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I for (some) black-box systems with (some) objectives
I Statistical model checking (SMC)
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Markov chains: VI vs. SMC vs. BRTDP 10

More frequently update what is visited more frequently

1: L(·)← 0

, U(·)← 1

2: L(1)← 1

, U(0)← 0

3: repeat

4: sample a path from sinit to {1, 0}

5: for all

visited

transitions s −→ do
6: Update(s −→)

7: until ?

1: procedure Update(s −→)

2: U(s) :=
∑

s′∈S ∆(s, s′) · U(s′)

3: L(s) :=
∑

s′∈S ∆(s, s′) · L(s′)

4: UpBound(s) :=
maxa∈A UpBound(s, a)

5: LoBound(s) :=
maxa∈A LoBound(s, a)
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BRTDP on MDP 11

More frequently update what is visited more frequently
by reasonably good strategies

1: L(·, ·)← 0,U(·, ·)← 1
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Experimental results 12

Example
Visited states
PRISM with RL

zeroconf 4,427,159 977
wlan 5,007,548 1,995

firewire 19,213,802 32,214
mer 26,583,064 1,950
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Upper bounds:

I identify ECs from (long enough) simulations
I contract them on the fly
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SMC / PAC RL for MDP 14

Model not known
I can observe states, not transition probabilities

I cannot use
1: procedure Update(s

a
−→)

2: U(s, a) :=
∑

s′∈S ∆(s, a, s′) · U(s′)
3: L(s, a) :=

∑
s′∈S ∆(s, a, s′) · L(s′)

4: U(s) := maxa∈A U(s, a)
5: L(s) := maxa∈A L(s, a)

I instead use experimental average
I =⇒ probably approximately correct (PAC) RL
I a.k.a. statistical model checking (SMC)
I for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman:

PAC model-free reinforcement learning. ICML 2006
I for reachability:

I not polynomial, but exponential
I need bounds (also L )
I U requires the “EC trick”



SMC / PAC RL for MDP 14

Model not known
I can observe states, not transition probabilities
I cannot use

1: procedure Update(s
a
−→)

2: U(s, a) :=
∑

s′∈S ∆(s, a, s′) · U(s′)
3: L(s, a) :=

∑
s′∈S ∆(s, a, s′) · L(s′)

4: U(s) := maxa∈A U(s, a)
5: L(s) := maxa∈A L(s, a)

I instead use experimental average
I =⇒ probably approximately correct (PAC) RL
I a.k.a. statistical model checking (SMC)
I for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman:

PAC model-free reinforcement learning. ICML 2006
I for reachability:

I not polynomial, but exponential
I need bounds (also L )
I U requires the “EC trick”



SMC / PAC RL for MDP 14

Model not known
I can observe states, not transition probabilities
I cannot use

1: procedure Update(s
a
−→)

2: U(s, a) :=
∑

s′∈S ∆(s, a, s′) · U(s′)
3: L(s, a) :=

∑
s′∈S ∆(s, a, s′) · L(s′)

4: U(s) := maxa∈A U(s, a)
5: L(s) := maxa∈A L(s, a)

I instead use experimental average
I =⇒ probably approximately correct (PAC) RL
I a.k.a. statistical model checking (SMC)

I for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman:
PAC model-free reinforcement learning. ICML 2006

I for reachability:
I not polynomial, but exponential
I need bounds (also L )
I U requires the “EC trick”



SMC / PAC RL for MDP 14

Model not known
I can observe states, not transition probabilities
I cannot use

1: procedure Update(s
a
−→)

2: U(s, a) :=
∑

s′∈S ∆(s, a, s′) · U(s′)
3: L(s, a) :=

∑
s′∈S ∆(s, a, s′) · L(s′)

4: U(s) := maxa∈A U(s, a)
5: L(s) := maxa∈A L(s, a)

I instead use experimental average
I =⇒ probably approximately correct (PAC) RL
I a.k.a. statistical model checking (SMC)
I for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman:

PAC model-free reinforcement learning. ICML 2006
I for reachability:

I not polynomial, but exponential
I need bounds (also L )
I U requires the “EC trick”



SMC / PAC RL for MDP 15

Model not known

I try many runs before concluding the value is significantly lower
I overly safe value changes

1: procedure Update(s
a
−→)

2: if counter(s
a
−→) = m then

3: if
accumU(s

a
−→)

m
< U(s

a
−→)

−

2

ξ

then

4: U(s
a
−→)←

accumU(s
a
−→)

m

+ξ

5: accumU(s
a
−→)← 0

6: c(s
a
−→) = 0

7: else
8: accumU(s

a
−→)← accumU(s

a
−→) + U(s′)

