NOMINAL GAME

SEMANTICS

Andrzej Murawski
UNIVERSITY OF OXFORD

r

Winners of the 2019 Alonzo Church Award

siglog # 0

The 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Murdoch J.

Gabbay and Andrew M. Pitts for their ground-breaking work introducing the theory of nominal representations.

The ACM Special Interest Group on Logic (SIGLOG), the European Association for Theoretical Computer Science
(EATCYS), the European Association for Computer Science Logic (EACSL), and the Kurt GSdel Society (KGS) are pleased
to announce that Murdoch J. Gabbay (Heriot-Watt University, UK) and Andrew M. Pitts (Cambridge University, UK) have
been selected as the winners of the 2019 Alonzo Church Award for Outstanding Contributions to Logic and Computa-
tion . The award recognizes their ground-breaking work introducing the theory of nominal representations, a powerful

and elegant mathematical model for computing with data involving atomic names, described in the following papers:

<

‘
Winners of the 2017 Alonzo Church Award

siglog % 0

The 2017 Alonzo Church Award for Outstanding Contributions to Logic and Computation is given jointly to Samson
Abramsky, Radha Jagadeesan, Pasquale Malacaria, Martin Hyland, Luke Ong, and Hanno Nickau for providing a fully-
abstract semantics for higher-order computation through the introduction of game models, thereby fundamentally
revolutionising the field of programming language semantics, and for the applied impact of these models.

Their contributions appeared in three papers:

DISCLAIMERS

* computer games
* game theory
* games logicians play

* parity games

L TMPIC S

7|

NOMINAL GAME SEMANTICS

TOWARD A MATHEMATICAL
SEMANTICS FOR

COMPUTER LANGUAGES
1 |

this passage. The purpose of a mathematical semantics is to give ‘
a correct and meaningful correspondence between programs and
mathematical entities in a way that is entirely independent of an
implementation. This plan is illustrated in a very elementary A

1 Dana Scott r
and
Christopher Strachey

Oxford University

Computing Laboratory _
Programming Research Group-Library
8-11 Keble Road

Oxford OXi 3QD

Oxford (0865} 54141

-MATICAL SEMAN

function

=== [M]

intRed = ((intCookLlevel#-5)-P
intGreen {{intCooklevel¥-5%
intBlue = ((in :Level#-5)
if intRed <« n intRed =

continuous
function

if intGreen 0 then intGreer

if intBlue < 0 then intBlue =
if intlevel = 1
color limb intCurrentBread
color limb intCurrentBread

strategy

PCF (SCOTT/MILNER/PLOTKIN)

s Gias i

R

RS

M :=1|x
M @ M | if M then M else M
Ae? M | MM | divg

TYPING JUDGMENTS

o

IMeeVitint I'- NV :int

a4

OING |U

DGMENTS

1 €7 (QZH)EF

B int

I'EM@& N :int

IMERE 0 M- O

R 50

I'EM:int I'E N0 e

I' = if M then Nqelse Ny : 6

r-M:0—-56 T'-N:0

X M0 -0

Fl‘diV@I@

I'-MN:6

TOWARDS MEANINGFUL
EORRESPONDENCES

» Operational semantics

M —s M’

» We shall focus on several meaningful
correspondences between mathematical and
operational semantics.

R

DUCTION

GG (k=1i®3j)
if Othen M else M’ — M’
ifithen M else M/ — M (¢ # 0)
(Az.M)N — M][N/z]
Wl

E:=]|]|EFeM|idoFE|if EthenMelse M | EM

FCORRECTNESS

If M —s M’ then [M] = [M'].

In particular, if + M :int and M — i then [M] = [7].

> ADEQUACLTE

The following converse would be too strong:

if [M] = [M'] then M —s M'.

Instead one aims for:

Given F M :int, if [M] = [i] then M — 1.

3. DEFINABILITY (NO JUNK)

Suppose [0] is the mathematical object corresponding to 6,
i.e. terms |+ M : 6] can be thought of as elements of [6].

S Ym0 X=TH#EM !

