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1. What is Neural Program Synthesis?
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Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.
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Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.
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Learning Procedures from Examples

Given some input / output examples, learn
a general procedure for transforming inputs into outputs.
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Learning Procedures from Examples

We shall consider three approaches:

1. Symbolic program synthesis
2. Neural program induction

3. Neural program synthesis
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Symbolic Program Synthesis (SPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

This uses a symbolic search procedure to find the program.
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Symbolic Program Synthesis (SPS)

Input / Output Examples

[[1]] = (I

[14,3]] — [[4]

[12, 3], [1]] = [[2]; []

11,3, 2], [2,4]] = [[1,3], [2]

@ DeepMind

Explicit Program

map (reverse . taill . reverse)

def rnemove dashfad)

retiurr | viGidenty)=t]l for v in o
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Symbolic Program Synthesis (SPS)

Input / Output Examples Explicit Program
[[1]] 7 [[ map (reverse . taill . reverse)
[[4,3]] = [[4]
12, 3], [1]] — [[2], []. def remove last (x):
[1,3,2],[2,4]] — [[1, 3], [2] return [y[Q:lenly)=-1] for v in x|

Examples: MagicHaskeller, A?, Igor-2, Progol, Metagol
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Symbolic Program Synthesis (SPS)

Data-efficient?

Interpretable?

Generalises outside training data?
Robust to mislabelled data?

Robust to ambiguous data?

Yes
Yes

Yes

No
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Ambiguous Data
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Neural Program Induction (NPI)

Given input/output pairs, a neural network learns a procedure for mapping inputs
to outputs.

The network generates the output from the input directly, using a latent
representation of the program.

Here, the general procedure is implicit in the weights of the model.
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Neural Program Induction (NPI)

Examples:

Differentiable Neural Computers (Graves et al., 2016)

Neural Stacks/Queues (Grefenstette et al., 2015)

Learning to Infer Algorithms (Joulin & Mikolov, 2015)

Neural Programmer-Interpreters (Reed and de Freitas, 2015)

Neural GPUs (Kaiser and Sutskever, 2015)
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https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.08228

Neural Program Induction (NPI)

Differentiable Neural Computers (Graves et al., 2016):

e External memory

e Read/write to memory via differentiable attention mechanism

Neural Stacks/Queues (Grefenstette et al., 2015)

e External stack

e Push/pop to stack via differentiable attention mechanism
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https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1506.02516

Neural Program Induction (NPI)

Neural Programmer-Interpreters (Reed and de Freitas, 2015):

e Itis given explicit traces of desired behaviour

Neural GPUs (Kaiser and Sutskever, 2015)

e A differentiable model of a cellular automaton
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Neural Program Induction (NPI)

In all these cases, they provide a differentiable model of the virtual machine.

The network generates the output from the input directly, using a latent
representation of the program.

Here, the general procedure is implicit in the weights of the model.
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Neural Program Induction (NPI)

Data-efficient?

Interpretable? No
Generalises outside training data?

Robust to mislabelled data? Yes

Robust to ambiguous data? Yes
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The Best of Both Worlds?

Data-efficient?

Interpretable?

Generalises outside training data?
Robust to mislabelled data?

Robust to ambiguous data?

Q DeepMind

SPS
Yes
Yes

Yes

No

NPI

No

Yes

Yes

Ideally
Yes
Yes
Yes
Yes

Yes
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Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program.
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Neural Program Synthesis (NPS)

Given some input/output examples, produce an explicit human-readable program

that, when evaluated on the inputs, produces the outputs.

Use an optimisation procedure (e.g. gradient descent) to find the program.

Examples: dILP, RobustFill, Differentiable Forth, End-to-End Differentiable Proving
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The Three Approaches

Procedure is implicit Procedure is explicit

Symbolic search Symbolic Program Synthesis

Optimisation procedure | Neural Program Induction | Neural Program Synthesis
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The Three Approaches

Procedure is implicit Procedure is explicit

Symbolic search Symbolic Program Synthesis

Optimisation procedure | Neural Program Induction | Neural Program Synthesis
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The Three Approaches
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2. Learning Logic Programs
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What Target Language to Synthesise Programs in?

