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1. What is Neural Program Synthesis?



Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

Given some input / output examples, learn 
a general procedure for transforming inputs into outputs.
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Given some input / output examples, learn 
a general procedure for transforming inputs into outputs.



Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

We shall consider three approaches:

1. Symbolic program synthesis

2. Neural program induction

3. Neural program synthesis
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Symbolic Program Synthesis (SPS)

Given some input/output examples, produce an explicit human-readable program 

that, when evaluated on the inputs, produces the outputs.

This uses a symbolic search procedure to find the program. 
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Symbolic Program Synthesis (SPS)

Input / Output Examples Explicit Program

map (reverse . tail . reverse)

def remove_last(x):

  return [y[0:len(y)-1] for y in x]
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Symbolic Program Synthesis (SPS)

Input / Output Examples Explicit Program

map (reverse . tail . reverse)

def remove_last(x):

  return [y[0:len(y)-1] for y in x]

Examples: MagicHaskeller, λ², Igor-2, Progol, Metagol
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Symbolic Program Synthesis (SPS)

Data-efficient? Yes

Interpretable? Yes

Generalises outside training data? Yes

Robust to mislabelled data? Sometimes

Robust to ambiguous data? No
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Ambiguous Data
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Neural Program Induction (NPI)

Given input/output pairs, a neural network learns a procedure for mapping inputs 
to outputs.

The network generates the output from the input directly, using a latent 
representation of the program.

Here, the general procedure is implicit in the weights of the model.
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Neural Program Induction (NPI)

Examples:

Differentiable Neural Computers (Graves et al., 2016)

Neural Stacks/Queues (Grefenstette et al., 2015)

Learning to Infer Algorithms (Joulin & Mikolov, 2015)

Neural Programmer-Interpreters (Reed and de Freitas, 2015)

Neural GPUs (Kaiser and Sutskever, 2015)

https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.08228


Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Differentiable Neural Computers (Graves et al., 2016): 

● External memory

● Read/write to memory via differentiable attention mechanism

Neural Stacks/Queues (Grefenstette et al., 2015)

● External stack

● Push/pop to stack via differentiable attention mechanism

https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516
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Neural Program Induction (NPI)

Neural Programmer-Interpreters (Reed and de Freitas, 2015):

● It is given explicit traces of desired behaviour

Neural GPUs (Kaiser and Sutskever, 2015)

● A differentiable model of a cellular automaton

https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.08228
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Neural Program Induction (NPI)

In all these cases, they provide a differentiable model of the virtual machine.

The network generates the output from the input directly, using a latent 
representation of the program.

Here, the general procedure is implicit in the weights of the model.
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Neural Program Induction (NPI)

Data-efficient? Not very

Interpretable? No

Generalises outside training data? Sometimes

Robust to mislabelled data? Yes

Robust to ambiguous data? Yes
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The Best of Both Worlds?

SPS NPI Ideally

Data-efficient? Yes Not always Yes

Interpretable? Yes No Yes

Generalises outside training data? Yes Not always Yes

Robust to mislabelled data? Not very Yes Yes

Robust to ambiguous data? No Yes Yes
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Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program 

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program. 
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Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program 

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program. 

Examples: ∂ILP, RobustFill, Differentiable Forth, End-to-End Differentiable Proving



Learning Explanatory Rules from Noisy Data

The Three Approaches

Procedure is implicit Procedure is explicit

Symbolic search Symbolic Program Synthesis

Optimisation procedure Neural Program Induction Neural Program Synthesis
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The Three Approaches

SPS NPI NPS

Data-efficient? Yes Not always Yes

Interpretable? Yes No Yes

Generalises outside training data? Yes Not always Yes

Robust to mislabelled data? No Yes Yes

Robust to ambiguous data? No Yes Yes
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2. Learning Logic Programs
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What Target Language to Synthesise Programs in?

The desiderata for human programming languages are different from the 
desiderata for program-synthesis languages...

The target language for program synthesis should be…

1. Pure (referentially transparent)
2. Expressive
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Referential Transparency

A language is referentially transparent if a = b implies φ[a] = φ[b]

Python and C++ are not referentially transparent. Haskell is.

Referential transparency is important for program synthesis because equivalent 
programs can be identified, and the search space can be drastically pruned.
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Expressiveness

We are searching through the space of programs. Suppose the branching factor 
is b and the length of the shortest solution program is n. Then we are searching 
through bn programs. 

If we can minimise n, then we can keep the search space tractable.
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Target Languages for Program Synthesis

Good target languages

Lambda calculus

Datalog

Bad target languages

Python

C++

Combinatory Logic
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Datalog is a Good Target Language for Synthesis

1. It is pure / referentially transparent
2. It is highly expressive
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The Expressiveness of Datalog
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A Datalog program is a set of ground facts (the extensional database) together 
with a set of clauses (the intensional database).

Ground facts: 

Clauses:

What is Datalog?
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We shall deal with definite clauses only.

