Learning in Verification

Jan Křetínský

Technical University of Munich, Germany

2nd FoPSS Summer School @ FLoC: Logic and Learning

> Oxford July 4, 2018

Controller synthesis and verification

Controller synthesis and verification

- 1. Introduction
- 2. Strategy computation using reinforcement learning
- 3. Strategy representation using decision-tree learning
- 4. Further examples

Formal methods

- + precise
- scalability issues

Formal methods

- + precise
- scalability issues

MEM-OUT

Formal methods

- + precise
- scalability issues
- can be hard to use

Learning

- weaker guarantees
- + scalable
- + simpler solutions

different objectives

Formal methods

- + precise
- scalability issues
- can be hard to use

Learning

- weaker guarantees
- + scalable
- + simpler solutions

$$(S, s_{\text{init}} \in S, A, \Delta : S \times A \rightarrow \mathcal{D}(S) \cup \{\bot\})$$

$$(S, s_{init} \in S, A, \Delta : S \times A \rightarrow \mathcal{D}(S) \cup \{\bot\})$$

$$(S, s_{init} \in S, A, \Delta : S \times A \rightarrow \mathcal{D}(S) \cup \{\bot\})$$

 $\max_{\text{strategy }\sigma} \mathbb{P}^{\sigma}[\diamond \text{ goal}]$

- 1. Introduction
- 2. Strategy computation using reinforcement learning
- 3. Strategy representation using decision-tree learning
- 4. Further examples

Strategy computation for reachability in MDP

Traditional solution techniques

- Linear programming (LP)
 - precise
 - polynomial time, but practically slow
- Strategy iteration (SI)
 - precise
 - monotonically improving
 - exponential time and costly evaluation, but quite ok
- Value iteration (VI)
 - convergent
 - monotonically improving
 - until recently no general stopping criterion / current error bound
 - exponential, but fast

Strategy computation for reachability in MDP

Traditional solution techniques

- Linear programming (LP)
 - precise
 - polynomial time, but practically slow
- Strategy iteration (SI)
 - precise
 - monotonically improving
 - exponential time and costly evaluation, but quite ok
- Value iteration (VI)
 - convergent
 - monotonically improving
 - until recently no general stopping criterion / current error bound
 - exponential, but fast

Probably approximately correct techniques

- for (some) black-box systems with (some) objectives
- Statistical model checking (SMC)
- Reinforcement learning (RL)

Value iteration for Markov chains

Markov chain

|A| ≤ 1, sink 0 and goal 1

Compute $\mathbb{P}_s[\diamond \mathbf{1}]$ for each $s \in S$

Value iteration for Markov chains

Markov chain

|A| ≤ 1, sink 0 and goal 1

Compute $\mathbb{P}_s[\diamond \mathbf{1}]$ for each $s \in S$

- iteratively approximate (from below)
- ▶ $L: S \rightarrow [0, 1]$
- $L(s) := \sum_{s' \in S} \Delta(s, s') \cdot L(s')$

Example:

Value iteration for Markov chains

Markov chain

• $|A| \le 1$, sink **0** and goal **1**

Compute $\mathbb{P}_{s}[\diamond \mathbf{1}]$ for each $s \in S$

- iteratively approximate (from below)
- ▶ $L: S \rightarrow [0, 1]$
- $L(s) := \sum_{s' \in S} \Delta(s, s') \cdot L(s')$

Example:

- 1: $L(\cdot) \leftarrow 0$ 2: $L(\mathbf{1}) \leftarrow \mathbf{1}$
- 3: repeat
- 5: for all transitions $s \rightarrow do$
- 6: Update($s \rightarrow$)
- 7: **until** ?
- 1: procedure Update($s \rightarrow$)

3:
$$L(s) := \sum_{s' \in S} \Delta(s, s') \cdot L(s')$$

- 3: repeat
- 4: sample a path from s_{init} to $\{1, 0\}$

7: until confidence on the statistics is high enough

Markov chains: VI vs. SMC vs. BRTDP

More frequently update what is visited more frequently

- 1: $L(\cdot) \leftarrow 0$ 2: $L(\mathbf{1}) \leftarrow 1$
- 3: repeat
- 4: sample a path from s_{init} to $\{1, 0\}$
- 5: for all visited transitions $s \rightarrow do$
- 6: Update($s \rightarrow$)

7: until ?