The desiderata for human programming languages are different from the
desiderata for program-synthesis languages...

The target language for program synthesis should be...

1. Pure (referentially transparent)
2. Expressive
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Referential Transparency

A language is referentially transparent if a = b implies @[a] = @[b]
Python and C++ are not referentially transparent. Haskell is.

Referential transparency is important for program synthesis because equivalent
programs can be identified, and the search space can be drastically pruned.
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Expressiveness

We are searching through the space of programs. Suppose the branching factor

is b and the length of the shortest solution program is n. Then we are searching
through b" programs.

If we can minimise n, then we can keep the search space tractable.

'b DeepMind
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Target Languages for Program Synthesis

Good target languages Bad target languages
Lambda calculus Python
Datalog G+t

Combinatory Logic
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Datalog is a Good Target Language for Synthesis

1. Itis pure / referentially transparent
2. ltis highly expressive
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The Expressiveness of Datalog

Analysis

Hand-coded Datalog

context-insensitive Java
context-sensitive Java
context-insensitive C
external lock analysis
SQL 1njection analysis

1975 30
3451 33
1363 308
n/a 42
n/a 38

Q DeepMind




What is Datalog?

A Datalog program is a set of ground facts (the extensional database) together
with a set of clauses (the intensional database).

Ground facts:
{edge(a, b), edge(b, c), edge(c, a)}
Clauses:

connected(X,Y) <« edge(X,Y)
connected(X,Y) <« edge(X,Z),connected(Z,Y)
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What is Datalog?

We shall deal with definite clauses only.

We don't allow disjunctions or existentials in the head.
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Executing Datalog Programs

The consequences of a set R of rules is computed by repeatedly applying the
rules in R until no more consequences can be derived.
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Executing Datalog Programs

edge(a, b) connected(X,Y) « edge(X,Y)
edge(b, c) connected(X,Y) < edge(X, Z), connected(Z,Y)
edge(c, a)

Cr1 = {edge(a,b),edge(b,c),edge(c,a)}

Cr2 = CR,1U{connected(a,b),connected(b,c),connected(c,a)}
Cr3s = CRraU {connected(a,c),connected(b,a),connected(c, b)}
Cr4a = CpggsU {connected(a,a),connected(b,b), connected(c,c)}

CR5 = C’R,4:con(R)
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Executing Datalog Programs

| have described naive bottom-up evaluation.

There are more efficient ways of executing Datalog:

e Semi-naive: keep track of what has been added to the database
e Magic sets: use knowledge of the query to only perform the subset of the
inferences that are relevant to evaluating the query
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Datalog vs Prolog

e Datalog is purely declarative
e Datalog programs always terminate

@ DeepMind Learning Explanatory Rules from Noisy Data



Learning Logic Programs

An ILP problem is a tuple (B,P,N) of ground atoms, where:

e B is a set of background assumptions, a set of ground atoms®.

e P is a set of positive instances - examples taken from the extension of the target
predicate to be learned

e N is a set of negative instances - examples taken outside the extension of the target
predicate
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Learning Logic Programs

An ILP problem is a tuple (B,P,N) of ground atoms, where:
e B is a set of background assumptions, a set of ground atoms®.

e P is a set of positive instances - examples taken from the extension of the target
predicate to be learned

e N is a set of negative instances - examples taken outside the extension of the target
predicate

B = {zero(0), succ(0,1), succ(1, 2), succ(2, 3), ...}

P = {even(0),even(2),even(4),even(6),...}
N = {even(1),even(3),even(5),even(7),...}
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Learning Logic Programs

An ILP problem is a tuple (B,P,N) of ground atoms, where:
e B is a set of background assumptions, a set of ground atoms®.

