is smooth the fiber of f over C is identified with Picd(C) where d is determined

by the Mukai vector v. Thus we see that dim f−1(C) = g = dim ∣D∣.

Remark 3.7. In the examples above the base of the lagrangian fibration is isomorphic to a projective

space. Hwang [18] has proved that if X is projective then B is indeed isomorphic to a projective space.

It is conjectured (e.g. [35]) that if X is a HK manifold and 0 /= γ ∈ H1,1
Z (X) has square 0 and is nef

then there exists a lagrangian fibration X → B such that γ ∈ f∗H2(B). See [24, 36, 23] for work on

this conjecture.

3.4. The period domain. Existence of the Beauville-Bogomolov quadratic form gives that periods of

HK manifolds belong to certain open subsets of smooth quadric hypersurfaces. In the present subsection

we give the relevant details and we point out a consequence noticed by Beauville, namley that HK’s

are deformations of projective varieties. Let Λ be a lattice i.e. a finitely generated torsion-free abelian

group equipped with a non-degenerate symmetric bilinear form (, )Λ. We let qΛ be the associated

quadratic form. For a commutative ring R let ΛR ∶= Λ⊗ZR. Then (, )Λ extends to an R-valued bilinear

symmetric form on ΛR; abusing notation we will denote it by (α,β)Λ or simply (α,β) if there is no risk

of confusion. We let qΛ be the associated quadratic form on ΛR. Now assume that ΛR has signature

(3, rk Λ − 3). We let

ΩΛ ∶= {[α] ∈ P(ΛC)∣ qΛ(α) = 0, qΛ(α + ᾱ) > 0}. (3.4.1)

Thus ΩΛ is an open subset (in the classical topology) of a smooth quadric of dimension (rk Λ − 2) and

hence it is naturally a complex manifold: it is the period domain associated to Λ. Up to isomorphism

ΩΛ depends only on the rank of Λ - on the other hand the orthogonal group O(Λ) acts naturally on ΩΛ

and the different realizations of ΩΛ correspond to different group actions. Now let X be a HK manifold

and Λ a lattice isometric to H2(X;Z) equipped with the B-B quadratic form. By Remark 3.2 the

signature of the B-B quadratic form on H2(X;R) is (3, b2(X) − 3) and hence the period domain ΩΛ is

defined.

Definition 3.8. Let X be a HK manifold deformation equivalent to X0. A marking of X consists of an

isometry f ∶H2(X;Z) ∼→ Λ. A marked pair is a couple (X,f) where X is a HK manifold (deformation

equivalent to X0) and f is a marking of X. An isomorphism between marked pairs (X,f) and (Y, g)
is an isomorphism ϕ∶X ∼→ Y such that f ○H2(ϕ) = fg.

Let (X,f) be a marked pair. We denote by f the linear map H2(X;C) ∼Ð→ ΛC obtained by extension

of scalars. Then f(H2,0(X)) ∈ P(ΛC). By (3.2.2) we have that H2,0(X) is an isotropic line for the

B-B quadratic form and moreover (σ,σ)X > 0 for 0 /= σ ∈H2,0(X) by (3.2.3). Since f is an isometry it

follows that

P (X,f) ∶= f(H2,0(X)) ∈ ΩΛ. (3.4.2)

The point P (X,f) is the period point associated to the marked pair (X,f). Now let π∶X → B be

a holomorphic submersive map of analytic spaces such that each fiber Xb ∶= π−1(b) is a HK manifold

deformation equivalent to X0. Suppose that the local system R2π∗Z is trivial. In order to define the

period map (3.1.1) we choose a trivialization F ∶R2π∗Z
∼Ð→ B×Λ defining an isometry fb∶H2(Xb;Z) ∼Ð→

Λ for each b ∈ B. Then Pπ(B) ⊂ ΩΛ. Theorem 3.1 gives the following result.

Theorem 3.9 (Infinitesimal Torelli + Local surjectivity). Keep notation as above and suppose that

π∶X → B is a representative of Def(X) with 0 ∈ B the point such that X0 ≅ X - thus B is smooth

by Theorem 2.10. Then Pπ ∶B → ΩΛ is an isomorphism of a neighborhood of 0 onto an open

neighborhood of Pπ(0) in ΩΛ.

Corollary 3.10. A HK manifold is deformation equivalent to a HK variety.
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Proof. Let X be a HK manifold and π∶X → B be a representative of Def(X) with 0 ∈ B the point

such that X0 ≅ X. There exist points [σ] ∈ ΩΛ arbitrarily close to Pπ(0) such that the span of {σ,σ}
in ΛC is defined over Q i.e. it is spanned by its intersection with ΛQ. By Theorem 3.9 there exists

b ∈ B such that Pπ(b) is such a [σ]. Then H1,1(Xb;R) is also defined over Q and hence H1,1(Xb;Q) is

dense in H1,1(Xb;R); since the Kähler cone is open in H1,1(Xb;R) it follows that there exists a Kähler

integral class and hence Xb is projective by Kodaira. �

4. The Kähler cone

4.1. The main result. We recall that the Kähler cone of a K3 surface S is described as follows. Let

ω ∈H1,1
R (S) be one Kähler class and NS be the set of nodal classes

NS ∶= {δ ∈H1,1
Z (X) ∣ qS(δ) = −2, (δ, ω)S > 0} (4.1.1)

(Every class in NS is represented by an effective divisor - this follows from the (Atiyah-Singer) Riemann-