DOMAIN-THEORETIC
SEMANTICS

BAILURE OF DEFINABICHSS

Consider the parallel-or function

0 r=0andy=20
porry=< 1 xE0," oryE0,"
" otherwise

E.g. por00=0 and por1" =por" 1=1.

por turns out to be undefinable:
there is no PCF term M such that

Mdiv1# 1 M1div#s 1 MOO# O

TOWARDS

JUlre

ciel
ciel.nombreEtoiles

Capitur.Cie

ciel.couleur = 'bleu’
ciel.dessinEtoile = 'dessin.p

Capitur.Nave

vette ‘
ne 'navette.png

navette.dessin

tte.vitesse
RN = sacollsl)

B FRACE

UL

ON

UL ABST

RACTION

IM;" = IM," ifand onlyif M; & M,

Robin Milner (1977)

CONTEXTUAL TESTING

¥ Contexts

C:=[]|C!M|M! C
| If CthenM elseM | if M thenC elseM | if M thenM elseC
|1x'.C|MC |CM

¥ Testing of M "

C[M]:int

If there existsi such that C[M] % % i, we write
C[M] %(success!).

EON [

-X TUAL

-QUIVAL

=N

Intuitively, two programs should be viewed as equivalent
If they behave in the same way Iin any context, i.e. they
can be used interchangeably.

¥1 1 Mq:! approximates

LT Mo L f

C[M1]" implies C[M,]"

for any context C such that ! C[M4], C[M,] : Int.
Then we write! | M1 # Mo.

¥ Two terms are equivalent
other, written ! | M, 2 M,.

If one approximates the

SOUNDNESS

Correctness and adequacy turn out to imply:

if IM," = IM.," then M; & M,.

Assume!M " = 'M," and supposévi; = M»>,
l.e. C[M,] # and C[M] "#for some contextC
(or C[M,] # and C[M4] "8.

¥ Correctness implied C[M4]" = 1" for somel.
¥ Adequacy implies!C[M,]" = !i" for any I.

This Is a contradiction, becauseM{" = IM,"
Implies ' C[M4]" = C[M5]" by compositionality.

NO FULL ABSTRACTION

RERTEE DOMAIN- THEORE TIC MGISIS

My ! Lfint it int if (f 1 div) then
(if (f divl)then
(if (f 00)thendiv elsd)
else diy
else div

M2 | | f int" int" int. div

¥ Becausepor is not debnable, we havév; & M.
¥ 1M "(por) & !My"(por), so!M;" & IM,".

INTRINSIC QUOTIENT

In the presence of debPnability (as well as correctness
and adequacy) one can construct fully abstract models
by quotienting.

This boils down to recasting the idea of contextual
testing inside the model.

Given Xq, X, 1 11"
X1" Xo # Onginey(X1) = Y(X2)Q
Then!adda " is fully abstract.

This kind of guotienting may be an obstacle in rea-
soning about equivalence, so one should attempt to Pnd
more direct characterizations.

Theoretical
Computer Science

&
g

LSEVIER Theoretical Computer Science 266 (2001) 341-364

www.elsevier.com/locate/tcs

Finitary PCF 1s not decidable
Ralph Loader
Merton College, Oxford, UK

Received October 1996; revised March 2000; accepted April 2000
Communicated by G.D. Plotkin

Abstract

The question of the decidability of the observational ordering of finitary PCF was raised (Jung
and Stoughton, in: M. Bezem, J.F. Groote (Eds.), Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science, vol. 664, Springer, Berlin, 1993, pp. 230-244) to give
mathematical content to the full abstraction problem for PCF (Milner, Theoret. Comput. Sci. 4
(1977) 1-22). We show that the ordering is in fact undecidable. This result places limits on how
explicit a representation of the fully abstract model can be. It also gives a slight strengthening
of the author’s earlier result on typed A-definability (Loader, in: A. Anderson, M. Zeleny (Eds.),
Church Memorial Volume, Kluwer Academic Press, Dordrecht, to appear). (©) 2001 Published
by Elsevier Science B.V.

The 2017 Alonzo Church Award

r SIGLOG is delighted to announce that the 2017 Church Award goes to 6 people:
Samson Abramsky, Martin Hyland, Radha Jagadeesan, Pasquale Malacaria, Hanno
Nickau and Luke Ong for [Quoting from the official citation] “providing a fully-abstract
semantics for higher-order computation through the introduction of games models,
thereby fundamentally revolutionising the field of programming language semantics,

Land for the applied impact of these models.” J

UL ABS TRAC

|[ON

~OR

* Abramsky, Jagadeesan, Malacaria

* Hyland, Ong
* Nickau

B

Follow-up work extended the techniques to state,
control, concurrency, exceptions and more.