e P is a set of positive instances - examples taken from the extension of the target
predicate to be learned

e N is a set of negative instances - examples taken outside the extension of the target
predicate

Given an ILP problem (B,P,N), a solution is a set R of definite clauses such that
e B,RE=~yforalyeP

e B,RE~yforallye N
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Learning Logic Programs

B = {zero(0), succ(0,1), succ(1, 2), succ(2, 3), ...}
P = {even(0),even(2),even(4),even(6),...}
N = {even(1),even(3),even(5),even(7),...}

even(X) <+ zero(X)
even(X) <« even(Y),succ2(Y,X)
succ2(X,Y) <« suce(X,Z),succ(Z,Y)
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Learning Logic Programs

B = {zero(0), succ(0,1), succ(1, 2), succ(2, 3), ...}
P = {even(0),even(2),even(4),even(6),...}
N = {even(1),even(3),even(5),even(7),...}

even(X) <+ =zero(X)

even(X) <« succ2(Y, X)

succ2(X,Y) <« suce(X,Z),succ(Z,Y)
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Learning Logic Programs

B = {zero(0), succ(0,1), succ(1, 2), succ(2, 3), ...}
P = {even(0),even(2),even(4),even(6),...}
N = {even(1),even(3),even(5),even(7),...}

even(X) <+ =zero(X)

even(X) < even(Y)

succ2(X,Y) <« suce(X,Z),succ(Z,Y)
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3. How to Learn Logic Programs
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Two Approaches to ILP

1. Bottom-up (Progol, Aleph)
2. Top-down (Metagol, ASPAL)

Existing bottom-up approaches are unable to learn recursive clauses or to
generate invented predicates.

We shall focus on a particular top-down approach, a variant of ASPAL

(Corapi et al).

The basic idea is to convert the induction problem into a SAT problem.

Learning Explanatory Rules from Noisy Data
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Converting ILP to SAT

e Define a rule template 1 as a way of defining a set of clauses

e Define a program template as a set of rule templates

e For each rule template T, generate the set cl(7) of all clauses that satisfy the
template

e Introduce a boolean flag for each generated clause, indicating whether it is
“on: or off:

e Now the induction problem has been transformed into a satisfiability
problem: find an assignment to the flags such that the set of clauses that are
“on” together entail the positive examples and do not entail the negative
examples
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Converting ILP to SAT

A rule template 7 describes a range of clauses that can be generated. It is a pair
(v, int) where:

e v € N specifies the number of existentially quantified variables allowed in the clause

e int € {0, 1} specifies whether the atoms in the body of the clause can use intensional
predicates (int = 1) or only extensional predicates (int = 0)
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Converting ILP to SAT

Suppose T = (v=0, int=0):

1. ¢(X,Y) « p(X,X),p(X,Y)

( (
2. ¢(X,Y) < p(X, X),p(Y, X)
3. ¢(X,Y) < p(X, X),p(Y,Y)
4. ¢(X,Y) < p(X,Y),p(X,Y)

‘b DeepMind

5. ¢(X,Y) «+ p(X,Y),p(Y, X)
6. ¢(X,Y) « p(X,Y),p(Y,Y)
7. ¢(X,Y) + p(Y, X),p(Y, X)
8. ¢(X,Y) + p(¥, X),p(Y,Y)
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Converting ILP to SAT

Suppose T = (v=1, int=1):

