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Formal methods and machine learning

Formal methods
+ precise

— scalability issues
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Formal methods and machine learning

Formal methods Learning
+ precise — weaker guarantees
— scalability issues + scalable
— can be hard to use + simpler solutions
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Formal methods Learning
+ precise — weaker guarantees
— scalability issues + scalable
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Formal methods and machine learning

Formal methods Learning
+ precise — weaker guarantees
— scalability issues + scalable
— can be hard to use + simpler solutions

precise computation

K /\

iy

»

\_/ —_

focus on important stuff




Example: Reachability in Markov decision processes

(S, Sinit € S,ALA:SxA— D(S) U{J_})




Example: Reachability in Markov decision processes

(S, Sinit € S,ALA:SxA— D(S) U{J_})

max P7[¢ goal]

strategy o



Example: Reachability in Markov decision processes

(S, Sinit € S,ALA:SxA— Z)(S) U {J_})

max P7[¢ goall
strategy o



Example: Reachability in Markov decision processes

max P7[¢ goal]

strategy o



Example: Reachability in Markov decision processes

max P7[¢ goal]

strategy o



Example: Reachability in Markov decision processes

max P7[¢ goall

strategy o



Example: Reachability in Markov decision processes

max P7[¢ goall

strategy o



Example: Reachability in Markov decision processes

max P7[¢ goal]

strategy o
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Example: Reachability in Markov decision processes

ACTION = down]

R
max P7[¢ goal] @ ‘

strategy o
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Strategy computation for reachability in MDP

Traditional solution techniques
» Linear programming (LP)
> precise
» polynomial time, but practically slow
» Strategy iteration (SI)
> precise
» monotonically improving
» exponential time and costly evaluation, but quite ok
» Value iteration (VI)

» convergent

» monotonically improving

> until recently no general stopping criterion / current error bound
> exponential, but fast



Strategy computation for reachability in MDP

Traditional solution techniques

» Linear programming (LP)
> precise
» polynomial time, but practically slow

» Strategy iteration (SI)
> precise
» monotonically improving
» exponential time and costly evaluation, but quite ok

» Value iteration (VI)

» convergent

» monotonically improving

> until recently no general stopping criterion / current error bound
> exponential, but fast

Probably approximately correct techniques
» for (some) black-box systems with (some) objectives
» Statistical model checking (SMC)
» Reinforcement learning (RL)



Value iteration for Markov chains

Markov chain
» |A| <1, sink 0 and goal 1

Compute Ps[¢1] foreach s € S

Example:
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Value iteration for Markov chains
Markov chain
» |A| <1, sink 0 and goal 1

Compute Ps[¢1] foreach s € S
> iteratively approximate (from below)

» L:S—][0,1]
> L(s) = Xges A(s.s') - L(s')
Example:
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Value iteration for Markov chains
Markov chain
» |A| <1, sink 0 and goal 1

Compute Ps[¢1] foreach s € S
> iteratively approximate (from below)

» L:S—][0,1]
> L(s) = Xges A(s.s') - L(s')
Example:
) e (1)

NN “1/3®

iteration s t u




Markov chains: VI vs. SMC vs. BRTDP

1: L() <0
2: L(1) <1

3: repeat

5: for all transitions s — do
6: Uppate(s —)

7: until ?

1: procedure UprpaTE(s —)

3 L(s)=Zses As,8") - L(s")



Markov chains: VI vs. SMC vs. BRTDP

3: repeat
4: sample a path from sy to {1,0}

7: until confidence on the statistics is high enough




Markov chains: VI vs. SMC vs. BRTDP

More frequently update what is visited more frequently
1. L(-) <0
2: L(1) <1

3: repeat
4: sample a path from s;y;; to {1,0}

5: for all visited transitions s — do
6: Uppate(s —)

7: until ?