Roch formula.) The Kähler cone KS is given by

KS ∶= {α ∈H1,1
R (S) ∣ qS(α) > 0, (α, δ)S > 0 ∀δ ∈ NS}. (4.1.2)

In other words we have a Hodge-theoretic description of KS . In fact Hodge isometries of H2(X) act

transitively on the set of connected components of the complement of the union of walls δ� ∩H1,1
R (X)

where δ ∈ H1,1
Z (X) has square −2, hence the choice of ω is needed only to pin-down which is the open

chamber containing Kähler classes. If X is a general HK manifold there exists a characterization of the

Kähler cone KX due to Huybrechts and Boucksom which is not purely Hodge-theoretic. In order to

state the result by Huybrechts and Boucksom we must introduce the positive cone. Let C̃X ⊂H1,1
R (X)

be the set of classes of strictly positive square; it has two connected components because the restriction

to H1,1
R (X) of the B-B quadratic form has signature (1, b2(X) − 3). The Kähler cone KX is an

open convex subset of C̃X (see Item (2) of Remark 3.2), thus there is a well-determined connected

component of C̃X containing KX : this is the positive cone CX ⊂H1,1
R (X).

Theorem 4.1. [Huybrechts [15]+Boucksom [6]] Let X be a HK manifold. A class α ∈ H1,1
R (X) is

Kähler if and only if it belongs to the positive cone CX and moreover ∫C α > 0 for every rational curve

C (a curve is rational if it is irreducible and its normalization is rational).

One spectacular offspring of the methods leading to the proof of Theorem 4.5 is the following

result.

Theorem 4.2. Let X and Y be bimeromorphic HK manifolds. Then X and Y are deformation

equivalent.

We will sketch part of the arguments which lead to the proof of Theorem 4.1.

4.2. The Kähler cone of a general deformation. Let X be a HK. We will prove that for a general

deformation of X the Kähler cone equals the positive cone. Let π∶X → B be a representative of the

deformation space of X; for t ∈ B we let Xt ∶= π−1(t) and we assume that 0 ∈ B is the base point,

hence X0 ≅ X. We assume that B is simply connected and hence the Gauss-Manin connection gives

an identification

H∗(X;Q) ≅H∗(Xt;Q) ∀t ∈ B. (4.2.1)

Given γ ∈H2p(X) we let

Bγ ∶= {t ∈ B ∣ γ ∈Hp,p(Xt;Q)}. (4.2.2)

(The above makes sense by (4.2.1).) Then Bγ is a an analytic subset of B. Let

E(B) ∶= ⋃
Bγ /=B

Bγ . (4.2.3)

Thus E(B) is a countable union of proper analytic subsets of B.

Proposition 4.3 (Huybrechts, Erratum of [14]). If t ∈ (B ∖E(B)) then KXt = CXt .

Proof. This is a consequence of Proposition 3.4 and the Kähler version of Nakai-Moishezon’s am-

pleness criterion proved by Demailly and Paun [8]. In fact Demailly and Paun tell us that KXt is a

connected component of the set

PXt ∶= {α ∈H1,1
R (X) ∣ ∫

Γ
αm > 0 Γ ⊂Xt a closed subset of dim =m} .
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Thus it suffices to prove that CXt ⊂ PXt . Let ω ∈ H2(Xt) be a Kähler class. Let Γ ⊂ Xt be a closed

subset of dim =m. Then

∫
Γ
ωm > 0. (4.2.4)

Now let α ∈H2(Xt); since t ∉ E(B) we have

∫
Γ
αm =

⎧⎪⎪⎨⎪⎪⎩

0 if m is odd,

cΓqXt(α)m/2 if m is even

by Proposition 3.4. Comparing with (4.2.4) we get that m is even and that cΓ > 0. Thus ∫Γ αm > 0

for every α ∈ CXt . �

Example 4.4. Let S be a K3 surface and X → B be a representative of the deformation space of S.

Let N (B) ⊂ B be the set of t ∈ B such that H1,1
Z (Xt) contains a nodal class i.e. such that there exists

δ ∈ H1,1
Z (Xt) whose square is (−2). Then N (B) is a countable union of proper closed subsets of B

and by the description of the Kähler cone of a K3 given in Subsection 4.1 we get that KXt = CXt if

and only if t ∈ (B ∖N (B)).

Proposition 4.3 is the main ingredient in Huybrechts’ proof of the following result.

Theorem 4.5 (Projectivity criterion [14]). A HK manifold X is projective if and only if there exists

a class α ∈H1,1
Z (X) of strictly positive square.

Notice that if X is projective and α ∈ H1,1
Z (X) is an ample class then qX(α) > 0 by (3.2.2). The

non-trivial statement of Theorem 4.5 is that if there exists α ∈ H1,1
Z (X) of strictly positive square

then X is projective - of course this does not mean that one among ±α is an ample class (unless

h1,1
Z (X) = Z).

4.3. Fake twistor families. Let X be a HK and α ∈ H1,1
R (X) a Kähler class: then we have the

twistor family X (α) → P1
C. One can associate an analogue of the twistor family to an arbitrary class

α ∈ H1,1
R (X) of strictly positive square: we may call it a fake twistor family. A key ingredient in the

work of Huybrechts [14, 15] is to compare a fake twistor family to an actual twistor family parametrized

by the same base with the property that they are isomorphic over a non-empty open subset of the base.