L ¢(X,Y) « p(X, X),q(Y, X) 9. ¢(X,Y) < p(X,Y),q(Y, 2)
2. ¢(X,Y) « p(X, X),q(Y,Y) 10. ¢(X,Y) + p(X,Y),q(Z, X)
3. ¢(X,Y) « p(X,X),q(Y, 2) 11. ¢(X,Y) « p(X,Y),q(Z,Y)
4. ¢(X,Y) « p(X,X),q(Z,Y) 12. ¢(X,Y) « p(X,Y),q(Z, Z)
5. ¢(X,Y) « p(X,Y),q(X,X) 13. ¢(X,Y) «+ p(X, 2),q(Y, X)
6. ¢(X,Y) « p(X,Y),q(X, 2) 14. ¢(X,Y) « p(X, 2),q(Y,Y)
7. ¢(X,Y) « p(X,Y),q(Y, X) 15. ¢(X,Y) « p(X, 2),q(Y, Z)
8. ¢(X,Y) « p(X,Y),q(Y,Y) 16. ¢(X,Y) «+ p(X, 2),q(Z,Y)
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Converting ILP to SAT

Let fij indicate whether the j'th clause generated by the i'th template Ti is to be
included in the program R.

We insist that exactly one flag is turned on for each template Ti:

sl
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Converting ILP to SAT

Let fij indicate whether the j'th clause generated by the i'th template T1iis to be
included in the program R.

Let Cl(’l‘,’)[j] be the j'th clause generated by the i‘th template Ti.

Then the rules R are just

R = {cl(z)lil| f = T)
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Converting ILP to SAT

e Define a rule template 1 as a way of defining a set of clauses

e Define a program template as a set of rule templates

e For each rule template T, generate the set cl(7) of all clauses that satisfy the
template

e Introduce a boolean flag for each generated clause, indicating whether it is
“on: or off:

e Now the induction problem has been transformed into a satisfiability
problem: find an assignment to the flags such that the set of clauses that are
“on” together entail the positive examples and do not entail the negative
examples
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Restricting the Set of Rules

Restrictions we make without loss of generality:

e We insist that all clauses have exactly two atoms in the body
e We insist that each predicate is defined by exactly two clauses

Other restrictions:

e We do not allow any constants in rules
e We limit ourselves to nullary, unary, and binary predicates
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4. Differentiable Logic
Programming
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The Approach

So far, | have described a simple approach to program synthesis that converts it
into a satisfiability problem.

Next, we replace the non-differentiable operations on discrete values with
differentiable operations on continuous values.
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OILP

Legend

) G D
value

OILP uses a differentiable model of
forward chaining inference.

The weights represent a probability
distribution over clauses.

conclusion
valuation

We use SGD to minimise the log-loss.

We extract a readable program from the
weights.

axioms @ program template

Figure 1: The 81LP Architecture.
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OILP

A valuation is a vector in [0,1]"

G ag
It maps each of n ground atoms to [0,1]. D a) 0.0
p(b) 0.0

A valuation represents how likely it is

that each of the ground atoms is true. q(a) 0.1
q(b) 0.3
il 0.0
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OILP

Each clause c is compiled into a function on

valuations: @ ag ]:c(aO)

F.:[0,1]" — [0,1]"

p(a) 0.0 0.1

For example: p(b) 0.0 0.3
p(X) < q(X) gla) 0.1 0.0

g(b) 0.3 0.0

L 0.0 0.0
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OILP

We combine the clauses’ valuations using a weighted sum:

eW [c]

bt = ZFC(at)Z eW[c’]

We amalgamate the previous valuation with the new clauses’ valuation:

ag+1 = 0; + by —ay - by

We unroll the network for T steps of forward-chaining inference, generating:

aop, ai,a2,4as, ...,aT
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OILP

Legend

) G D
value

OILP uses a differentiable model of
forward chaining inference.

The weights represent a probability
distribution over clauses.

conclusion
valuation

We use SGD to minimise the log-loss.