1: procedure UprpaTE(s —)

3 L(s)=Zses As,8") - L(s")

w ‘ éijj



Markov chains: VI vs. SMC vs. BRTDP

More frequently update what is visited more frequently

1. L() <0, U(-) « 1
2: L(1) <1, U(0) « 0

3: repeat
4: sample a path from s;n;; to {1,0}

5: for all visited transitions s — do
6: Urpate(s —)

7: until  U(Sinit) — L(Sinit) < €

1: procedure UPDATE(S —)
U(s) := Zses A(s,s") - U(s')
L(s) == Xses A(s.s") - L(s')

w ‘ ng{:b



BRTDP on MDP

1 L() « 0,U(-) « 1

U(0,-) < 0,L(1,-) « 1

repeat

. a
for all taransmons s — do
UppatE(s —)

until U(Sinit) — L(Sinit) <e€

[SUNEI I

procedure UpPbaTe(S i>)
U(S’ a) = Zs'eS A(S, a, S’) : U(S,)
L(5.a) = Yoes Als.a,8') - L(s)
U(s) := maxaea U(s, a)
L(s) := maxaea L(s, a)



BRTDP on MDP

More frequently update what is visited more frequently

1: L(-,-) < 0,U(-,-) « 1
2: U(0,) < 0,L(1,") « 1

3: repeat
sample a path from s;n;; to {1, 0}

A

for all visited gransitions s — do
UppatE(s —)

~

: until U(sinit) — L(Sinit) < €




BRTDP on MDP .

More frequently update what is visited more frequently
by reasonably good strategies

10 L(-,-) «0,U(-,-) « 1
2: U(0,) < 0,L(1,") « 1

3: repeat
4: sample a path from s;n;; to {1, 0}

5: for all visited gransitions s - do
UppaTE(S —)

14

7: until U(sinit) — L(Sinit) < €

observation



BRTDP on MDP

More frequently update what is visited more frequently
by reasonably good strategies

1:
2:

A

N

L() e« 0,U(-) e 1
U(0,) < 0,L(1,") « 1

repeat
sample a path from s;n;; to {1, 0}
for all visited gransitions s = do
UppaTE(S —)

until U(Sinit) — L(Sinit) <€

> pick action arg max U(s —)
a

observation



BRTDP on MDP .

More frequently update what is visited more frequently
by reasonably good strategies

10 L(-,-) «0,U(-,-) « 1

2: U(0,-) « 0,L(1,-) « 1

3: repeat

4: sample a path from sni to {1,0} > pick action arg max U(s i>)
a
5: for all visited transitions s — do

UppATE(S i>)

14

N

until U(Sinit) — L(Sinit) <€

internal state reward
oA S
(

faster & sure updates

observation



Experimental results

Example

Visited states

PRISM [ with RL

zeroconf

4,427,159 977

wlan

5,007,548 1,995

firewire

19,213,802 | 32,214

mer

26,583,064 1,950




Verification: General case with end components

13



Verification: General case with end components

Upper bounds:

» identify ECs from (long enough) simulations
» contract them on the fly

b 1
-
H@\/@?
a i c 1

13



SMC / PAC RL for MDP

Model not known
» can observe states, not transition probabilities



SMC / PAC RL for MDP

Model not known
» can observe states, not transition probabilities
» cannot use
1: procedure UPDATE(S i>)

2: U(s,a) :== Yges A(s,a,s") - U(s')
3: L(s,a):=Yges A(s,a,8") - L(s)
4: U(s) := maxaea U(s, a)
5: L(s) := maxaea L(s, a)



SMC / PAC RL for MDP

Model not known
» can observe states, not transition probabilities

» cannot use
a
1: procedure UPpATE(S —)