We don’t allow disjunctions or existentials in the head.

What is Datalog?
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The consequences of a set R of rules is computed by repeatedly applying the 
rules in R until no more consequences can be derived.

Executing Datalog Programs
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Executing Datalog Programs
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I have described naive bottom-up evaluation.

 There are more efficient ways of executing Datalog:
● Semi-naive: keep track of what has been added to the database
● Magic sets: use knowledge of the query to only perform the subset of the 

inferences that are relevant to evaluating the query

Executing Datalog Programs
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Datalog vs Prolog

● Datalog is purely declarative
● Datalog programs always terminate
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Learning Logic Programs
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3. How to Learn Logic Programs
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1. Bottom-up (Progol, Aleph)
2. Top-down (Metagol, ASPAL)

Existing bottom-up approaches are unable to learn recursive clauses or to 
generate invented predicates.

We shall focus on a particular top-down approach, a variant of ASPAL 
(Corapi et al).

The basic idea is to convert the induction problem into  a SAT problem.

Two Approaches to ILP
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Converting ILP to SAT

● Define a rule template τ as a way of defining a set of clauses
● Define a program template as a set of rule templates
● For each rule template τ, generate the set cl(τ) of all clauses that satisfy the 

template
● Introduce a boolean flag for each generated clause, indicating whether it is 

“on” or “off”
● Now the induction problem has been transformed into a satisfiability 

problem: find an assignment to the flags such that the set of clauses that are 
“on” together entail the positive examples and do not entail the negative 
examples
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Converting ILP to SAT
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Suppose τ = (v=0, int=0):

Converting ILP to SAT
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Suppose τ = (v=1, int=1):

Converting ILP to SAT
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Let        indicate whether the j’th clause generated by the i’th template τᵢ is to be 
included in the program R.

We insist that exactly one flag is turned on for each template τᵢ:

Converting ILP to SAT
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Let        indicate whether the j’th clause generated by the i’th template τᵢ is to be 
included in the program R.

Let                      be the j’th clause generated by the i’th template τᵢ.

Then the rules R are just

Converting ILP to SAT
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Converting ILP to SAT

● Define a rule template τ as a way of defining a set of clauses
● Define a program template as a set of rule templates
● For each rule template τ, generate the set cl(τ) of all clauses that satisfy the 

template
● Introduce a boolean flag for each generated clause, indicating whether it is 

“on” or “off”
● Now the induction problem has been transformed into a satisfiability 

problem: find an assignment to the flags such that the set of clauses that are 
“on” together entail the positive examples and do not entail the negative 
examples
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Restricting the Set of Rules

Restrictions we make without loss of generality:
● We insist that all clauses have exactly two atoms in the body
● We insist that each predicate is defined by exactly two clauses

Other restrictions:
● We do not allow any constants in rules
● We limit ourselves to nullary, unary, and binary predicates
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4. Differentiable Logic 
Programming
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So far, I have described a simple approach to program synthesis that converts it 
into a satisfiability problem.

Next, we replace the non-differentiable operations on discrete values with 
differentiable operations on continuous values.

The Approach
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∂ILP

∂ILP uses a differentiable model of 
forward chaining inference.

The weights represent a probability 
distribution over clauses.

We use SGD to minimise the log-loss. 

We extract a readable program from the 
weights.
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∂ILP

A valuation is a vector in [0,1]ⁿ 

It maps each of n ground atoms to [0,1].

A valuation represents how likely it is 
that each of the ground atoms is true.
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∂ILP

Each clause c is compiled into a function on 
valuations: 

For example:
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∂ILP

We combine the clauses’ valuations using a weighted sum:

We amalgamate the previous valuation with the new clauses’ valuation:

We unroll the network for T steps of forward-chaining inference, generating: 
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∂ILP

∂ILP uses a differentiable model of 
forward chaining inference.

The weights represent a probability 
distribution over clauses.

We use SGD to minimise the log-loss. 

We extract a readable program from the 
weights.



Learning Explanatory Rules from Noisy Data

∂ILP

Each clause c is compiled into a function on 
valuations: 

For example:
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∂ILP

Assume that each clause has two atoms in the body. For example:

We calculate, for each ground atom, the pairs of ground atoms that contribute to 
its truth:
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∂ILP

Given our rule:

We convert the pairs of atoms into pairs of indices:
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∂ILP

We convert:

into:
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∂ILP

We convert:

into a tensor of shape n * w * 2:
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∂ILP

We split our tensor X into two matrices of shape n * w :

We gather up the results:

We take the element-wise product:

Here, Z is of shape n * w. Now we take the max across the second dimension:
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∂ILP Experiments
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Example Task: Graph Cyclicity

cycle(X) ← pred(X, X).

pred(X, Y) ← edge(X, Y).

pred(X, Y) ← edge(X, Z), pred(Z, Y)
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11 ↦ 11

12 ↦ Fizz

13 ↦ 13

14 ↦ 14

15 ↦ Fizz+Buzz

16 ↦ 16

17 ↦ 17

18 ↦ Fizz

19 ↦ 19

20 ↦ Buzz

Example: Fizz-Buzz

1 ↦ 1

2 ↦ 2

3 ↦ Fizz

4 ↦ 4

5 ↦ Buzz

6 ↦ Fizz

7 ↦ 7

8 ↦ 8

9 ↦ Fizz

10 ↦ Buzz
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fizz(X) ← zero(X).

fizz(X) ← fizz(Y), pred1(Y, X).

pred1(X, Y) ← succ(X, Z), pred2(Z, Y).

pred2(X, Y) ← succ(X, Z), succ(Z, Y).

