
Neural Program Synthesis and
Inductive Logic Programming

Richard Evans
richardevans@google.com

@LittleBimble

mailto:richardevans@google.com

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

1. What is Neural Program Synthesis?

Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.

Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.

Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.

Learning Explanatory Rules from Noisy Data

Learning Procedures from Examples

We shall consider three approaches:

1. Symbolic program synthesis

2. Neural program induction

3. Neural program synthesis

Learning Explanatory Rules from Noisy Data

Symbolic Program Synthesis (SPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

This uses a symbolic search procedure to find the program.

Learning Explanatory Rules from Noisy Data

Symbolic Program Synthesis (SPS)

Input / Output Examples Explicit Program

map (reverse . tail . reverse)

def remove_last(x):

 return [y[0:len(y)-1] for y in x]

Learning Explanatory Rules from Noisy Data

Symbolic Program Synthesis (SPS)

Input / Output Examples Explicit Program

map (reverse . tail . reverse)

def remove_last(x):

 return [y[0:len(y)-1] for y in x]

Examples: MagicHaskeller, λ², Igor-2, Progol, Metagol

Learning Explanatory Rules from Noisy Data

Symbolic Program Synthesis (SPS)

Data-efficient? Yes

Interpretable? Yes

Generalises outside training data? Yes

Robust to mislabelled data? Sometimes

Robust to ambiguous data? No

Learning Explanatory Rules from Noisy Data

Ambiguous Data

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Given input/output pairs, a neural network learns a procedure for mapping inputs
to outputs.

The network generates the output from the input directly, using a latent
representation of the program.

Here, the general procedure is implicit in the weights of the model.

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Examples:

Differentiable Neural Computers (Graves et al., 2016)

Neural Stacks/Queues (Grefenstette et al., 2015)

Learning to Infer Algorithms (Joulin & Mikolov, 2015)

Neural Programmer-Interpreters (Reed and de Freitas, 2015)

Neural GPUs (Kaiser and Sutskever, 2015)

https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.08228

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Differentiable Neural Computers (Graves et al., 2016):

● External memory

● Read/write to memory via differentiable attention mechanism

Neural Stacks/Queues (Grefenstette et al., 2015)

● External stack

● Push/pop to stack via differentiable attention mechanism

https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Neural Programmer-Interpreters (Reed and de Freitas, 2015):

● It is given explicit traces of desired behaviour

Neural GPUs (Kaiser and Sutskever, 2015)

● A differentiable model of a cellular automaton

https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.08228

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

In all these cases, they provide a differentiable model of the virtual machine.

The network generates the output from the input directly, using a latent
representation of the program.

Here, the general procedure is implicit in the weights of the model.

Learning Explanatory Rules from Noisy Data

Neural Program Induction (NPI)

Data-efficient? Not very

Interpretable? No

Generalises outside training data? Sometimes

Robust to mislabelled data? Yes

Robust to ambiguous data? Yes

Learning Explanatory Rules from Noisy Data

The Best of Both Worlds?

SPS NPI Ideally

Data-efficient? Yes Not always Yes

Interpretable? Yes No Yes

Generalises outside training data? Yes Not always Yes

Robust to mislabelled data? Not very Yes Yes

Robust to ambiguous data? No Yes Yes

Learning Explanatory Rules from Noisy Data

Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program.

Learning Explanatory Rules from Noisy Data

Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program.

Examples: ∂ILP, RobustFill, Differentiable Forth, End-to-End Differentiable Proving

Learning Explanatory Rules from Noisy Data

The Three Approaches

Procedure is implicit Procedure is explicit

Symbolic search Symbolic Program Synthesis

Optimisation procedure Neural Program Induction Neural Program Synthesis

Learning Explanatory Rules from Noisy Data

The Three Approaches

Procedure is implicit Procedure is explicit

Symbolic search Symbolic Program Synthesis

Optimisation procedure Neural Program Induction Neural Program Synthesis

Learning Explanatory Rules from Noisy Data

The Three Approaches

SPS NPI NPS

Data-efficient? Yes Not always Yes

Interpretable? Yes No Yes

Generalises outside training data? Yes Not always Yes

Robust to mislabelled data? No Yes Yes

Robust to ambiguous data? No Yes Yes

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

2. Learning Logic Programs

Learning Explanatory Rules from Noisy Data

What Target Language to Synthesise Programs in?

The desiderata for human programming languages are different from the
desiderata for program-synthesis languages...

The target language for program synthesis should be…

1. Pure (referentially transparent)
2. Expressive

Learning Explanatory Rules from Noisy Data

Referential Transparency

A language is referentially transparent if a = b implies φ[a] = φ[b]

Python and C++ are not referentially transparent. Haskell is.