2: U(s,a) :== Yges A(s,a,s") - U(s')
3 L(s,a):=Yges A(S,a,8") - L(s)
4: U(s) := maxaea U(s, a)
5: L(s) := maxaea L(s, a)

v

instead use experimental average

v

= probably approximately correct (PAC) RL
a.k.a. statistical model checking (SMC)

v



SMC / PAC RL for MDP

Model not known

>

>

v

v

v

v

v

can observe states, not transition probabilities
cannot use

1: procedure UPDATE(S i>)
U(s,a) :== Yges A(s,a,s") - U(s')
L(s.a) == Zses A(s.a,8") - L(s")
U(s) := maxaea U(s, a)
L(s) := maxaea L(s, a)

instead use experimental average
= probably approximately correct (PAC) RL
a.k.a. statistical model checking (SMC)

for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman:

PAC model-free reinforcement learning. ICML 2006
for reachability:

» not polynomial, but exponential
» need bounds (also L)
» U requires the “EC trick”



SMC / PAC RL for MDP

Model not known

» try many runs before concluding the value is significantly lower
» overly safe value changes




SMC / PAC RL for MDP

Model not known

» try many runs before concluding the value is significantly lower
» overly safe value changes

a
1: procedure UPpaATE(S —)

2:

® N

if counter(s i>) = m then

else
accumY(s —5) « accumY(s -5) + U(s')
counter(s i>) « counter(s i>) +1



SMC / PAC RL for MDP

Model not known

» try many runs before concluding the value is significantly lower
» overly safe value changes

a
1: procedure UPpaATE(S —)

2:

3:

© ©o N o a

if counter(s i>) = m then

. accumY(s -5)

if <U(s i») then

a accumY(s —)

accum¥(s -5) « 0
c(s i>) =0

U(s

else
accumY(s —5) « accumY(s -5) + U(s')
counter(s i>) « counter(s i>) +1



SMC / PAC RL for MDP

Model not known

» try many runs before concluding the value is significantly lower
» overly safe value changes

a
1: procedure UPpaATE(S —)

2:

3:

© o N o g

if counter(s i>) = m then

. accumY(s -5) a
it 22U ) s %) [ ¢ then

accumY(s —5)
U(S i)) - — -

m
accumY(s -5) < 0
c(s i>) =0
else
accumY(s —5) « accumY(s -5) + U(s')
counter(s i>) « counter(s i>) +1



SMC / PAC RL for MDP

Model not known

» try many runs before concluding the value is significantly lower
» overly safe value changes

a
1: procedure UPpaATE(S —)

2:

3:

»

9:

Macro LEARN(s —5) is true in the kth call of Uppate(s —) if, since the (k — 2m)th call of

5
6
7:
8

if counter(s i>) = mand LEARN(s —>) then

. accumY(s -5) a
if — < U(s —) then

accumY(s —5)
U(S i)) - — -

m
accumY(s -5) < 0
c(s i>) =0
else
accumY(s —5) « accumY(s -5) + U(s')
counter(s i>) « counter(s i>) +1

UrDATE(S i»), line 4 was not executed in any call of Uppate(-).



Summary: Strategy computation for MDP "

BRTDP (verification) vs. RL (learning)
» reachability vs. (discounted) reward

Approach:

internal state
AL i

Sreward
faster & sure updates ¢ o

i
EEEERERUH

!

observation
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Approach:
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> slower feedback
> incorrect ECs

Approach:
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Summary: Strategy computation for MDP "

BRTDP (verification) vs. RL (learning)
» reachability vs. (discounted) reward

> slower feedback
> incorrect ECs

» bounds U, L vs. Q-value

Approach:

internal state
o

y

Creward

faster & sure updates

observation



Summary: Strategy computation for MDP "

BRTDP (verification) vs. RL (learning)
» reachability vs. (discounted) reward

» slower feedback
» incorrect ECs

» bounds U, L vs. Q-value
» exact bounds vs. PAC / no bounds / no convergence

Approach:

internal state reward
Pl

faster & sure updates

observation



Strategy computation for mean payoff in MDP i

MP(p1 p2 p3---) = liminf,e 131, p;
MP(42 2 4242 ...)=3
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MP(p1 p2 p3---) = liminf,e 131, p;
MP(42 24242 ~--):3
reachability MP on EC
—— —
max E,[MP] = max Z P, [OM] - MP(M?)
7 7 MEC M