1: procedure Update($s \rightarrow$)

3:
$$L(s) := \sum_{s' \in S} \Delta(s, s') \cdot L(s')$$

Markov chains: VI vs. SMC vs. BRTDP

More frequently update what is visited more frequently

- 1: $L(\cdot) \leftarrow 0, U(\cdot) \leftarrow 1$ 2: $L(\mathbf{1}) \leftarrow 1, U(\mathbf{0}) \leftarrow 0$
- 3: repeat
- 4: sample a path from s_{init} to $\{1, 0\}$
- 5: for all visited transitions $s \rightarrow do$
- 6: Update($s \rightarrow$)
- 7: **until** $U(s_{init}) L(s_{init}) < \epsilon$
- 1: **procedure** UPDATE($s \rightarrow$) 2: $U(s) := \sum_{s' \in S} \Delta(s, s') \cdot U(s')$ 3: $L(s) := \sum_{s' \in S} \Delta(s, s') \cdot L(s')$

1:
$$L(\cdot, \cdot) \leftarrow 0, U(\cdot, \cdot) \leftarrow 1$$

2: $U(\mathbf{0}, \cdot) \leftarrow 0, L(\mathbf{1}, \cdot) \leftarrow 1$

3: repeat

5: **for all** transitions $s \xrightarrow{a} do$ 6: UPDATE $(s \xrightarrow{a})$

7: **until**
$$U(s_{\text{init}}) - L(s_{\text{init}}) < \epsilon$$

1: **procedure** UPDATE(
$$s \xrightarrow{a}$$
)
2: $U(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot U(s')$
3: $L(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot L(s')$
4: $U(s) := \max_{a \in A} U(s, a)$
5: $L(s) := \max_{a \in A} L(s, a)$

More frequently update what is visited more frequently

1:
$$L(\cdot, \cdot) \leftarrow 0, U(\cdot, \cdot) \leftarrow 1$$

2: $U(\mathbf{0}, \cdot) \leftarrow 0, L(\mathbf{1}, \cdot) \leftarrow 1$

3: repeat

- 4: sample a path from s_{init} to $\{1, 0\}$
- 5: for all visited transitions $s \xrightarrow{a} do$

6: UPDATE
$$(s \rightarrow)$$

7: **until**
$$U(s_{\text{init}}) - L(s_{\text{init}}) < \epsilon$$

More frequently update what is **visited** more frequently by **reasonably good** strategies

1:
$$L(\cdot, \cdot) \leftarrow 0, U(\cdot, \cdot) \leftarrow 1$$

2:
$$U(\mathbf{0}, \cdot) \leftarrow 0, L(\mathbf{1}, \cdot) \leftarrow 1$$

3: repeat

- 4: sample a path from *s*_{init} to {**1**, **0**}
- 5: **for all** visited transitions $s \xrightarrow{a} do$
- 6: Update($s \xrightarrow{a}$)

7: **until**
$$U(s_{\text{init}}) - L(s_{\text{init}}) < \epsilon$$

More frequently update what is **visited** more frequently by **reasonably good** strategies

1:
$$L(\cdot, \cdot) \leftarrow 0, U(\cdot, \cdot) \leftarrow 1$$

2:
$$U(\mathbf{0}, \cdot) \leftarrow 0, L(\mathbf{1}, \cdot) \leftarrow 1$$

3: repeat

- 4: sample a path from s_{init} to $\{1, 0\}$ \triangleright pick action arg max $U(s \stackrel{a}{\longrightarrow})$
- 5: **for all** visited transitions $s \xrightarrow{a} do$