Referential transparency is important for program synthesis because equivalent
programs can be identified, and the search space can be drastically pruned.

Learning Explanatory Rules from Noisy Data

Expressiveness

We are searching through the space of programs. Suppose the branching factor
is b and the length of the shortest solution program is n. Then we are searching
through bn programs.

If we can minimise n, then we can keep the search space tractable.

Learning Explanatory Rules from Noisy Data

Target Languages for Program Synthesis

Good target languages

Lambda calculus

Datalog

Bad target languages

Python

C++

Combinatory Logic

Learning Explanatory Rules from Noisy Data

Datalog is a Good Target Language for Synthesis

1. It is pure / referentially transparent
2. It is highly expressive

Learning Explanatory Rules from Noisy Data

The Expressiveness of Datalog

Learning Explanatory Rules from Noisy Data

A Datalog program is a set of ground facts (the extensional database) together
with a set of clauses (the intensional database).

Ground facts:

Clauses:

What is Datalog?

Learning Explanatory Rules from Noisy Data

We shall deal with definite clauses only.

We don’t allow disjunctions or existentials in the head.

What is Datalog?

Learning Explanatory Rules from Noisy Data

The consequences of a set R of rules is computed by repeatedly applying the
rules in R until no more consequences can be derived.

Executing Datalog Programs

Learning Explanatory Rules from Noisy Data

Executing Datalog Programs

Learning Explanatory Rules from Noisy Data

I have described naive bottom-up evaluation.

 There are more efficient ways of executing Datalog:
● Semi-naive: keep track of what has been added to the database
● Magic sets: use knowledge of the query to only perform the subset of the

inferences that are relevant to evaluating the query

Executing Datalog Programs

Learning Explanatory Rules from Noisy Data

Datalog vs Prolog

● Datalog is purely declarative
● Datalog programs always terminate

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

Learning Logic Programs

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

3. How to Learn Logic Programs

Learning Explanatory Rules from Noisy Data

1. Bottom-up (Progol, Aleph)
2. Top-down (Metagol, ASPAL)

Existing bottom-up approaches are unable to learn recursive clauses or to
generate invented predicates.

We shall focus on a particular top-down approach, a variant of ASPAL
(Corapi et al).

The basic idea is to convert the induction problem into a SAT problem.

Two Approaches to ILP

Learning Explanatory Rules from Noisy Data

Converting ILP to SAT

● Define a rule template τ as a way of defining a set of clauses
● Define a program template as a set of rule templates
● For each rule template τ, generate the set cl(τ) of all clauses that satisfy the

template
● Introduce a boolean flag for each generated clause, indicating whether it is

“on” or “off”
● Now the induction problem has been transformed into a satisfiability

problem: find an assignment to the flags such that the set of clauses that are
“on” together entail the positive examples and do not entail the negative
examples

Learning Explanatory Rules from Noisy Data

Converting ILP to SAT

Learning Explanatory Rules from Noisy Data

Suppose τ = (v=0, int=0):

Converting ILP to SAT

Learning Explanatory Rules from Noisy Data

Suppose τ = (v=1, int=1):

Converting ILP to SAT

Learning Explanatory Rules from Noisy Data

Let indicate whether the j’th clause generated by the i’th template τᵢ is to be
included in the program R.

We insist that exactly one flag is turned on for each template τᵢ:

Converting ILP to SAT

Learning Explanatory Rules from Noisy Data

Let indicate whether the j’th clause generated by the i’th template τᵢ is to be
included in the program R.

Let be the j’th clause generated by the i’th template τᵢ.

Then the rules R are just

Converting ILP to SAT

Learning Explanatory Rules from Noisy Data

Converting ILP to SAT

● Define a rule template τ as a way of defining a set of clauses
● Define a program template as a set of rule templates
● For each rule template τ, generate the set cl(τ) of all clauses that satisfy the

template
● Introduce a boolean flag for each generated clause, indicating whether it is

“on” or “off”
● Now the induction problem has been transformed into a satisfiability

problem: find an assignment to the flags such that the set of clauses that are
“on” together entail the positive examples and do not entail the negative
examples

Learning Explanatory Rules from Noisy Data

Restricting the Set of Rules

Restrictions we make without loss of generality:
● We insist that all clauses have exactly two atoms in the body
● We insist that each predicate is defined by exactly two clauses

Other restrictions:
● We do not allow any constants in rules
● We limit ourselves to nullary, unary, and binary predicates

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

4. Differentiable Logic
Programming

Learning Explanatory Rules from Noisy Data

So far, I have described a simple approach to program synthesis that converts it
into a satisfiability problem.

Next, we replace the non-differentiable operations on discrete values with
differentiable operations on continuous values.

The Approach

Learning Explanatory Rules from Noisy Data

∂ILP

∂ILP uses a differentiable model of
forward chaining inference.