Strategy computation for mean payoff in MDP

MP(p1 pz2 p3---) = liminfae T34 i
MP(42 24242 ...)=3
reachability MP on EC
———
max E,[MP] = max Z P, [OM] - MP(M7)
v 7 MECM




Strategy computation for mean payoff in MDP

MP(p1 pz ps---) = liminfy . 237 pi
MP(42 24242 ...)=3
reachability MP on EC

—— —
maxE,[MP] = max > B,[oM] - MP(M")

MEC M
X, 2
a, 6
N 3
b, 42 0.001 X 4
—1 6
0.999

N

x
~

17



Strategy computation for mean payoff in MDP

MP(p1 pz ps---) = liminfy . 237 pi
MP(42 24242 ...)=3
reachability MP on EC

—— —
maxE,[MP] = max > B,[oM] - MP(M")

MEC M
X, 2
a, 6
ﬂ 3
42 0.001 1
16 b, X
0.999
7
X, 7
Desiderata:

» ignore states with low reachability probability/approx. error/profit
» focus on highly reachable, uncertain and profitable states



Strategy computation for mean payoff in MDP s

Solution ideas:
1. keep both lower and upper bounds

> collapse end components (graph trasnformation, on the fly)
» = error bound, imprecision
» — treat only highly imprecise states



Strategy computation for mean payoff in MDP s

Solution ideas:
1. keep both lower and upper bounds
> collapse end components (graph trasnformation, on the fly)
» = error bound, imprecision
» == treat only highly imprecise states
2. simulation guided (reinforcement learning)

> transition probabilities = treat only highly reachable states
» pick currently best actions = treat only highly profitable states



Experimental results (MDP with mean payoff)

Model (#states, #MECs) | LP Sl VI | SI* VI
cs_nfail3 (184, 38) 2 17 - | 4 4
cs_nfail4 (960, 176) 5 1129 - 5 5
sensorsi (462, 132) 3 - - 4 5
sensors2 (7860, 4001) 101 - - 113 15
mer3 (15622, 9451) - - - |16 15
mer4 (119305, 71952) - - - | 42 64
zeroconf(4730203, ?) - - - | - 10

19



Strategy computation for simple stochastic games

BRTDP needs upper bounds

() o

q |—«a

o,
[




Strategy computation for simple stochastic games

BRTDP needs upper bounds and intermediate results

(o)

max

P9

q

— O

o,
[

pr

par

/N

20
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Small representation of strategies

oc:S—>A
o-:{(s,o-(s))lses}

How to make it more readable?

22
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> Smaller?
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Small representation of strategies

c:S—>A

o= {(s, o(s))|se S}

How to make it more readable?
» Encoding?
> Smaller?

» Cut off states with zero importance (unreachable or useless)
» Cut off states with low importance (small error, e-optimal strategy)

22



Small representation of strategies

c:S—>A

o= {(s, o(s))|se S}

How to make it more readable?
» Encoding?
> Smaller?

» Cut off states with zero importance (unreachable or useless)
» Cut off states with low importance (small error, e-optimal strategy)
» How to make use of the exact quantities?

22



Decision trees

Supervised learning is the machine learning task of learning
a function f : X — Y that maps an input to an output
based on example input-output pairs {(X1, 1), . ., (X, Vn)}-

23



Decision trees 2

Supervised learning is the machine learning task of learning
a function f : X — Y that maps an input to an output
based on example input-output pairs {(X1, 1), . ., (X, Vn)}-

Example: A decision tree for {1,2,3,7} C {1,...,7}
Y/ \\\N
@
Y/ \\N



Decision trees 2

Supervised learning is the machine learning task of learning
a function f : X — Y that maps an input to an output
based on example input-output pairs {(X1, 1), . ., (X, Vn)}-