6: Update(
$$s \xrightarrow{a}$$
)

7: **until**
$$U(s_{\text{init}}) - L(s_{\text{init}}) < \epsilon$$

More frequently update what is **visited** more frequently by **reasonably good** strategies

1:
$$L(\cdot, \cdot) \leftarrow 0, U(\cdot, \cdot) \leftarrow 1$$

2:
$$U(\mathbf{0}, \cdot) \leftarrow 0, L(\mathbf{1}, \cdot) \leftarrow 1$$

3: repeat

- 4: sample a path from s_{init} to $\{1, 0\}$ \triangleright pick action arg max $U(s \xrightarrow{a})$
- 5: for all visited transitions $s \xrightarrow{a} do$

6: Update(
$$s \xrightarrow{a}$$
)

7: **until**
$$U(s_{\text{init}}) - L(s_{\text{init}}) < \epsilon$$

observation

Example	Visited states					
	PRISM	with RL				
zeroconf	4,427,159	977				
wlan	5,007,548	1,995				
firewire	19,213,802	32,214				
mer	26,583,064	1,950				

Verification: General case with end components

Verification: General case with end components

Upper bounds:

- identify ECs from (long enough) simulations
- contract them on the fly

Model not known

can observe states, not transition probabilities

- can observe states, not transition probabilities
- cannot use
 - 1: **procedure** Update($s \xrightarrow{a}$)
 - 2: $U(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot U(s')$
 - 3: $L(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot L(s')$
 - 4: $U(s) := \max_{a \in A} U(s, a)$
 - 5: $L(s) := \max_{a \in A} L(s, a)$

- can observe states, not transition probabilities
- cannot use
 - 1: procedure Update($s \xrightarrow{a}$)
 - 2: $U(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot U(s')$
 - 3: $L(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot L(s')$

4:
$$U(s) := \max_{a \in A} U(s, a)$$

- 5: $L(s) := \max_{a \in A} L(s, a)$
- instead use experimental average
- mathematical probably approximately correct (PAC) RL
- a.k.a. statistical model checking (SMC)

- can observe states, not transition probabilities
- cannot use
 - 1: procedure Update($s \xrightarrow{a}$)
 - 2: $U(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot U(s')$
 - 3: $L(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot L(s')$

4:
$$U(s) := \max_{a \in A} U(s, a)$$

- 5: $L(s) := \max_{a \in A} L(s, a)$
- instead use experimental average
- mathematical probably approximately correct (PAC) RL
- a.k.a. statistical model checking (SMC)
- ► for discounted reward due to Strehl, Li, Wiewiora, Langford, Littman: PAC model-free reinforcement learning. ICML 2006
- for reachability:
 - not polynomial, but exponential
 - need bounds (also L)
 - U requires the "EC trick"

- try many runs before concluding the value is significantly lower
- overly safe value changes

- try many runs before concluding the value is significantly lower
- overly safe value changes
- 1: procedure Update($s \xrightarrow{a}$)
- 2: if counter($s \xrightarrow{a}$) = m then

7: else
8:
$$accum^{U}(s \xrightarrow{a}) \leftarrow accum^{U}(s \xrightarrow{a}) + U(s')$$

9: $counter(s \xrightarrow{a}) \leftarrow counter(s \xrightarrow{a}) + 1$

- try many runs before concluding the value is significantly lower
- overly safe value changes

1: procedure Update(
$$s \xrightarrow{a}$$
)
2: if $counter(s \xrightarrow{a}) = m$ then
3: if $\frac{accum^{U}(s \xrightarrow{a})}{m} < U(s \xrightarrow{a})$ then
4: $U(s \xrightarrow{a}) \leftarrow \frac{accum^{U}(s \xrightarrow{a})}{m}$
5: $accum^{U}(s \xrightarrow{a}) \leftarrow 0$
6: $c(s \xrightarrow{a}) = 0$
7: else
8: $accum^{U}(s \xrightarrow{a}) \leftarrow accum^{U}(s \xrightarrow{a}) + U(s')$
9: $counter(s \xrightarrow{a}) \leftarrow counter(s \xrightarrow{a}) + 1$