A fake twistor family associated to α ∈ H1,1
R (X) of strictly positive square is defined as follows. Let

π∶X → B be a representative of the deformation space of X and keep notation and assumptions of the

previous subsection. Let Λ be a lattice isometric to H2(X;Z): we have the local period map

Pπ ∶B Ð→ V (qΛ) ⊂ P(ΛC). (4.3.1)

Let F (α) ⊂ ΛC be defined by

F (α) ∶= CP(0) ⊕CP(0) ⊕Cα. (4.3.2)

The B-B form on F (α) is non-degenerate and hence P(F (α)) ∩ V (qΛ) is a smooth conic. Let

T (α) ∶= P−1(P(F (α)) ∩ V (qΛ)). (4.3.3)

Thus T (α) is a smooth curve in B. Let X (α) → T (α) be the restriction of π∶X → B to T (α)
(a.k.a. the fibered product...). We identify Λ with H2(Xt;Z) for arbitrary t ∈ B via the Gauss-Manin

connection; in particular it makes sense to speak of the positive cone Ct ⊂ (P(0)� ∩P(0)
�

∩ΛR): this

is the cone which gets identified with the positive cone CXt . Let ωt ∈H1,1
R (Xt) be a class such that

0 /= ωt ∈ {ξ ∈ F (α) ∩Ct ∣ ξ�P(t), ξ�P(t)}. (4.3.4)

Notice that ωt is well-defined up to multiplication by a positive scalar and that ω0 is a multiple of α. If

α is a Kähler class then X (α) → T (α) is obtained by base change from the twistor family associated

to α and ωt is a corresponding Kähler class on Xt. If α is not Kähler then X (α) → T (α) is a fake

twistor family. (As a matter of terminology we call X (α) → T (α) a fake twistor family even if α is a

Kähler class.)

Proposition 4.6. Keep notation and assumptions as above and suppose that there exists t ∈ T (α) such

that ωt is a Kähler class. Then there exists a countable subset J(α) ⊂ T (α) such that ωt is Kähler for

t ∈ (T (α) ∖ J(α)).

Proof. Suppose that 0 /= γ ∈Hp,p(X) is a class which remains of type (p, p) under Gauss-Manin parallel

transport along T (α). Then for all t ∈ T (α) we have
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(1) if p is odd

∫
Xt
γ ∧ α2n−p = 0 ∀α ∈H2(Xt), (4.3.5)

(2) if p is even there exists cγ ∈ R such that

∫
Xt
γ ∧ α2n−p = cγqXt(α)n−p/2 ∀α ∈H2(Xt). (4.3.6)

In fact the proof is similar to the proof of the existence of the B-B quadratic form and of Proposition

3.4. Arguing as in the proof of Proposition 4.3 we get that if in addition γ ∈Hp,p
Q (X) and is effective

for all t ∈ T (α) then p is even and

∫
Xt
γ ∧ α2n−p > 0 ∀α ∈ Ct. (4.3.7)

In fact the case of p odd is ruled out because on one hand ∫Xt γ ∧ ω
2n−p

t
= 0 by Item (1) and on the

other hand ∫Xt γ ∧ ω
2n−p

t
> 0 because γ is effective and ωt is a Kähler class. A similar argument shows

that if p is even then cγ > 0 and hence (4.3.7) holds. Now let J(α) ⊂ T (α) be the subset of points such

that there exists an effective γ ∈ Hp,p
Q (Xt) which does not extend to an effective class for all t ∈ T (α).

Then J(α) is a discrete subset of the curve T (α) and hence is countable. By the argument above ωt
is Kähler for t ∈ (T (α) ∖ J(α)). �

Example 4.7. Let S be a K3 surface. Let WS ⊂ CS be the union of all walls δ� ∩CS for δ ∈H1,1
Z (S) of

square (−2). Let α ∈ CS : there exists t ∈ T (α) such that ωt is a Kähler class if and only if α ∉WS .

Starting from the Projectivity Criterion i.e. Theorem 4.5 Huybrechts proved the following result.

Proposition 4.8 (p.97 of [14]). Let X be a HK and α ∈ CX a general point i.e. belonging to the

complement of a countable union of closed nowhere dense subsets of CX . Then there exists t ∈ T (α)
such that ωt is a Kähler class.

Now let α ∈ CX be a general point as in Proposition 4.8, and hence there exists t ∈ T (α) such

that ωt is a Kähler class. Let U(α) ⊂ T (α) be the open subset of t such that ωt is a Kähler class. The

complement of U(α) (in T (α)) is countable by Proposition 4.6; it follows that 0 ∈ U(α). Now let

t ∈ U(α) and let X (ωt) → P1 be the (true) twistor family associated to the Kähler class ωt on Xt.

The period map identifies an open subset of the base P1 with T (α), taking the inverse image of that

open set we get a twistor family X (ωt)′ → T (α) with the property that Xt ≅ X ′

t for every t ∈ U(α).
Denote X ′

0 by X ′ and let Γ0 ⊂X ×X ′ be the limit for t→ 0 of the graph of an isomorphism Xt
∼Ð→X ′

t

for t ∈ U(α) (one must choose the isomorphism to be compatible with the chosen trivializations of the

local systems with fibers H2(Xt) and H2(X ′

t)). Huybrechts proved that Γ0 = Z +∑i Yi where Z is the

graph of a bimeromorphic map X ⇢X ′, and the images of the Yi’s under the projections to X and X ′

are proper (closed) subsets of X and X ′ respectively. Moreover by construction we have that

Γ0,∗(α) = ω0 ∈ KX′ (4.3.8)

i.e. Γ0,∗(α) is a Kähler class. We have just described the main “twistor tryck” that enters into the

proof of Theorem 4.1 and Theorem 4.2

Example 4.9. Let S be a K3 surface and WS ⊂ CS be as in Example 4.7. Let α ∈ (CS ∖WS).
There exists a set {δ1, . . . , δm} of classes δi ∈ H1,1

Z (S) of square (−2) such that the composition of the

reflections in δ1, . . . , δm takes α to a Kähler class. It follows that the sum of the diagonal ∆S ⊂ S × S
and a suitable collection of 2-cycles built out of curves C1, . . . ,Cm representing ±δi is a 2-cycle Γ0 such

that (4.3.8) holds. The simplest non-trivial case is that of α separated from the Kähler chamber by a

single wall δ�: in that case Γ0 = (∆S ± C × C) (with a suitable sign) where C is a curve representing

±δ.