We extract a readable program from the
weights.

axioms @ program template

Figure 1: The 81LP Architecture.
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OILP

Each clause c is compiled into a function on

valuations: @ ag ]:c(aO)

F.:[0,1]" — [0,1]"

p(a) 0.0 0.1

For example: p(b) 0.0 0.3
p(X) < q(X) gla) 0.1 0.0

g(b) 0.3 0.0

L 0.0 0.0
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OILP

Assume that each clause has two atoms in the body. For example:

"X, Y) < p(X,2),9(ZY)
We calculate, for each ground atom, the pairs of ground atoms that contribute to
S a0 {(p(a,9),q(,4), (p(a,b),9(0,0)
r(a,b) : {(p(a,a),q(a, b)), (p(a,b),q(b,Db)))
r(b,a) : {(p(b,a),q(a,a)), (p(b,b),q(b,a)))
r(b,b) : {(p(b,a),q(a, b)), (p(b,b),q(b, b))}
©) Deephind
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OILP

Given our rule;:

X Y)e n(X Z)da(Z, Y)

We convert the pairs of atoms into pairs of indices:

k vk Tk kv Tk ko Tk

3 {} 5 q(a,a) {} 9 r(a,a) {(1,5), (2, 7)}
1 p(a,a) {} 6 q(a,b) {} 10 r(a,b) {(1,6), (2, 8)}
2 p(a,b) {} 7 q(b,a) {} 11 r(ba) {(3,5), (4, 7)}
3 p(ba) {} 8 q(bd) {} 12 r(b,b) {(3,6), (4, 8)}
4 p(b,b) {}
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We convert:

into:

_wWw N = O X

0 DeepMind

olLP

r@a,a) : {(p(a,a),9(a,a), (p(a,b),q(b,a))}

r@a,b) : {(p(a,a),q(a, b)), (p(a,b),qb, b))}

r(b,a) : {(p(b,a),q(a,a)), (p(b,b),q(b,a))}

r(b,b) : {(p(b,a),q(a, b)), (p(b,b),4(b,D))}
kv Tk kY Tk
5 gq(a,a) {} 9 r(a,a) {(1,5),(2,7)}
6 g(a,d) {} 10 r(a,b) {(1,6), (2, 8)}
7 g(b,a) {} 11 r(b,a) {(3,5), (4, 7)}
8 4q(bb) {} 12 r(b,b) {(3,6), (4, 8)}
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OILP

We convert: .
Yk Tk E v Tk E % Tk

0 L {} 5 Q(aa a) {} 9 r(a, a) {(1’5)’ (2, 7)}
1 p(a, a) {} 6 q(a, b) {} 10 r(a,b) {(1’ 6), (2, 8)}
2 p(a,b) {} {4 Q(b1 a) {} 11 r(b,a) {(3’ 5), (4, 7)}
3 p(ba) {} 8 q(bd) {} 12 r(b,b) {(3,6), (4,8)}
4 pbd) {}

into a tensor of shapen*w*2: * » XK E o X Fw XK
0 (0,0)] 5 g(a,a) (0,0)] 9 r(a,a) (1,5)

(0,0)] R (1) Y @)

1 p(a,a) Eg: 8; 6 g(a,b) gg: 8; 10 7(a,b) 8: gg
2 p(a,b) Eg: gg 7 q(b,a) gg: 8; 11  7(b,a) 8: ?g
3 lbia) Eg 83_ 8 g(b,b) gg 8;_ 12 r(b,b) 8 Sg_
4 p6b) |00
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OILP

We split our tensor X into two matrices of shapen *w:
X; =X[;,:;0 X;=X[,:1]

We gather up the results:
Y = gathery(a, X;) Y = gathery(a, X3)

We take the element-wise product:
Z=Y 0Yy

Here, Z is of shape n * w. Now we take the max across the second dimension:
F.(a) = a’ where a'[k] = max(Z[k,:])
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"X, Y) «p(X,2),9(Z,)