Example: A decision tree for {1,2,3,7} C {1,...,7}

\/ ~N Positive examples:
@ Good = {1,3,7)
X <
L Negative examples:
\/ N Bad = (6

&y ©



Decision trees for MDP strategy representation

Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT
c:S—A

A
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Decision trees for MDP strategy representation "

Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT
c:S—A

og:SxXA->2 (permissive vs. liberal)

ACTION = rec

7

. ‘ACTION _ 1>0&b=1&ip mess=1 -> ‘

b’=0&z’=0&n1’=min(nl+1,8)&ip mess’=0

PN

<
¥
2 o




Decision trees for MDP strategy representation

Algorithm
1. generate Good C {(s, a) | o'(s, a)}
and Bad C {(s,a) | a € A(s), o (s, a)}
2. learn a DT 7 for Good, Bad
3. evaluate strategy

4. if good enough then terminate
else goto 1

25



Decision trees for MDP strategy representation

Algorithm
1. generate Good C {(s, a) | o'(s, a)}
and Bad C {(s,a) | a € A(s), o (s, a)}
2. learn a DT 7 for Good, Bad
3. evaluate strategy

4. if good enough then terminate
else goto 1

25



Data for decision tree

b 0.5
—{ init
GdoN/ O

What to put in Good and Bad (and how many times)?

26
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More important decision =— more frequent data
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What to put in Good and Bad (and how many times)?
More important decision =— more frequent data

Importance of a decision in s with respect to ¢goal and controller o

P7[0s | ©goall



Data for decision tree .

What to put in Good and Bad (and how many times)?
More important decision =— more frequent data

Importance of a decision in s with respect to ¢goal and controller o

#tsimulations visiting s, goal

P /] ~
[os 1 0goal] #simulations visiting goal

— take states on successful simulations



Experimental results (MDP strategy representation) 2

Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0

investor 35,893 0.958 28,151 783 27 0.886

mer 1,773,664 0.200016 MEM-OUT *
zeroconf 89,586 0.00863 60,463 409 7 0.106




Experimental results (MDP strategy representation)

27

Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 MEM-OUT *
zeroconf 89,586 0.00863 60,463 409 7 0.106
* MEM-OUT in PRISM,
whereas RL yields: 1887 619 13 0.00014




Decision trees vs. BDD

Diasadvantage: no subgraph merging (BDD are dags)

Advantage: can choose different predicates on the same level (BDD have
fixed variable ordering)
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Learning advantages:
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» entropy-based heuristic (vs. variable ordering)
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Decision trees vs. BDD

Diasadvantage: no subgraph merging (BDD are dags)

Advantage: can choose different predicates on the same level (BDD have
fixed variable ordering)

Learning advantages:
» wider class of predicates (not just bit representation)
» entropy-based heuristic (vs. variable ordering)
» don’t-care inputs (Good U Bad can be resolved either way)

» imprecise outputs (not exactly Good — @ Bad — .)

28



Decision trees for games strategy representation 2

Non-deterministic adversary = capture almost all decisions
» overfitting = unfold until leaves decided
» unfold even under no information gain = look-ahead

Additional issue for synthesis for I/0 signals: only Boolean structure



Experimental results (game strategy representation)
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Experimental results (reachability)

Name S| [ T1O[ [ |Train| || |BDD| | IDT] | IDT
wash3113 | 102 |3 |7 |40 45 3 1
wash4113|466 |4 |9 | 144 76 4 1
wash4 114|346 |4 |9 |9 78 4 1
wash4214|958 |4 |9 |432 157 4 1
wash4224 3310 |4 |9 | 432 301 4 1
wash 5113 | 1862 |5 | 11 | 416 127 5 1
wash 5114 | 1630 |5 | 11 | 352 121 5 1
wash.52.14 | 5365 |5 | 11 | 2368 255 5 1
wash 5224 | 27919 | 5 | 11 | 2368 554 5 1
wash.6.1.1.3 | 6962 | 6 | 13 | 1088 193 6 1
wash6.1.1.4 | 6622 | 6 | 13 | 1024 172 6 1
wash 6.2.1.4 | 27412 | 6 | 13 | 10432 419 6 1