Below is a particular case of Theorem 4.1 which is sufficient to prove the Global Torelli Theorem

for HK manifolds.

Proposition 4.10. Keep notation and assumptions as above. If H1,1
Z (X) = 0 then KX = CX .

Proof. Since the Kähler cone is convex it suffices to prove that a general α ∈ CX is Kähler. Thus the

discussion above applies and (4.3.8) holds. Write

Γ0,∗(α) = Z∗(α) +∑
i

Yi,∗(α). (4.3.9)
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Since H1,1
Z (X) = 0 the image of each Yi under the projection to X ′ has codimension at least 2: it

follows that Yi,∗(β) = 0 for any β ∈ H2(X). Thus Γ0,∗(α) = Z∗(α). On the other hand X and X ′

do not contain any curves because H1,1
Z (X) = 0, and hence Z is the graph of an isomorphism. Thus

X ≅X ′ and Γ0,∗(α) = α; by (4.3.8) we get that α is Kähler. �

5. Global Torelli

5.1. Introduction. Below is the celebrated Global Torelli Theorem for K3 surfaces.

Theorem 5.1 (Shafarevich and Pjateckii-Shapiro [30], Burns and Rapaport [7]). Let X,Y be K3

surfaces. Then the following hold:

(1) (Weak Global Torelli) X is isomorphic to Y if and only if there exists an integral Hodge isometry

ϕ∶H2(X) →H2(Y ).

(2) (Strong Global Torelli) Let ϕ∶H2(X) →H2(Y ) be an integral Hodge isometry. There exists an

isomorphism f ∶Y ∼→X such that f∗ = ϕ if and only if f∗KX = KY .

Remark 5.2. Two non-trivial results on K3 surfaces which are proved using the Global Torelli Theorem

are the classification of automorphisms of K3 surfaces and irreducibility of the moduli space of polarized

K3 surfaces of a given degree.

How does one extend Global Torelli to higher-dimensional HK’s? A bimeromorphic map f ∶Y ⇢ X

between HK manifolds induces an integral Hodge isometry f∗∶H2(X) ∼→ H2(Y ). Starting from di-

mension 4 there exist bimeromorphic non-regular maps between HK’s, hence a Weak Global Torelli for

higher-dimensional HK’s will aim to prove that if there exists an integral Hodge isometry ϕ∶H2(X) →
H2(Y ) (maybe satisfying extra hypotheses) then X is bimeromorphic to Y . In each even dimension

greater than 2 there is more than one deformation class of HK’s; since bimeromorphic HK’s are de-

formation equivalent by Huybrecht’s Theorem 4.2 we should assume from the start that X and Y are

deformation equivalent. Lastly we should (following Markman) not forget the importance of the mono-

dromy group. More precisely suppose that X,Y are HK manifolds which are deformation equivalent:

an isometry ψ∶H2(X;Z) →H2(Y ;Z) is a parallel-transport operator if there exist

(1) a family π∶Z → B of HK manifolds,

(2) a path σ∶ [0,1] → B,

(3) and isomorphisms Zσ(0) ≅X, Zσ(1) ≅ Y

such that ψ is identified with the isometry H2(Zσ(0);Z) ∼→ H2(Zσ(1);Z) defined by Gauss-Manin

parallel transport along σ. Below we will give a formulation of Global Torelli for HK manifolds which

is as close as possible to the classical Global Torelli for K3 surfaces: the key ingredient in its proof is

provided by Verbitsky’s Global Torelli i.e. Theorem 5.6.

Theorem 5.3 (Markman [22]). Let X,Y be HK manifolds which are deformation equivalent. The

following hold:

(1) (Weak Global Torelli) X is bimeromorphic to Y if and only if there exists a parallel-transport

operator ϕ∶H2(X;Z) →H2(Y ;Z) defining a Hodge isomorphism.

(2) (Strong Global Torelli) Let ϕ∶H2(X;Z) →H2(Y ;Z) be a parallel-transport operator defining a

Hodge isomorphism. There exists an isomorphism α∶Y ∼→ X such that α∗ = ϕ if and only if

α∗KX = KY .

Remark 5.4. The Global Torelli Theorem for HK’s, joined with results on parallel-transport operators,

has given results for higher-dimensional HK’s analogous to those for K3’s, see Remark 5.2: see [27, 28]

for results on automorphisms/bimeromorphisms groups and [12, 1] for results on moduli of polarized

HK’s.