9: counter(s
a
−→)← counter(s

a
−→) + 1

Macro LEARN(s
a
−→) is true in the k th call of Update(s

a
−→) if, since the (k − 2m)th call of

Update(s
a
−→), line 4 was not executed in any call of Update(·).
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Summary: Strategy computation for MDP 16

BRTDP (verification) vs. RL (learning)
I reachability vs. (discounted) reward

I slower feedback
I incorrect ECs

I bounds U, L vs. Q-value
I exact bounds vs. PAC / no bounds / no convergence

Approach:

faster & sure updates

important parts of the system
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Strategy computation for mean payoff in MDP 17

MP(ρ1 ρ2 ρ3 · · · ) = lim infn→∞ 1
n

∑n
i=1 ρi

MP(42 2 4 2 4 2 · · · ) = 3

max
σ
Eσ[MP] = max

σ

∑
MEC M

reachability︷   ︸︸   ︷
Pσ[^M] ·

MP on EC︷    ︸︸    ︷
MP(Mσ)

s1

s2

s4

s3

b, 42 0.001

0.999

a, 6
x, 2

x, 4

x, 7

Desiderata:
I ignore states with low reachability probability/approx. error/profit
I focus on highly reachable, uncertain and profitable states
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Solution ideas:
1. keep both lower and upper bounds

I collapse end components (graph trasnformation, on the fly)
I =⇒ error bound, imprecision
I =⇒ treat only highly imprecise states

2. simulation guided (reinforcement learning)
I transition probabilities =⇒ treat only highly reachable states
I pick currently best actions =⇒ treat only highly profitable states
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Experimental results (MDP with mean payoff) 19

Model (#states, #MECs) LP SI VI SI∗ VI∗

cs nfail3 (184, 38) 2 17 − 4 4
cs nfail4 (960, 176) 5 1129 − 5 5
sensors1 (462, 132) 3 − − 4 5
sensors2 (7860, 4001) 101 − − 13 15
mer3 (15622, 9451) − − − 16 15
mer4 (119305, 71952) − − − 42 64
zeroconf(4730203, ?) − − − − 10
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BRTDP needs upper bounds

and intermediate results
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σ : S → A
σ =

{
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}
How to make it more readable?

I Encoding?
I Smaller?

I Cut off states with zero importance (unreachable or useless)
I Cut off states with low importance (small error, ε-optimal strategy)
I How to make use of the exact quantities?
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Supervised learning is the machine learning task of learning
a function f : X → Y that maps an input to an output
based on example input-output pairs {(~x1, ~y1), . . . , (~xn, ~yn)}.

Example: A decision tree for {1, 2, 3, 7} ⊆ {1, . . . , 7}

x ≤ 3

x < 7
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Positive examples:
Good = {1, 3, 7}

Negative examples:
Bad = {6}
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Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT

σ : S → A

σ : S × A → 2 (permissive vs. liberal)
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Algorithm

1. generate Good ⊆ {(s, a) | σ(s, a)}
and Bad ⊆ {(s, a) | a ∈ A(s),¬σ(s, a)}

2. learn a DT τ for Good,Bad

3. evaluate strategy τ

4. if good enough then terminate
else goto 1
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What to put in Good and Bad (and how many times)?

More important decision =⇒ more frequent data

Importance of a decision in s with respect to ^goal and controller σ:

Pσ[^s

| ^goal

] ≈
#simulations visiting s, goal
#simulations visiting goal

=⇒ take states on successful simulations
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Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ——— *
zeroconf 89,586 0.00863 60,463 409 7 0.106
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Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ——— *
zeroconf 89,586 0.00863 60,463 409 7 0.106

* MEM-OUT in PRISM,
whereas RL yields: 1887 619 13 0.00014



Decision trees vs. BDD 28

Diasadvantage: no subgraph merging (BDD are dags)

Advantage: can choose different predicates on the same level (BDD have
fixed variable ordering)

Learning advantages:

I wider class of predicates (not just bit representation)
I entropy-based heuristic (vs. variable ordering)
I don’t-care inputs (Good ∪ Bad can be resolved either way)

I imprecise outputs (not exactly Good 7→ , Bad 7→ )
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Decision trees for games strategy representation 29

Non-deterministic adversary =⇒ capture almost all decisions
I overfitting =⇒ unfold until leaves decided
I unfold even under no information gain =⇒ look-ahead