The weights represent a probability
distribution over clauses.

We use SGD to minimise the log-loss.

We extract a readable program from the
weights.

Learning Explanatory Rules from Noisy Data

∂ILP

A valuation is a vector in [0,1]ⁿ

It maps each of n ground atoms to [0,1].

A valuation represents how likely it is
that each of the ground atoms is true.

Learning Explanatory Rules from Noisy Data

∂ILP

Each clause c is compiled into a function on
valuations:

For example:

Learning Explanatory Rules from Noisy Data

∂ILP

We combine the clauses’ valuations using a weighted sum:

We amalgamate the previous valuation with the new clauses’ valuation:

We unroll the network for T steps of forward-chaining inference, generating:

Learning Explanatory Rules from Noisy Data

∂ILP

∂ILP uses a differentiable model of
forward chaining inference.

The weights represent a probability
distribution over clauses.

We use SGD to minimise the log-loss.

We extract a readable program from the
weights.

Learning Explanatory Rules from Noisy Data

∂ILP

Each clause c is compiled into a function on
valuations:

For example:

Learning Explanatory Rules from Noisy Data

∂ILP

Assume that each clause has two atoms in the body. For example:

We calculate, for each ground atom, the pairs of ground atoms that contribute to
its truth:

Learning Explanatory Rules from Noisy Data

∂ILP

Given our rule:

We convert the pairs of atoms into pairs of indices:

Learning Explanatory Rules from Noisy Data

∂ILP

We convert:

into:

Learning Explanatory Rules from Noisy Data

∂ILP

We convert:

into a tensor of shape n * w * 2:

Learning Explanatory Rules from Noisy Data

∂ILP

We split our tensor X into two matrices of shape n * w :

We gather up the results:

We take the element-wise product:

Here, Z is of shape n * w. Now we take the max across the second dimension:

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

∂ILP Experiments

Learning Explanatory Rules from Noisy Data

Learning Explanatory Rules from Noisy Data

Example Task: Graph Cyclicity

Learning Explanatory Rules from Noisy Data

Example Task: Graph Cyclicity

cycle(X) ← pred(X, X).

pred(X, Y) ← edge(X, Y).

pred(X, Y) ← edge(X, Z), pred(Z, Y)

Learning Explanatory Rules from Noisy Data

11 ↦ 11

12 ↦ Fizz

13 ↦ 13

14 ↦ 14

15 ↦ Fizz+Buzz

16 ↦ 16

17 ↦ 17

18 ↦ Fizz

19 ↦ 19

20 ↦ Buzz

Example: Fizz-Buzz

1 ↦ 1

2 ↦ 2

3 ↦ Fizz

4 ↦ 4

5 ↦ Buzz

6 ↦ Fizz

7 ↦ 7

8 ↦ 8

9 ↦ Fizz

10 ↦ Buzz

Learning Explanatory Rules from Noisy Data

fizz(X) ← zero(X).

fizz(X) ← fizz(Y), pred1(Y, X).

pred1(X, Y) ← succ(X, Z), pred2(Z, Y).

pred2(X, Y) ← succ(X, Z), succ(Z, Y).

Example: Fizz

Learning Explanatory Rules from Noisy Data

fizz(X) ← zero(X).

fizz(X) ← fizz(Y), pred1(Y, X).

pred1(X, Y) ← succ(X, Z), pred2(Z, Y).

pred2(X, Y) ← succ(X, Z), succ(Z, Y).

Example: Fizz

Learning Explanatory Rules from Noisy Data

buzz(X) ← zero(X).

buzz(X) ← buzz(Y), pred3(Y, X).

pred3(X, Y) ← pred1(X, Z), pred2(Z, Y).

pred1(X, Y) ← succ(X, Z), pred2(Z, Y).

pred2(X, Y) ← succ(X, Z), succ(Z, Y).

Example: Buzz

Learning Explanatory Rules from Noisy Data

● If Symbolic Program Synthesis is given a single mis-labelled piece of training
data, it fails catastrophically.

● We tested ∂ILP with mis-labelled data.

● We mis-labelled a certain proportion ρ of the training examples.

● We ran experiments for different values of ρ = 0.0, 0.1, 0.2, 0.3, ...

Mis-labelled Data

Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left

image is less than the right image

Example: Learning Rules from Ambiguous Data

Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left

image is less than the right image

Two forms of generalisation:
It must decide if the relation holds for
held-out images, and also held-out
pairs of digits.