In the following subsection we will state Verbitsky’s Global Torelli and we will show how to ob-

tain Theorem 5.3 from Verbitsky’s Theorem. In the other subsections we will sketch Huybrechts’

proof of Verbitsky’s Global Torelli. We refer to Markman’s paper [22] for a detailed discussion of the

mathematics surrounding the Global Torelli for HK’s.
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5.2. The global period map. Verbitsky’s Global Torelli for HK manifolds [37] (in Huybrechts’ for-

mulation) is a statement regarding the global period map from the moduli space of marked pairs to

the period space defined in Subsection 5.2. Let X0 be a HK manifold and Λ a lattice isometric to

H2(X0;Z) (equipped with the B-B quadratic form). The moduli space M of marked pairs of type X0

is the set of isomorphism classes of marked pairs (X,f) such that X is a HK deformation equival-

ent to X0. Deformation theory equips M with a structure of analytic space. Since the deformation

space of a HK manifold is unobstructed M is a complex manifold: a neighborhood containing (X,f) is

given by a simply-connected representative of Def(X), say B, with family π∶X → B and trivialization

F ∶R2π∗Z
∼Ð→ B × Λ extending f . Already in the case of K3 surfaces the complex manifold M is not

Hausdorff, as shown by the example below.

Example 5.5. Let S be a K3 surface containing a smooth rational curve with Poincarè dual δ and let

r∶H2(S;Z) →H2(S;Z) be the reflection

r(α) ∶= α + (α, δ)δ.
Given any marking f ∶H2(S;Z) →H3⊕E8(−1)2 the points [(S, f)] and [(S, f ○r)] are distinct because

±r is not induced by an automorphism of S. On the other hand [(S, f)] and [(S, f ○ r)] cannot

be separated. In fact let π∶S → B be a representative of Def(S) with B simply connected and let

F ∶R2π∗Z
∼→ B ×Z be the trivialization such that F0 = f . Open neighborhood of (S, f) and [(S, f ○ r)]

are defined by the couples (π∶S → B,F ) and (π∶S → B,F ○ r). Let B0 ⊂ B be the open dense subset

of t ∈ B such that the class of δ (this makes sense because of the trivialization of R2π∗Z) is not of type

(1,1). Then B0 defines open subsets B0(F ) and B0(F ○ r) of the open neighborhoods of (S, f) and

[(S, f ○ r)] defined above. We have B0(F ) = B0(F ○ r). Varying B we get a fundamental system of

neighborhoods of [(S, f)]; it follows that (S, f) and [(S, f ○ r)] cannot be separated.

Verbitsky’s Gobal Torelli is a statement about the global period map

M
pÐ→ ΩΛ

(X,f) ↦ P (X,f)
(5.2.1)

Theorem 5.6 (Verbitsky [37], Huybrechts [17]). Keep notation as above. Let M0 be a connected

component of M. The restriction of p to M0 is surjective. Let (X,f), (Y, g) ∈ M0; then p(X,f) =
p(Y, g) if and only if there exists a bimeromorphic map α∶Y ⇢ X such that g ○H2(α) = f i.e. if and

only if there is bimeromorphic map between the marked pairs (X,f) and (Y, g).

We will sketch the proof of Theorem 5.6 in Subsection 5.3 and Subsection 5.4. Here we will

grant Theorem 5.6 and we will show how to prove Theorem 5.3. We must prove the following

statements:

(1a) If X is bimeromorphic to Y there exists a parallel-transport operator ϕ∶H2(X;Z) →H2(Y ;Z)
defining a Hodge isomorphism.

(1b) If there exists a parallel-transport operator ϕ∶H2(X;Z) → H2(Y ;Z) defining a Hodge iso-

morphism then X is bimeromorphic to Y .

(2a) Let ϕ∶H2(X;Z) → H2(Y ;Z) be a parallel-transport operator defining a Hodge isomorphism.

If there exists an isomorphism α∶Y ∼→X such that H2(α) = ϕ then ϕ(KX) = KY .

(2b) Let ϕ∶H2(X;Z) → H2(Y ;Z) be a parallel-transport operator defining a Hodge isomorphism.

If ϕ(KX) = KY there exists an isomorphism α∶Y ∼→X such that H2(α) = ϕ.

Proof of (1a). This follows from Huybrechts’ proof of Theorem 4.2. In fact let α∶Y ⇢ X be a

bimeromorphic map. The proof of Theorem 2.5 of [15] gives that there exist families X → S and

Y → S over a smooth curve S, a point 0 ∈ S such that X0 ≅ X, Y0 ≅ Y , and a cycle Γ on Y ×S X of

relative dimension equal to dimXs = dimYs, whose restriction to Ys ×Xs for s /= {0} is the graph of an

isomorphism fs∶Ys
∼→Xs, and such that

Γ0 = Z +∑
i

Wi (5.2.2)

where Z is the graph of α and each Wi is mapped by the projections of Y ×X to subsets of codimension

at least 2. Thus the action of each Wi on H2(Y ) is trivial and hence H2(α) is identified via parallel

transport with H2(fs). Now let s0 ∈ (S ∖ {0}) and let S ∪s0 S be the curve obtained by gluing two

copies of S at s0. Let Z → (S ∪s0 S) be the family of HK’s obtained by gluing together X → S and

Y → S along Xs0 ≅ Ys0 . Letting σ∶ [0,1] → (S ∪s0 S) be a path joining the point 0 in the “first” copy
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of S to the point 0 in the “second” copy of S we get that the isomorphism of Hodge structures H2(α)
is a parallel-transport operator.