31



Experimental results (parametric solutions)
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Experimental results (LTL synthesis)
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Summary: Strategy representation "

precise decisions

/—\

-
o~

DT, importance of decisions

Cut off states with zero importance (un-
reachable or useless)

Cut off states with low importance (if
possible)

Making use of the exact quantities

Importance of a decision in s with respect to ¢goal and strategy o:

e.g. P7[¢s| ©goal] or “losing action”
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» Reinforcement learning for efficient strategy synthesis

» MDP with functional spec (reachability, LTL)' 2
» MDP with performance spec (mean payoff/average reward)® 4
» Simple stochastic games (reachability)®

» Decision tree learning for efficient strategy representation
» MDP®
» Games’

Brazdil, Chatterjee, Chmelik, Forejt, K., Kwiatkowska, Parker, Ujma: Verification of
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Reinforcement learning in verification %

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with
Minimal Expected Cost! ATVA 2014
» priced timed MDP: worst case time-bounds + minimal expected cost
» 1. o « uniform strategy
2. simulate o
3. o « learn a better strategy from the best runs
(covarinace / logisitic regression / trees)
4. go to 2. or output the best currently known (safe) strategy
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Decision-tree learning

Invariant generation

» 1. from sample runs learn candidates for invariants
2. check candidates
3. refine incorrect candidates / return a correct one

Krishna, Puhrsch, Wies: Learning invariants using decision trees. 2015

Garg, Neider, Madhusudan, Roth: Learning invariants using decision
trees and implication counterexamples. POPL 2016
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Automata learning w

Neider, Topcu: An Automaton Learning Approach to Solving Safety
Games over Infinite Graphs. TACAS 2016

» strategy representation

Learn a model of a system and check the learnt model

» Fitrau-Brostean, Janssen, Vaandrager: Combining model learning
and model checking to analyze TCP implementations. CAV 2016

» Santolucito, Zhai, Piskac: Probabilistic automated language learning
for configuration files. CAV 2016

» Chen, Hsieh, Lengal, Lii, Tsai, Wang, and Wang: PAC
learning-based verification and model synthesis. ICSE 2016



Anything will do. ..

Guidance of theorem provers:

» Kaliszyk, Mamane,Urban: Machine learning of Coq proof guidance:
First experiments. SCSS 2014

» Blanchette, Greenaway, Kaliszyk, Kihlwein, Urban: A
learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning
2016
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Meta-usage: Choice of model checker

» Demyanova, Pani, Veith, Zuleger: Empirical software metrics for
benchmarking of verification tools. CAV 2015

» Czech, Hillermeier, Jakobs, Wehrheim. Predicting rankings of
software verification tools. FSE 2017



Summary «

Machine learning in verification

» Heuristics to improve usability, e.g.,
scalability and explainability

» Example 1: Speeding up value iteration )
» TECHNIQUE: reinforcement learning ! j@
> IDEA: focus on updating “most important parts”
= most often visited by good strategies

“A»—»en\

» Example 2: Small and readable strategies v T
» TECHNIQUE: decision tree learning ® oo b e e i s 8 |
> IDEA: based on the importance of states, b N
feed the decisions to the learning algorithm P @
® ®
R}
N e

\/ S



Discussion o

Verification using machine learning
» How far do we want to compromise?
» Do we have to compromise?
~ BRTDP, invariant generation, strategy representation don’t

» Don'’t we want more than ML?
> (&-)optimal controllers?
> arbitrary controllers — is it still verification?
» What do we actually want?
> scalability shouldn’t overrule guarantees?
» oracle usage seems fine
» when is PAC enough?
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Thank you
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