Example: Fizz
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Example: Fizz
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buzz(X) ← zero(X).

buzz(X) ← buzz(Y), pred3(Y, X).

pred3(X, Y) ← pred1(X, Z), pred2(Z, Y).

pred1(X, Y) ← succ(X, Z), pred2(Z, Y).

pred2(X, Y) ← succ(X, Z), succ(Z, Y).

Example: Buzz
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● If Symbolic Program Synthesis is given a single mis-labelled piece of training 
data, it fails catastrophically.

● We tested ∂ILP with mis-labelled data.

● We mis-labelled a certain proportion ρ of the training examples.

● We ran experiments for different values of ρ = 0.0, 0.1, 0.2, 0.3, ...

Mis-labelled Data







Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left 

image is less than the right image

Example: Learning Rules from Ambiguous Data



Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left 

image is less than the right image

Two forms of generalisation:
It must decide if the relation holds for 
held-out images, and also held-out 
pairs of digits.

Example: Learning Rules from Ambiguous Data
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Image Generalisation
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Symbolic Generalisation
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Symbolic Generalisation

NB it has never seen any 
examples of 2 < 4 in 
training
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Symbolic Generalisation
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9
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Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left 

image is less than the right image

Two forms of generalisation:
It must decide if the relation holds for 
held-out images, and also held-out 
pairs of digits.

Example: Less Than on MNIST Images
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We created a baseline MLP to solve 
this task.

The output of the conv-net for the two 
images is a vector of (20) logits.

We added a hidden layer, produced a 
single output, and trained on 
cross-entropy loss.

The MLP baseline can solve this task 
easily.

MLP Baseline



Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9
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Example: Less Than
0 < 1 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 7

3 < 4 3 < 6 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 9

7 < 8



∂ILP Learning Less-Than

We made a slight modification to our 
original architecture:



∂ILP Learning Less-Than

We pre-trained a conv-net to recognise 
MNIST digits. 

We convert the logits of the conv-net 
into a probability distribution over logical 
atoms.

Our model is able to solve this task.
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∂ILP Learning Less-Than

target() ← image2(X), pred1(X) 

pred1(X) ← image1(Y), pred2(Y, X) 

pred2(X, Y) ← succ(X, Y) 

pred2(X, Y) ← pred2(Z, Y), pred2(X, Z)



Comparing ∂ILP with the Baseline 



Comparing ∂ILP with the Baseline 



Learning Explanatory Rules from Noisy Data

● Local minima!
● Memory use!

Limitations
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6. Related Work
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Let A and A’ be sets of ground atoms and R be a set of first-order rules.

Then we can define:
● Deduction: given R and A, find A’ such that R, A ⊧ A’
● Abduction: given R and A’, find A such that R, A ⊧ A’
● Induction: given A and A’, find R such that R, A ⊧ A’

Deduction, Abduction, Induction
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First-Order Deduction using Neural Nets

Holldobler, Kalinke, and Storr (1999)

Given a set G of ground atoms, they define a function 

Given a program P, they define a function                         on reals that mirrors the 
consequence operator:
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First-Order Abduction Using Neural Nets

Serafini and Garcez (2016)
● A constant c is represented by a vector

● A function f is represented by

● A predicate p is represented by
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First-Order Induction Using Neural Nets

● “Neural Theorem Prover”: Rocktaschel and Riedel (2016)
● “NeuralLP”: Yang, Yang, and Cohen (2017)
● “∂ILP”: Evans and Grefenstette (2017)
● “DiffLog”: Raghothaman et al (2018)
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Conclusion

Neural Program Synthesis aims to combine the advantages of Symbolic Program 
Synthesis with the advantages of Neural Program Induction:

● It has low sample complexity

● It can learn interpretable and general rules

● It is robust to mislabelled data

● It can handle ambiguous input

● It can be integrated and trained jointly within larger neural systems/agents
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I have argued that Datalog is an excellent target language for program synthesis 
because it is:

● referentially transparent

● highly expressive

Conclusion
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I have described one way for a neural network to induce Datalog programs from 
examples.

● Convert the induction problem into a SAT problem

● Neuralise it, replacing discrete operations with differentiable operations

● Train using gradient descent

Conclusion