Proof of (1b). Let g be a marking of Y and f the marking of X defined by f ∶= g ○ ϕ. Since ϕ

is a parallel transport operator the marked pairs (X,f) and (Y, g) belong to the same connected

component of M, call it M0. On the other hand since ϕ defines an isomorphism of Hodge structures

we have P (X,f) = P (Y, g) and hence by Theorem 5.6 there exists a bimeromorphic map α∶Y ⇢ X

such that g ○H2(α) = f . In particular we get that X is bimeromorphic to Y .

Proof of (2a). An isomorphism takes Kähler classes to Kähler classes.

Proof of (2b). The proof of (1b) gives that there exists a bimeromorphic map α∶Y ⇢ X such that

H2(α) = ϕ. Thus H2(α)(KX) = KY and hence α is regular by Corollary 3.3 of [9], see also Prop. 2.1

of [15].

5.3. Hausdorffization of the moduli space of marked pairs. The global period map p∶M→ ΩΛ

is a local homeomorphism by Theorem 3.9. We would like to prove that p is a topological covering,

but this is certainly not true since M is (in general) not Hausdorff while ΩΛ is. Thus one replaces M

by its maximal Hausdorff quotient. First we discuss this kind of construction for a general topological

space Z. We say that x, y ∈ Z are inseparable if given open sets x ∈ U ⊂ Z and y ∈ V ⊂ Z the intersection

U ∩ V is not empty: in symbols x ∼ y and we name ∼ the Hausdorff relation on Z. Let ∆Z ⊂ Z ×Z be

the diagonal: we have

∆Z = {(x, y) ∣ x ∼ y}. (5.3.1)

Clearly ∼ is reflexive and symmetric. The example below shows that ∼ is not necessarily transitive

i.e. it need not be an equivalence relation.

Example 5.7 (Verbitsky [37]). Let R be the equivalence relation on R∐R∐R defined as follows. We

denote a point of R∐R∐R as ai ∈ R for i = 1,2,3 meaning that it belongs to the i-th copy of R.

Then R is generated by the relations a1Rb2 if a1 < 0 and a1 = b2 and b2Rc3 if b2 > 0 and b2 = c3. Let

X ∶= (R∐R∐R)/R. The points [01], [02], [03] ∈X are distinct and 01 ∼ 02, 02 ∼ 03 but 01 /∼ 03.

Proposition 5.8. Keep notation as above and suppose that the following hold:

(1) The Hausdorff relation ∼ is an equivalence relation and hence the quotient topological space

Z ∶= Z/ ∼ exists.

(2) The Hausdorff relation is open i.e. the quotient map π∶Z → Z is open.

Then Z is Hausdorff.

Proof. It suffices to prove that the diagonal ∆Z ⊂ Z ×Z is closed. Let π∶Z → Z be the quotient map.

Let

Z ×Z ϕÐ→ Z ×Z
(z1, z2) ↦ (π(z1), π(z2))

The map ϕ is the set-theoretic quotient map for the equivalence relation R defined by declaring

(z1, z2)R(z′1, z′2) if z1 ∼ z′1 and z2 ∼ z′2. Moreover ϕ is continuous. Now let U ⊂ Z ×Z and suppose that

ϕ−1U is open: then U = ϕ(ϕ−1U ) is open because by hypothesis ∼ is open. This proves that ϕ is the

quotient map in the category of topological space and hence ∆Z ⊂ Z ×Z is closed if ϕ−1(∆Z) is closed

in Z ×Z: the latter holds by (5.3.1). �

If the hypotheses of Proposition 5.8 are satisfied the quotient Z is the Hausdorffization of Z. The

following universal property holds: if W is a Hausdorff topological space and f ∶Z →W is a (continu-

ous) map then there exists a unique continuous map f ∶Z →W such that f = f ○π. One shows that the

Hausdorff relation ∼ on M satisfies the hypothesis of Proposition 5.8: the key ingredients are Huy-

brechts’ results on non-separated points of M, namely Theorem 4.2 and the following generalization

of the Burns-Rapaport Main Lemma [7].

Theorem 5.9 (Theorem 4.3 of [14]). Let X0 be a HK manifold and M the moduli space of marked

pairs (X,f) where X is a deformation of X0. If [(X,f)], [(Y, g)] are non-separated points of M then

X is bimeromorphic to Y .



COMPACT HYPERKÄHLER MANIFOLDS: GENERAL THEORY 15

For details of the proof that ∼ on M we refer to Huybrechts’ Bourbaki talk [17]. Here we simply

indicate how one proves that ∼ is transitive (and hence is an equivalence relation). If [(X,f)] ∼ [(Y, g)]
and [(Y, g)] ∼ [(Z,h)] then by Theorem 5.9 X is bimeromorphic to Y and Y is bimeromorphic to

Z. It follows that X is bimeromorphic to Z “compatibly” with the markings f and h. Then Theorem

2.5 of [15] (see the proof of Item (1a) in Subsection 5.2) gives that [(X,f)] and [(Z,h)] are non-

separated points of M. Thus we have the Hausdorffization M and the period map p∶M→ ΩΛ descends

to a continuous map

p∶MÐ→ ΩΛ. (5.3.2)

which is a local isomorphism by Theorem 3.9.

5.4. The descended period map is a topological covering. The period map ΩΛ is simply connec-

ted: it follows that in order to prove Theorem 5.6 it suffices to show that the descended period map

p is a topological covering. The proof breaks up in two steps. First there is a result in general topology

which gives a sufficient condition for a local homeomorphism between manifolds to be a topological

covering: this was proved by Verbitsky (we will present Markman’s proof). The second step is the

proof that Verbitsky’s Criterion is satisfied by the decsended period map p: here the key ingredients

are Huybrechts’ results on the Kähler cone (Proposition 4.10 suffices) and the existence of twistor

families, we refer to Huybrechts’ Bourbaki talk [17] for details. Before proving the general topology

result we recall the following well-known result.