ko alk] Xa[k] Xz[k] Yi[K] Y2l[k] Z[k] Fe(a)[k]
0 1 0.0 [0 o] [0 0] [0 0] [0 0] [0 0] 0.00
1 paa) 10 [0 0] [0 0 [0 0] [0 0] [0 0] 0.00
2 plab) 09 [0 0 [0 0] [0 0 [0 0] [0 0] 0.00
3 p(,a) 00 [0 0 [0 0] [0 0 [0 0] [0 0] 0.00
4 pbb) 00 [0 0 [0 0 [0 0] [0 0] [0 0 0.00
5 g(a,a) 01 [0 0] [0 0] [0 0] [0 0] [0 0 0.00
6 q(a,b) 0.0 [0 0] [0 o] [0 0] [0 0] [0 0 0.00
7 gq(b,a) 02 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
8 q(bb) 08 [0 0] [0 0] [0 0] [0 0] [0 0] 0.00
9 r(ae) 00 [1 2] [5 7] [10 09] [01 02] [0.1 0.18] 0.18
10 r(a,b) 00 [1 2] [6 8 [10 09] [0 08 [0 0.72] 0.72
11 r(b,a) 00 [3 4] [5 7] [0 O [0.1 0.2] [0 0] 0.00
12 r(bb) 00 [3 4] [6 8 [0 O 0 08] [0 0] 0.00
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"X, Y) «p(X,2),9(Z,)
r(a,b) < p(a,b),q(b,b)

ko % alk] Xi[k] Xo[k] Yi[k| Y2[k] Z[k| Fe(a)[k|
0 1 0.0 [0 o] [0 0] [0 0] [0 0] [0 0] 0.00
1 paa) 10 [0 0] [0 0 [0 0] [0 0] [0 0] 0.00
2 plab) 09 [0 0 [0 0] [0 0 [0 0] [0 0] 0.00
3 p(,a) 00 [0 0 [0 0] [0 0 [0 0] [0 0] 0.00
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Overview

What is Neural Program Synthesis?
Learning logic programs

How to learn logic programs from examples
Differentiable Inductive Logic Programming
Experiments

Related Work
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OILP Experiments
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‘b DeepMind

Metagol SILP
Domain Task |P;| Recursive Performance Performance
Arithmetic =~ Predecessor 1 No v v
Arithmetic ~ Even / odd 2 Yes v v
Arithmetic ~ Even / succ2 2 Yes v v
Arithmetic  Less than 1 Yes v v
Arithmetic  Fizz 3 Yes v v
Arithmetic ~ Buzz 2 Yes v v
Lists Member 1 Yes v v
Lists Length 2 Yes v v
Family Tree Son 2 No v v
Family Tree Grandparent 2 No v v
Family Tree Husband 2 No v v
Family Tree Uncle 2 No v v
Family Tree Relatedness 1 No X v
Family Tree Father 1 No v v
Graphs Undirected Edge 1 No v v
Graphs Adjacent to Red 2 No v v
Graphs Two Children 2 No v v
Graphs Graph Colouring 2 Yes v v
Graphs Connectedness 1 Yes X v
Graphs Cyclic 2 Yes X v

Table 2: A Comparison Between OILP and Metagol on 20 Symbolic Tasks
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Example Task: Graph Cyclicity

S,

(a) First Training Triple

© o m ®

(c) Validation Triple

BE B
o 0 ©

(b) Second Training Triple

6 DeepMind
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Example Task: Graph Cyclicity

/\. ove el reinred 0,0

prediSa s Y )i ladge (30, ).

pred(X; Y & edge G 4}, - predi(Z; 5 X)
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Example: Fizz-Buzz

et e sl A

e LAl sy

g IEe A

e 14 » 14

o Bhze e e e b S vl
SR et i BAA Lo 16

e o L=

g g L8 Ry

MO LS S

e 2 By, 20 B v
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Example: Fizz

ime e ORI e B G

Llzz k) i B i 0 )5 predl (Y, X
predliie )« ariec X, A, pred 2 {Z
predd- G O d i slcadatow g o slicia b7