Additional issue for synthesis for I/O signals: only Boolean structure



Experimental results (game strategy representation) 30

Safety



Experimental results (reachability) 31

Name |S | |I| |O | |Train| |BDD | |DT | |DT+|

wash 3 1 1 3 102 3 7 40 45 3 1
wash 4 1 1 3 466 4 9 144 76 4 1
wash 4 1 1 4 346 4 9 96 78 4 1
wash 4 2 1 4 958 4 9 432 157 4 1
wash 4 2 2 4 3310 4 9 432 301 4 1
wash 5 1 1 3 1862 5 11 416 127 5 1
wash 5 1 1 4 1630 5 11 352 121 5 1
wash 5 2 1 4 5365 5 11 2368 255 5 1
wash 5 2 2 4 27919 5 11 2368 554 5 1
wash 6 1 1 3 6962 6 13 1088 193 6 1
wash 6 1 1 4 6622 6 13 1024 172 6 1
wash 6 2 1 4 27412 6 13 10432 419 6 1
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Experimental results (LTL synthesis) 33



Summary: Strategy representation 34

precise decisions

DT, importance of decisions

Cut off states with zero importance (un-
reachable or useless)

Cut off states with low importance (if
possible)

Making use of the exact quantities

Importance of a decision in s with respect to ^goal and strategy σ:

e.g. Pσ[^s| ^goal] or “losing action”
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1. Reinforcement learning in verification

2. Decision-tree learning

3. Automata learning

4. Other domains, meta-domains



Reinforcement learning in verification 38

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with
Minimal Expected Cost! ATVA 2014
I priced timed MDP: worst case time-bounds + minimal expected cost
I 1. σ← uniform strategy

2. simulate σ
3. σ← learn a better strategy from the best runs

(covarinace / logisitic regression / trees)
4. go to 2. or output the best currently known (safe) strategy

Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained
Reinforcement Learning for MDPs. TACAS 2016
I 1. compute safe actions

2. there run RL
Hasanbeig, Abate, Kroening: Logically-Correct Reinforcement Learning.
I like BRTDP, but with limit-deterministic Büchi automaton

K., Pérez, Raskin: Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular Constraints. CONCUR 2018
I RL for long-run average reward, while satisfying a parity condition

Ashok, Brázdil, K., Slámečka: Monte Carlo Tree Search for Verifying
Reachability in Markov Decision Processes.
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K., Pérez, Raskin: Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular Constraints. CONCUR 2018
I RL for long-run average reward, while satisfying a parity condition
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K., Pérez, Raskin: Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular Constraints. CONCUR 2018
I RL for long-run average reward, while satisfying a parity condition
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Decision-tree learning 39

Invariant generation
I 1. from sample runs learn candidates for invariants

2. check candidates
3. refine incorrect candidates / return a correct one

Krishna, Puhrsch, Wies: Learning invariants using decision trees. 2015

Garg, Neider, Madhusudan, Roth: Learning invariants using decision
trees and implication counterexamples. POPL 2016



Automata learning 40

Neider, Topcu: An Automaton Learning Approach to Solving Safety
Games over Infinite Graphs. TACAS 2016
I strategy representation

Learn a model of a system and check the learnt model
I Fitrau-Brostean, Janssen, Vaandrager: Combining model learning

and model checking to analyze TCP implementations. CAV 2016
I Santolucito, Zhai, Piskac: Probabilistic automated language learning

for configuration files. CAV 2016
I Chen, Hsieh, Lengál, Lii, Tsai, Wang, and Wang: PAC

learning-based verification and model synthesis. ICSE 2016
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Guidance of theorem provers:

I Kaliszyk, Mamane,Urban: Machine learning of Coq proof guidance:
First experiments. SCSS 2014

I Blanchette, Greenaway, Kaliszyk, Kühlwein, Urban: A
learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning
2016

Meta-usage: Choice of model checker

I Demyanova, Pani, Veith, Zuleger: Empirical software metrics for
benchmarking of verification tools. CAV 2015

I Czech, Hüllermeier, Jakobs, Wehrheim. Predicting rankings of
software verification tools. FSE 2017
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learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning
2016

Meta-usage: Choice of model checker

I Demyanova, Pani, Veith, Zuleger: Empirical software metrics for
benchmarking of verification tools. CAV 2015
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Summary 42

Machine learning in verification
I Heuristics to improve usability, e.g.,

scalability and explainability
I Example 1: Speeding up value iteration

I technique: reinforcement learning
I idea: focus on updating “most important parts”

= most often visited by good strategies
I Example 2: Small and readable strategies

I technique: decision tree learning
I idea: based on the importance of states,

feed the decisions to the learning algorithm



Discussion 43

Verification using machine learning

I How far do we want to compromise?
I Do we have to compromise?

I BRTDP, invariant generation, strategy representation don’t
I Don’t we want more than ML?

I (ε-)optimal controllers?
I arbitrary controllers – is it still verification?

I What do we actually want?
I scalability shouldn’t overrule guarantees?
I oracle usage seems fine
I when is PAC enough?

I 3rd Workshop on Learning in Verification (LiVe) @ ETAPS
(April 2019)

Thank you
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