Lemma 5.10. Let f ∶M → N be a local homeomorphism of topological spaces and suppose that M is

Hausdorff. Let X be a connected topological space and x0 ∈X. Suppose that σ, τ ∶X →M are continuous

maps such that σ(x0) = τ(x0) and f ○ σ = f ○ τ . Then σ = τ .

In order to state Verbitsky’s Criterion we give two definitions Let M be a topological manifold.

A closed ball in M is a closed D ⊂ M contained in a coordinate chart (U,ϕ) (here ϕ∶U ∼Ð→ Rn is a

homeomorphism) such that ϕ(D) is a closed ball DR(a) of strictly positive radius R (and center a).

We let B = DR(a) be the interior of D (an open ball) and we denote D by B. If M is a smooth

manifold a smooth closed ball in M is defined as above - of course (U,ϕ) must belong to C∞-atlas.

Proposition 5.11 (Verbistky [37]). Let f ∶M → N be a local homeomorphism of topological (smooth)

manifolds and suppose that M is Hausdorff. Then f is a topological covering if and only if the following

holds for each closed ball (respectively smooth closed ball) B ⊂ N : if C is a connected component of

f−1B then f(C) = B.

Proof. It is clear that the condition is necessary, the point is to prove that it is sufficient. Since N is

covered by open sets of an atlas we may assume that N = Rn. We will prove that if M is connected then

f ∶M → Rn is a homeomorphism: the proposition follows by restricting f to the connected components

of the domain. Let m ∈ M and a ∶= f(m). Let I ⊂ [0,+∞) be the set of R such that there exists a

continuous section sR∶DR(a) →M through m i.e. sR(a) =m and f ○ sR = IdDR(a). Clearly 0 ∈ I and I

is an interval. An easy compactness argument shows that I is open (use Lemma 5.10) - here we do

not use our hypothesis (f(C) = B), one only needs that f is a local homeomorphism. Thus it suffices

to prove that sup I = +∞. Suppose the contrary and let R0 ∶= sup I. There is a section t0∶DR0(a) →M

through m. Let C0 ∶= Im t0 ∩ f−1DR0 . We claim that f ∣C0 is injective and that C0 is open in f−1DR0 .

In fact let x, y ∈ C0 such that f(x) = f(y). If f(x) = f(y) ∈ DR0(a) then x = t0(f(x)) = t0(f(y)) = y
because M is Hausdorff. Next suppose that If f(x) = f(y) ∈ ∂DR0(a). Let x ∈ U ⊂M and y ∈ V ⊂M
be open connected neighborhoods such that f ∣U and f ∣V are homeomorphisms onto their images. Let

{zn} be a sequence in f(U) ∩ f(V ) ∩DR0(a) converging to f(x) = f(y). Then t0(zn) ∈ U ∩ V and

t0(zn) → x, t0(zn) → y, since M is Hausdorff x = y. Moreover the inverse of f ∣U∩V gives a section which

coincides with t0 on U ∩ V ∩DR0(a) by Lemma 5.10: this proves that C0 is open. Since C0 is closed

by construction (and non-empty) it is a connected component of f−1DR0 . By hypothesis f(C0) =DR0 ,

i.e. f ∣C0 is bijective. The argument given above shows that (f ∣C0)−1 is continuous and hence it is the

desired section sR0 ∶DR0 →M . �

6. Hyperkähler manifolds of type K3[n]

6.1. The monodromy group and parallel-transport operators. A HK manifold is of type K3[n]

if it is deformation equivalent to S[n] where S is a K3 surface. Let X and Y be HK manifolds of type

K3[n]. Markman [20, 21] has described the set of parallel transport operators H2(X;Z) → H2(Y ;Z).
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First we describe the set of parallel transport operators H2(X;Z) →H2(X;Z); this is a group denoted

Mon2(X). Given δ ∈H2(X;Z) of square ±2 let rδ ∶H2(X;Z) →H2(X;Z) be the reflection

rδ(α) ∶=
⎧⎪⎪⎨⎪⎪⎩

α + (α, δ)δ if δ2 = −2,

−α + (α, δ)δ if δ2 = 2.
(6.1.1)

Theorem 6.1 (Markman, Thm. 1.2 of [21]). If X is a HK manifold of type K3[n] then Mon2(X) is

generated by the reflections rδ for δ ∈H2(X;Z) of square ±2.

Now let X be a HK of type K3[n] where n ≥ 2. Then H2(X;Z) ≅ H3 ⊕E8(−1)2 ⊕ (−2(n − 1)) and

hence there exists a primitive embedding of lattices

H2(X;Z) ⊂H4 ⊕E8(−1)2. (6.1.2)

Since H4 ⊕E8(−1)2 has discriminant 1 we have

H2(X;Z)� = Zv, v2 = 2(n − 1).

The group of isometries O(H2(X;Z)) acts on the set of Embeddings (6.1.2) as follows. View (6.1.2) as

given by a unimodular overlattice of H2(X;Z)⊕(−2(n−1)) and hence as a subgroup of H2(X;Q)⊕Qv
where v is a generator of (−2(n − 1)): then realize O(H2(X;Z)) as a subgroup of the isometries of

H2(X;Q) ⊕ Qv by mapping g ∈ O(H2(X;Z)) to (g, IdQv). In general (depending on n) such an

embedding is not invariant under O(H2(X;Z)), but it is invariant under the reflections rδ given

by (6.1.1). Thus Theorem 6.1 gives that we can choose an embedding

H2(X;Z) ⊂ Λ̃X ≅H4 ⊕E8(−1)2 (6.1.3)

for every hyperkähler X of type K3[n] so that it is covariant under parallel transport. In other words

every parallel-transport operator H2(X;Z) →H2(Y ;Z) lifts to an isometry Λ̃X → Λ̃Y .