Frees

Learning Explanatory Rules from Noisy Data



Example: Fizz

il A D B s e G

Llzz k) i B i 0 )5 predl (Y, X

predlboe )« e (02 s bEcdZ2 (7,

predd- G O d i slcadatow g o slicia b7

6 DeepMind Learning Explanatory Rules from Noisy Data



@ DeepMind

Example: Buzz

B (G e e o)

blzz (X) bz (YY) pred3 (Y, X
predsie e mredl (06 iZ) s o Pedi (4 )y
predd=GaE S d i siee s R oo D radi 7 S

DeediSlaanaia e a e e T slc e (Z 0 )
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Mis-labelled Data

e |f Symbolic Program Synthesis is given a single mis-labelled piece of training
data, it fails catastrophically.

e \We tested OILP with mis-labelled data.
e \We mis-labelled a certain proportion p of the training examples.

e \We ran experiments for different values of p = 0.0, 0.1, 0.2, 0.3, ...
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Mean-squared test error
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Example: Learning Rules from Ambiguous Data

Your system observes: images label

e a pair of images PR
e a label indicating whether the left 2
image is less than the right image —

/:\
o A
/4\/\\
. /. J —
/O\/O\
- AN J
/o\/q\
- AN J
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Example: Learning Rules from Ambiguous Data

Your system observes: images -
e a pair of images o —
e a label indicating whether the left Q 3 1

image is less than the right image ; < ; < —
. ¢\ 0

Two forms of generalisation: NN —

It must decide if the relation holds for ”O\ ’O“ ‘ 0 ‘

held-out images, and also held-out AN __J

pairs of digits. 4 o [ 4 h ( ; 3

o U\ S N S
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Image Generalisation
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Symbolic Generalisation

g

3/
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Symbolic Generalisation

2130

3

Y

2

1

\symbolic generalisation

}tranng

J test

6 DeepMind

NB it has never seen any
examples of 2< 4 in
training

Learning Explanatory Rules from Noisy Data



Symbolic Generalisation

Q< 10<200 0<3 104 1 0<5:10<6: 0<{ H0=<8 1 0=<9

l=2 <3 Ll sd <5 {ici6 1 <7 k1 <8 1<

2531 2=4 005 2<6 2] 12<8 D]

34 13=b 1 3sb =T <8 39

4<5 |4<6 |4<7 |4<8 |4<9

9<6 to<y 1 5<8 5=<9

6<7 |6<8 |[6<9

7<8 |7<9

8<9
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Symbolic Generalisation

Q< 10<200 0<3 104 1 0<5:10<6: 0<{ H0=<8 1 0=<9

l=2 =<3 Ll sd <5 {isi6 T <7 k1 <8 1<

2531 2=4 005 26 2] 1 2<8 D=

3=sd4 8=l 1 3sb =T 1G58 39

4<5 |4<6 |4<7 |4<8 |4<9

9<6 to<y 1 5<8 5=<9

6<7 |6<8 |[6<9

7= 8 k=0

8<9
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Symbolic Generalisation

Q< 10<200 0<3 104 1 0<5:10<6: 0<{ H0=<8 1 0=<9

l=2 <3 Ll <d i1 <5 <7 £l=<8 11 <9
2531 2=4 005 26 2] 2<9
3<4 9=b 437 58 30

4=b 14 <bidc 1 4=8 149

9<6 to<y 1 5<8 5=<9

6<7 |6<8 |[6<9

7<8

8<9
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Example: Less Than on MNIST Images

Your system observes: images -
e a pair of images o —
e a label indicating whether the left Q 3 1

image is less than the right image ; < ; < —
. ¢\ 0

Two forms of generalisation: NN —

It must decide if the relation holds for ”O\ ’O“ ‘ 0 ‘

held-out images, and also held-out AN __J

pairs of digits. 4 o [ 4 h ( ; 3

o U\ S N S
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MLP Baseline

We created a baseline MLP to solve

images label
this task.

e R N
The output of the conv-net for the two Q 1

N J —/

images is a vector of (20) logits.