- try many runs before concluding the value is significantly lower
- overly safe value changes

1: procedure UPDATE(s
$$\stackrel{a}{\rightarrow}$$
)
2: if $counter(s \stackrel{a}{\rightarrow}) = m$ then
3: if $\frac{accum^{U}(s \stackrel{a}{\rightarrow})}{m} < U(s \stackrel{a}{\rightarrow}) - \xi$ then
4: $U(s \stackrel{a}{\rightarrow}) \leftarrow \frac{accum^{U}(s \stackrel{a}{\rightarrow})}{m} + \xi$
5: $accum^{U}(s \stackrel{a}{\rightarrow}) \leftarrow 0$
6: $c(s \stackrel{a}{\rightarrow}) = 0$
7: else
8: $accum^{U}(s \stackrel{a}{\rightarrow}) \leftarrow accum^{U}(s \stackrel{a}{\rightarrow}) + U(s')$
9: $counter(s \stackrel{a}{\rightarrow}) \leftarrow counter(s \stackrel{a}{\rightarrow}) + 1$

Model not known

- try many runs before concluding the value is significantly lower
- overly safe value changes

1: procedure Update($s \xrightarrow{a}$) if counter(s \xrightarrow{a}) = m and LEARN(s \xrightarrow{a}) then 2: if $\frac{accum^U(s \xrightarrow{a})}{m} < U(s \xrightarrow{a}) [-2\xi]$ then $U(s \xrightarrow{a}) \leftarrow \frac{accum^U(s \xrightarrow{a})}{m} [+\xi]$ 3: 4: $accum^{U}(s \xrightarrow{a}) \leftarrow 0$ 5: $c(s \xrightarrow{a}) = 0$ 6: else 7: $accum^{U}(s \xrightarrow{a}) \leftarrow accum^{U}(s \xrightarrow{a}) + U(s')$ 8: $counter(s \xrightarrow{a}) \leftarrow counter(s \xrightarrow{a}) + 1$ 9: Macro LEARN(s $\stackrel{a}{\longrightarrow}$) is true in the kth call of Update(s $\stackrel{a}{\longrightarrow}$) if, since the (k - 2m)th call of

UPDATE($s \xrightarrow{a}$), line 4 was not executed in any call of Update(\cdot).

Summary: Strategy computation for MDP

BRTDP (verification) vs. RL (learning)

reachability vs. (discounted) reward

Approach:

observation

Summary: Strategy computation for MDP

BRTDP (verification) vs. RL (learning)

- reachability vs. (discounted) reward
 - slower feedback

Approach:

observation

BRTDP (verification) vs. RL (learning)

- reachability vs. (discounted) reward
 - slower feedback
 - incorrect ECs

Approach:

observation

BRTDP (verification) vs. RL (learning)

- reachability vs. (discounted) reward
 - slower feedback
 - incorrect ECs
- bounds U, L vs. Q-value

Approach:

observation

BRTDP (verification) vs. RL (learning)

- reachability vs. (discounted) reward
 - slower feedback
 - incorrect ECs
- bounds U, L vs. Q-value
- exact bounds vs. PAC / no bounds / no convergence

Approach:

observation

 $MP(\rho_1 \ \rho_2 \ \rho_3 \cdots) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \rho_i$ MP(42 2 4 2 4 2 \dots) = 3

Desiderata:

- ignore states with low reachability probability/approx. error/profit
- focus on highly reachable, uncertain and profitable states

Solution ideas:

- 1. keep both lower and upper bounds
 - collapse end components (graph trasnformation, on the fly)
 - ► ⇒ error bound, imprecision
 - $ightarrow \implies$ treat only highly imprecise states