BAME SEMANTICHE

unit

Rpiic

int |

ref!

| 0p I

S rPING RULESS

= !A!

i " Z a" (u#A)
u,! ! (): unit u,! !t i:int u,! ! a:ref!
ey | u,! ' Mq:int u,! ' My :int
ul I x:! u!! M1 $ My :int

u! ! M:iint u! ! No:!' u! ! Njp:!
u,! I if M thenN, elseNg : !

TYPING RULES |l

u! ! M :refd u!! M :ref@6 u,! ! N:60

ul! !t IM : 6 u! ! M:= N :unit
u! ! M :6 ul! ! M :ref@ u,! ! N :refé
u! ! refi(M): refo u! ! M =N :int

u!!'M:0% 6 u! ! N:0 u! &{x:6}!' M ¢
U 1 H TINE S u,! ' Xx'.\M :60% ¢’

e A store is a function from a finite set of names to
values such that the type of each name matches the
type of its assigned value.

e We write Sla — V| for the store obtained by updat-
ing S so that a is mapped to V' (this may extend the
domain of 9).

e Given a store S and a term M we say that the pair
(S, M) is compatible if all names occurring in M are
from the domain of S.

e The small-step reduction rules are given as judg-
ments of the shape (S, M) — (S’, M), where (S, M),
(S, M") are compatible and dom(S) C dom(S’).

VALUES AND EVALUATION

EONTEXNTS
g — O N)_ | _N | _eN | id_ | . =N (S =u
|l | _:=N | a:=_|refg(L) |if_then N7 else Ny.

(S, M) — (5", M")
(5, EIM]) — (5", E|M'])

W= () il alx| ixa M

O

(5,
(5,
(5,
(5,

PERATIONAL SEMAN

S, if O then NV; else Ny) — (.S, Ny)
S, if i then Ny else Ny) — (S, Nq)
a=>b)— (S5,0)
a=a)— (5,1)

[CS

:

[ONAL S

-MANTICS

-VALUATION

We say that (S, M) evaluates to (S',V) if (S, M) —»
(S',V), with V a value. For = M : unit we say that M
converges, written M |}, if ((), M) evaluates to some (S, ()).

CONTEXTUAL TESTING

C[M] |2

We say that I' = M; : 6 approximates I'+ M, : 60
(written I' = M, I M) if

for any context C|—| such that + C[M;], C|Mj,] : unit.

Two terms-in-context are equivalent if one approxi-
mates the other (written I' = M; = M,).

FULL ABSTRACTION

SHORTHAN

e letz = M in N stands for

B

Az’ . NYM

e VM: N stands for

letx = M inN

where does not occur in V.

-QUIVAL

gen = Az letz = ref(0)in (z:=2;z) :

gen’ = letz = ref(0)in 2™ .(z:=2;z) :

=ING

int — ref int
int — ref int

C = (Af"™7"'" if (f0 = f0)then () else div) []

FQUIVALENCE?

COMPOSITIONAL
INTERPRETATION

* lypes interpreted by games between O and P

» Terms interpreted by strategies for P

» Each syntactic construct interpreted through
special strategies, constructions on strategies and

composition.

« We start with a few concrete examples.

INt

= 2019 : i

- Az 41 int — int

*Wﬂ

3, 49 15 2

O P O P O P

- Az 41 int — int

*pﬂ

3, 49 15 2

O P O P O P

EO M A" s 4+ g+ 1 int — int — S

173,

O P O P

- A A y™z 4+ y 4+ 1:int — int — int

/\/ﬂ/\,r—\»/‘\

* 32 5190
O P O P O P

v O w O w O

~ ints — Int; — inty

.'./

- A A y™z 4+ y 4+ 1:int — int — int

P e G

« 1 32?/ 42?/ 51 9o 51/—1\00
OP OP OP OP O P

= A S A e = i) = T

x 1710

O P O P

= A IR e = i) =

- (int2 — int1) — Inty

O *
*p/\/ Ozrél 40 P f
O T’
OPOPOFP , N
0, 31
P

letg = [| ingOa™ .z + 3)

= A SR T = i) = T

)

70 70,3 49 81 9
OPOPOPOPOTP

letg =[] ing\x™.g(A\y™.x + y + 3) + 4)