Example 6.2. Let S be a K3 surface, v ∈ H̃(S) an indivisible Mukai vector with v2 > 0 and H a

v-generic polarization of S. Then X = MS(v) is a HK variety of type K3[n] where 2n = (2 + v2). An

obvious choice for Λ̃X and v as above is H̃(S) and v respectively. This is behind the proof of Theorem

6.1. We may interpret the existence of a well-defined Λ̃X and vector v for each X of type K3[n] as

stating that even though X in general will not be a moduli space of sheaves on a K3, a ghost of a K3

has survived.

Markman proved that the set of parallel-transport operators is almost equal to the set of isometries

which lift. In order to give the precise statement we must introduce the natural orientation of H2(X;R)
for a HK manifold X. The set Gr(3,H2(X;R))+ parametrizing 3-dimensional (real) subspaces W ⊂
H2(X;R) such that qX is positive-definite on W (such a space is positive definite) is contractible: it

follows that the set Gr(3,H2(X;R))or
+

parametrizing couples (W,τ) with W ∈ Gr(3,H2(X;R))+ and

τ an orientation of W has two connected components. Now let σ be a generator of H2,0(X) and ω be

a Kähler form of X: then

W = Rω ⊕ {tσ + tσ ∣ t ∈ C}

is a positive definite subspace of H2(X;R) and it has the orientation given by its identification with

R ⊕ C. Since the set of Kähler classes is a cone and rescaling σ does not change the orientation we

have determined a well-defined connected component of Gr(3,H2(X;R))or
+

: this is the orientation

class of X. Now let Y be another HK manifold and ϕ ∈ H2(X;R) → H2(X;R) an isometry. Then

ϕ maps Gr(3,H2(X;R))or
+

to Gr(3,H2(Y ;R))or
+

: we say that ϕ is orientation preserving if it maps

the orientation class of X to the orientation class of Y . An isometry ϕ ∈ H2(X;Z) → H2(X;Z)
is orientation preserving if the isometry H2(X;R) → H2(X;R) obtained by extension of scalars is

orientation preserving.

Theorem 6.3 (Markman, Thm. 1.2 of [21]). Let X and Y be HK manifolds of type K3[n]. An isometry

ϕ∶H2(X;Z) →H2(X;Z) is a parallel-transport operator if and only if it lifts to an isometry Λ̃X → Λ̃Y
and it is orientation preserving.
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6.2. The cone of curves. Bayer-Hassett-Tschinkel have given a numerical description of the cone of

curves on projective HK’s of type K3[n] - some of the main ingredients of the proof are Markman’s

results on parallel-transport operators for HK’s of type K3[n] and Bayer-Macr̀ı’s determination of the

cones of curves of moduli spaces of sheaves on K3’s, see [3]. (See also [29] for similar results.) Let n ≥ 2

and X be a HK of type K3[n]. We equip Λ̃X ⊗C with a weight-2 Hodge structure by requiring that

on H2(X) ⊂ Λ̃X ⊗C we get the obvious Hodge structure and requiring that v is of type (1,1). Thus

we have the lattice Λ̃
(1,1)
X of integral (1,1)-classes. Identify H2(X;Z) with H2(X;Z)∨; we have a map

Λ̃X
θ∨Ð→ H2(X;Z)

α ↦ β ↦ (α,β)
(6.2.1)

If α ∈ Λ̃
(1,1)
X then θ∨(α) is represented by an algebraic 1-cycle (modulo multiplication by a non-zero

scalar); viceversa the homology class of an algebraic 1-cycle is represented by θ∨(α) for a certain

α ∈ Λ̃
(1,1)
X . In order to state the result of Bayer-Hassett-Tschinkel we recall that the Mori cone of

X is the cone in H2(X;R)alg = H1,1
R (X)∨ spanned by homology classes of algebraic curves. The

positive cone in H2(X;R)alg is defined as follows. The B-B quadratic form defines an isomorphism

H2(X;R)alg
∼→ H1,1

R (X) and hence also a (dual) quadratic form q∨ on H2(X;R)alg: the positive cone

in H2(X;R)alg is the cone of α such that q∨(α) > 0 and (α,h) > 0 for an ample class h on X (the last

condition is independent of the choice of h).

Theorem 6.4 (Bayer-Hassett-Tschinkel [2]). Let n ≥ 2 and X be a HK variety of type K3[n] and

h ∈ H1,1
Z (X) be an ample class. Let v ∈ Λ̃X be a generator of H2(X;Z)�. The cone of effective curves

on X is generated by the positive cone and the classes θ∨(α) for α ∈ Λ̃
(1,1)
X such that

−2 ≤ α2, ∣(α, v)∣ ≤ v2/2, (α,h) > 0.
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4. A. Beauville, Variétes Kähleriennes dont la premiére classe de Chern est nulle, J. Differential geometry

18 (1983), pp. 755-782.

5. F. Bogomolov, Hamiltonian Kähler manifolds, Soviet Math. Dokl. 19, 1978, pp. 14621465.
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