Solution ideas:

- 1. keep both lower and upper bounds
 - collapse end components (graph trasnformation, on the fly)
 - ► ⇒ error bound, imprecision
 - $ightarrow \implies$ treat only highly imprecise states
- 2. simulation guided (reinforcement learning)
 - transition probabilities \implies treat only highly reachable states
 - pick currently best actions \implies treat only highly profitable states

Model (#states, #MECs)	LP	SI	VI	SI*	VI*
cs_nfail3 (184, 38)	2	17	_	4	4
cs_nfail4 (960, 176)	5	1129	_	5	5
sensors1 (462, 132)	3	_	_	4	5
sensors2 (7860, 4001)	101	-	-	13	15
mer3 (15622, 9451)	—	_	-	16	15
mer4 (119305, 71952)	-	-	-	42	64
zeroconf(4730203, ?)	-	_	-	-	10

Strategy computation for simple stochastic games

Strategy computation for simple stochastic games

- 1. Introduction
- 2. Strategy computation using reinforcement learning
- 3. Strategy representation using decision-tree learning
- 4. Further examples

$$\sigma: S \to A$$

$$\sigma = \{(s, \sigma(s)) \mid s \in S\}$$

How to make it more readable?

$$\sigma: S \to A \\ \sigma = \{(s, \sigma(s)) \mid s \in S\}$$

How to make it more readable?

- Encoding?
- Smaller?

$$\sigma: S \to A \\ \sigma = \{(s, \sigma(s)) \mid s \in S\}$$

How to make it more readable?

- Encoding?
- Smaller?

Cut off states with zero importance (unreachable or useless)

$$\sigma: S \to A \\ \sigma = \{(s, \sigma(s)) \mid s \in S\}$$

How to make it more readable?

- Encoding?
- Smaller?

- Cut off states with zero importance (unreachable or useless)
- Cut off states with low importance (small error, ε-optimal strategy)

$$\sigma: S \to A \\ \sigma = \{(s, \sigma(s)) \mid s \in S\}$$

How to make it more readable?

- Encoding?
- Smaller?

- Cut off states with zero importance (unreachable or useless)
- Cut off states with low importance (small error, ε-optimal strategy)
- How to make use of the exact quantities?

Supervised learning is the machine learning task of learning a function $f: X \to Y$ that maps an input to an output based on example input-output pairs $\{(\vec{x}_1, \vec{y}_1), \dots, (\vec{x}_n, \vec{y}_n)\}$.

Supervised learning is the machine learning task of learning a function $f: X \to Y$ that maps an input to an output based on example input-output pairs $\{(\vec{x}_1, \vec{y}_1), \dots, (\vec{x}_n, \vec{y}_n)\}$.

Example: A decision tree for $\{1, 2, 3, 7\} \subseteq \{1, \dots, 7\}$

Supervised learning is the machine learning task of learning a function $f : X \to Y$ that maps an input to an output based on example input-output pairs $\{(\vec{x}_1, \vec{y}_1), \dots, (\vec{x}_n, \vec{y}_n)\}$.

Example: A decision tree for $\{1, 2, 3, 7\} \subseteq \{1, \dots, 7\}$

Positive examples: $Good = \{1, 3, 7\}$ Negative examples: $Bad = \{6\}$ Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT

 $\sigma: \mathbf{S} \to A$

Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT

 $\sigma: \mathbf{S} \to A$

 $\sigma: \mathbf{S} \times \mathbf{A} \to 2$ (permissive vs. liberal)

Assumption: a state of S is given by a valuation of integer variables

Task: Encode (memoryless deterministic) strategy as DT

 $\sigma: \mathbf{S} \to A$

 $\sigma: \mathbf{S} \times \mathbf{A} \to 2$ (permissive vs. liberal)