Example: Learning Rules from Ambiguous Data

Learning Explanatory Rules from Noisy Data

Image Generalisation

Learning Explanatory Rules from Noisy Data

Symbolic Generalisation

Learning Explanatory Rules from Noisy Data

Symbolic Generalisation

NB it has never seen any
examples of 2 < 4 in
training

Learning Explanatory Rules from Noisy Data

Symbolic Generalisation
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9

Learning Explanatory Rules from Noisy Data

Symbolic Generalisation
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9

Learning Explanatory Rules from Noisy Data

Symbolic Generalisation
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 9

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Your system observes:

● a pair of images
● a label indicating whether the left

image is less than the right image

Two forms of generalisation:
It must decide if the relation holds for
held-out images, and also held-out
pairs of digits.

Example: Less Than on MNIST Images

Learning Explanatory Rules from Noisy Data

We created a baseline MLP to solve
this task.

The output of the conv-net for the two
images is a vector of (20) logits.

We added a hidden layer, produced a
single output, and trained on
cross-entropy loss.

The MLP baseline can solve this task
easily.

MLP Baseline

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 6 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 8 2 < 9

3 < 4 3 < 5 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8 7 < 9

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 9

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 8 0 < 9

1 < 2 1 < 3 1 < 4 1 < 5 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 9

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8 4 < 9

5 < 6 5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 5 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 9

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 3 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 5 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7 2 < 9

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 7 6 < 8 6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 2 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 6 2 < 7

3 < 4 3 < 6 3 < 7 3 < 8 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 9

7 < 8

8 < 9

Learning Explanatory Rules from Noisy Data

Example: Less Than
0 < 1 0 < 4 0 < 5 0 < 6 0 < 7 0 < 9

1 < 2 1 < 4 1 < 7 1 < 8 1 < 9

2 < 3 2 < 4 2 < 5 2 < 7

3 < 4 3 < 6 3 < 9

4 < 5 4 < 6 4 < 7 4 < 8

5 < 7 5 < 8 5 < 9

6 < 9

7 < 8

∂ILP Learning Less-Than

We made a slight modification to our
original architecture:

∂ILP Learning Less-Than

We pre-trained a conv-net to recognise
MNIST digits.

We convert the logits of the conv-net
into a probability distribution over logical
atoms.

Our model is able to solve this task.

Learning Explanatory Rules from Noisy Data

∂ILP Learning Less-Than

target() ← image2(X), pred1(X)

pred1(X) ← image1(Y), pred2(Y, X)

pred2(X, Y) ← succ(X, Y)

pred2(X, Y) ← pred2(Z, Y), pred2(X, Z)

Comparing ∂ILP with the Baseline

Comparing ∂ILP with the Baseline

Learning Explanatory Rules from Noisy Data

● Local minima!
● Memory use!

Limitations

Learning Explanatory Rules from Noisy Data

1. What is Neural Program Synthesis?
2. Learning logic programs
3. How to learn logic programs from examples
4. Differentiable Inductive Logic Programming
5. Experiments
6. Related Work

Overview

6. Related Work

Learning Explanatory Rules from Noisy Data

Let A and A’ be sets of ground atoms and R be a set of first-order rules.

Then we can define:
● Deduction: given R and A, find A’ such that R, A ⊧ A’
● Abduction: given R and A’, find A such that R, A ⊧ A’
● Induction: given A and A’, find R such that R, A ⊧ A’

Deduction, Abduction, Induction

Learning Explanatory Rules from Noisy Data

First-Order Deduction using Neural Nets

Holldobler, Kalinke, and Storr (1999)

Given a set G of ground atoms, they define a function

Given a program P, they define a function on reals that mirrors the
consequence operator:

Learning Explanatory Rules from Noisy Data

First-Order Abduction Using Neural Nets

Serafini and Garcez (2016)
● A constant c is represented by a vector

● A function f is represented by

● A predicate p is represented by

Learning Explanatory Rules from Noisy Data

First-Order Induction Using Neural Nets

● “Neural Theorem Prover”: Rocktaschel and Riedel (2016)
● “NeuralLP”: Yang, Yang, and Cohen (2017)
● “∂ILP”: Evans and Grefenstette (2017)
● “DiffLog”: Raghothaman et al (2018)

Learning Explanatory Rules from Noisy Data

Conclusion

Neural Program Synthesis aims to combine the advantages of Symbolic Program
Synthesis with the advantages of Neural Program Induction:

● It has low sample complexity

● It can learn interpretable and general rules

● It is robust to mislabelled data

● It can handle ambiguous input

● It can be integrated and trained jointly within larger neural systems/agents

Learning Explanatory Rules from Noisy Data

I have argued that Datalog is an excellent target language for program synthesis
because it is:

● referentially transparent

● highly expressive

Conclusion

Learning Explanatory Rules from Noisy Data

I have described one way for a neural network to induce Datalog programs from
examples.

● Convert the induction problem into a SAT problem

● Neuralise it, replacing discrete operations with differentiable operations

● Train using gradient descent

Conclusion