Algorithm

- 1. generate $Good \subseteq \{(s, a) \mid \sigma(s, a)\}$ and $Bad \subseteq \{(s, a) \mid a \in A(s), \neg \sigma(s, a)\}$
- 2. learn a DT τ for Good, Bad
- 3. evaluate strategy τ
- 4. if good enough then terminate else goto 1

Algorithm

- 1. generate $Good \subseteq \{(s, a) \mid \sigma(s, a)\}$ and $Bad \subseteq \{(s, a) \mid a \in A(s), \neg \sigma(s, a)\}$
- 2. learn a DT τ for Good, Bad
- 3. evaluate strategy τ
- 4. if good enough then terminate else goto 1

What to put in Good and Bad (and how many times)?

What to put in *Good* and *Bad* (and how many times)? More important decision \implies more frequent data

What to put in *Good* and *Bad* (and how many times)? More important decision \implies more frequent data

Importance of a decision in *s* with respect to \diamond *goal* and controller σ :

What to put in *Good* and *Bad* (and how many times)? More important decision \implies more frequent data

Importance of a decision in *s* with respect to \diamond *goal* and controller σ :

$$\mathbb{P}^{\sigma}[\diamond s$$
]

What to put in *Good* and *Bad* (and how many times)? More important decision \implies more frequent data

Importance of a decision in *s* with respect to \diamond *goal* and controller σ :

 $\mathbb{P}^{\sigma}[\diamond s | \diamond goal]$

What to put in *Good* and *Bad* (and how many times)? More important decision \implies more frequent data

Importance of a decision in *s* with respect to \diamond *goal* and controller σ :

 $\mathbb{P}^{\sigma}[\diamond s \mid \diamond goal] \approx \frac{\#\text{simulations visiting } s, goal}{\#\text{simulations visiting } goal}$

 \implies take states on successful simulations

Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %	
firewire	481,136	1.0	479,834	4233	1	0.0	
investor	35,893	0.958	28,151	783	27	0.886	
mer	1,773,664	0.200016	MEM-OUT *				
zeroconf	89,586	0.00863	60,463	409	7	0.106	

Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %	
firewire	481,136	1.0	479,834	4233	1	0.0	
investor	35,893	0.958	28,151	783	27	0.886	
mer	1,773,664	0.200016	MEM-OUT *				
zeroconf	89,586	0.00863	60,463	409	7	0.106	

* MEM-OUT in PRISM, whereas RL yields:

1887 619 <mark>13</mark> 0.00014

Advantage: can choose different predicates on the same level (BDD have fixed variable ordering)

Advantage: can choose different predicates on the same level (BDD have fixed variable ordering)

Learning advantages:

wider class of predicates (not just bit representation)

Advantage: can choose different predicates on the same level (BDD have fixed variable ordering)

Learning advantages:

- wider class of predicates (not just bit representation)
- entropy-based heuristic (vs. variable ordering)

Advantage: can choose different predicates on the same level (BDD have fixed variable ordering)

Learning advantages:

- wider class of predicates (not just bit representation)
- entropy-based heuristic (vs. variable ordering)
- don't-care inputs ($\overline{Good \cup Bad}$ can be resolved either way)

Advantage: can choose different predicates on the same level (BDD have fixed variable ordering)

Learning advantages:

- wider class of predicates (not just bit representation)
- entropy-based heuristic (vs. variable ordering)
- ► don't-care inputs (Good ∪ Bad can be resolved either way)
- imprecise outputs (not exactly $Good \mapsto \bigcirc$, $Bad \mapsto \bigcirc$)

Non-deterministic adversary \implies capture almost all decisions

- overfitting => unfold until leaves decided
- ► unfold even under no information gain ⇒ look-ahead

Additional issue for synthesis for I/O signals: only Boolean structure

Experimental results (game strategy representation)

Safety

Name	<i>S</i>	/	0	Train	BDD	DT	DT+
wash_3_1_1_3	102	3	7	40	45	3	1
wash_4_1_1_3	466	4	9	144	76	4	1
wash_4_1_1_4	346	4	9	96	78	4	1
wash_4_2_1_4	958	4	9	432	157	4	1
wash_4_2_2_4	3310	4	9	432	301	4	1
wash_5_1_1_3	1862	5	11	416	127	5	1
wash_5_1_1_4	1630	5	11	352	121	5	1
wash_5_2_1_4	5365	5	11	2368	255	5	1
wash_5_2_2_4	27919	5	11	2368	554	5	1
wash_6_1_1_3	6962	6	13	1088	193	6	1
wash_6_1_1_4	6622	6	13	1024	172	6	1
wash_6_2_1_4	27412	6	13	10432	419	6	1

Experimental results (parametric solutions)

Experimental results (LTL synthesis)

Summary: Strategy representation

Importance of a decision in s with respect to \diamond goal and strategy σ :

e.g. $\mathbb{P}^{\sigma}[\diamond s | \diamond goal]$ or "losing action"

Literature

- Reinforcement learning for efficient strategy synthesis
 - MDP with functional spec (reachability, LTL)^{1 2}
 - MDP with performance spec (mean payoff/average reward)^{3 4}
 - Simple stochastic games (reachability)⁵
- Decision tree learning for efficient strategy representation
 - MDP⁶
 - ► Games⁷

¹Brazdil, Chatterjee, Chmelik, Forejt, K., Kwiatkowska, Parker, Ujma: Verification of Markov Decision Processes Using Learning Algorithms. ATVA 2014

²Daca, Henzinger, K., Petrov: Faster Statistical Model Checking for Unbounded Temporal Properties. TACAS 2016

³Ashok, Chatterjee, Daca, K., Meggendorfer: Value Iteration for Long-run Average Reward in Markov Decision Processes. CAV 2017

⁴K., Meggendorfer: Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes. ATVA 2017

⁵Kelmedi, Krämer, K., Weininger: Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm. CAV 2018

⁶Brazdil, Chatterjee, Chmelik, Fellner, K.: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes. CAV 2015

⁷Brazdil, Chatterjee, K., Toman: Strategy Representation by Decision Trees in Reactive Synthesis. TACAS 2018

- 1. Introduction
- 2. Strategy computation using reinforcement learning
- 3. Strategy representation using decision-tree learning
- 4. Further examples

- 1. Reinforcement learning in verification
- 2. Decision-tree learning
- 3. Automata learning
- 4. Other domains, meta-domains

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

- priced timed MDP: worst case time-bounds + minimal expected cost
- 1. $\sigma \leftarrow$ uniform strategy
 - 2. simulate σ
 - 3. $\sigma \leftarrow$ learn a better strategy from the best runs (covarinace / logisitic regression / trees)
 - 4. go to 2. or output the best currently known (safe) strategy

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

- priced timed MDP: worst case time-bounds + minimal expected cost
- 1. $\sigma \leftarrow$ uniform strategy
 - 2. simulate σ
 - 3. $\sigma \leftarrow$ learn a better strategy from the best runs
 - (covarinace / logisitic regression / trees)
 - 4. go to 2. or output the best currently known (safe) strategy
- Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016
 - 1. compute safe actions
 - 2. there run RL

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

- priced timed MDP: worst case time-bounds + minimal expected cost
- 1. $\sigma \leftarrow$ uniform strategy
 - 2. simulate σ
 - 3. $\sigma \leftarrow \text{learn}$ a better strategy from the best runs
 - (covarinace / logisitic regression / trees)
 - 4. go to 2. or output the best currently known (safe) strategy
- Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016
 - 1. compute safe actions
 - 2. there run RL

Hasanbeig, Abate, Kroening: Logically-Correct Reinforcement Learning.

like BRTDP, but with limit-deterministic Büchi automaton

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

- priced timed MDP: worst case time-bounds + minimal expected cost
- 1. $\sigma \leftarrow$ uniform strategy
 - 2. simulate σ
 - 3. $\sigma \leftarrow \text{learn}$ a better strategy from the best runs
 - (covarinace / logisitic regression / trees)
 - 4. go to 2. or output the best currently known (safe) strategy
- Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016
 - 1. compute safe actions
 - 2. there run RL

Hasanbeig, Abate, Kroening: Logically-Correct Reinforcement Learning.

like BRTDP, but with limit-deterministic Büchi automaton

K., Pérez, Raskin: Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints. CONCUR 2018

RL for long-run average reward, while satisfying a parity condition

David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

- priced timed MDP: worst case time-bounds + minimal expected cost
- 1. $\sigma \leftarrow$ uniform strategy
 - 2. simulate σ
 - 3. $\sigma \leftarrow \text{learn}$ a better strategy from the best runs
 - (covarinace / logisitic regression / trees)
 - 4. go to 2. or output the best currently known (safe) strategy
- Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016
 - 1. compute safe actions
 - 2. there run RL

Hasanbeig, Abate, Kroening: Logically-Correct Reinforcement Learning.

like BRTDP, but with limit-deterministic Büchi automaton

K., Pérez, Raskin: Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints. CONCUR 2018

► RL for long-run average reward, while satisfying a parity condition Ashok, Brázdil, K., Slámečka: Monte Carlo Tree Search for Verifying Reachability in Markov Decision Processes. Invariant generation

- 1. from sample runs learn candidates for invariants
 - 2. check candidates
 - 3. refine incorrect candidates / return a correct one

Krishna, Puhrsch, Wies: Learning invariants using decision trees. 2015

Garg, Neider, Madhusudan, Roth: Learning invariants using decision trees and implication counterexamples. POPL 2016

Neider, Topcu: An Automaton Learning Approach to Solving Safety Games over Infinite Graphs. TACAS 2016

strategy representation

Learn a model of a system and check the learnt model

- Fitrau-Brostean, Janssen, Vaandrager: Combining model learning and model checking to analyze TCP implementations. CAV 2016
- Santolucito, Zhai, Piskac: Probabilistic automated language learning for configuration files. CAV 2016
- Chen, Hsieh, Lengál, Lii, Tsai, Wang, and Wang: PAC learning-based verification and model synthesis. ICSE 2016

Guidance of theorem provers:

- Kaliszyk, Mamane, Urban: Machine learning of Coq proof guidance: First experiments. SCSS 2014
- Blanchette, Greenaway, Kaliszyk, Kühlwein, Urban: A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning 2016

Guidance of theorem provers:

- Kaliszyk, Mamane, Urban: Machine learning of Coq proof guidance: First experiments. SCSS 2014
- Blanchette, Greenaway, Kaliszyk, Kühlwein, Urban: A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning 2016

Meta-usage: Choice of model checker

- Demyanova, Pani, Veith, Zuleger: Empirical software metrics for benchmarking of verification tools. CAV 2015
- Czech, Hüllermeier, Jakobs, Wehrheim. Predicting rankings of software verification tools. FSE 2017

Summary

Machine learning in verification

- Heuristics to improve usability, e.g., scalability and explainability
- Example 1: Speeding up value iteration
 - тесницов: reinforcement learning
 - IDEA: focus on updating "most important parts"
 most often visited by good strategies

Example 2: Small and readable strategies

- тесницие: decision tree learning
- IDEA: based on the importance of states, feed the decisions to the learning algorithm

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - ► (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldn't overrule guarantees?
 - oracle usage seems fine
 - when is PAC enough?

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - ► (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldn't overrule guarantees?
 - oracle usage seems fine
 - when is PAC enough?
- 3rd Workshop on Learning in Verification (LiVe) @ ETAPS (April 2019)

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - ► (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldn't overrule guarantees?
 - oracle usage seems fine
 - when is PAC enough?
- 3rd Workshop on Learning in Verification (LiVe) @ ETAPS (April 2019)

Thank you