/3\

N /)

4 N [ \ N

We added a hidden layer, produced a N 4 Jk * )
single output, and trained on N = —

\ O L D %

/o\ /q N

o N\ /

cross-entropy loss.

The MLP baseline can solve this task
easily.
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Example: Less Than

Q< 10<200 0<3 104 1 0<5:10<6: 0<{ H0=<8 1 0=<9
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2531 2=4 005 2<6 2] 12<8 D]

34 13=b 1 3sb =T <8 39

4<5 |4<6 |4<7 |4<8 |4<9

9<6 to<y 1 5<8 5=<9

6<7 |6<8 |[6<9

7<8 |7<9

8<9
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Example: Less Than
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Example: Less Than

Q< 10<200 0<3 104 1 0<5:10<6: 0<{ H0=<8 1 0=<9
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9<6 to<y 1 5<8 5=<9

6<7 |6<8 |[6<9

7<8

8<9

6 DeepMind Learning Explanatory Rules from Noisy Data



Example: Less Than

Q< 10<=200 0<3 104 1 0<5:40<6: 0<{ 0= 1 0=<9

le=2 iils 30 il s d i1 <5 <7 £l=<8 11 <9
2531 2=4 005 26 2] 2<9
3<4 9=b 437 58 30

4<5 |4<6 |4<7 |4<8 |4<9

9<h to<y 1 5<8L/H5=<g

6<7 |6<8 |[6<9

7<8

8<9
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Example: Less Than

<1 {1 0=2010<38 1 0=<4 1 0G<5 1 0=6: 10 0<9
1<2 <4 (1<5 <7 £l=<8 11 <9

2531 2=4 005 26 2] 2<9

3<4 9=b 437 58 30

4<5 14<6 |4<7 14<8
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7<8

8<9
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Example: Less Than

<1 {1 0=2510<3 1 0=<4  0<d 1 0=6: 10 < 0<9
1<2 =4 1< <7 £l=<8 11 <9

2531 2=4 005 26 2] 2<9

3<4 9=b 437 58 30

4<5 14<6 |4<7 14<8

o= Ho=81 1 5=<9
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7<8

8<9
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Example: Less Than
0<1 |0<2 =4 1 0<b - 110<6: 0 </ 0<9
1<2 1<4 T<7 :1=<8:1<9
2530 2=4 125 26 .27

3<4 S=b i S8 i3 <

4<5 |4<6 |4<7 |4<8
a<7 Fo<8: 5=<9
6<9

7<8
8<9
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Example: Less Than
B e e E <) =4 1 0<b - 110<6: 0 </ 0<9
1<2 1<4 T<7 :1=<8:1<9
23l 24w Hhnkd <6 ey

3<4 S=ib i PG 8e 3 e i)

4<5 |4<6 |4<7 |4<8
a<7 Fo<8: 5=<9
6<9

7<8
8<9
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Example: Less Than
0<1 =4 1 0<b - 110<6: 0 </ 0<9
1<2 1<4 T<7 :1=<8:1<9
2<3 |2<4 |2<5 2<7

3<4 3<6 3<9

4<5 |4<6 |4<7 |4<8
a<7 Fo<8: 5=<9
6<9

7<8
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We made a slight modification to our

original architecture:

OILP Learning Less-Than

T

Figure 1: The J1LP Architecture.




OILP Learning Less-Than

We pre-trained a conv-net to recognise
MNIST digits.

We convert the logits of the conv-net
into a probability distribution over logical
atoms.

Our model is able to solve this task.

Legend
i) Coous ) [paanotn]
value
non-differentiable
. fu function

Figure 5: OILP from Raw Pixel Images




OILP Learning Less-Than
Larger () imegeZilt), predl (X)
redl 09 O image | (X)) preddiy ;i X)
Lred (X X)) - sitcelX, v

pred 22X, Yy capred 2 (Z, Y), predZi{X. 7]
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Comparing OILP with the Baseline

045
- baseline

040 —— JILP

035
0.30
0.25
0.20

0.15

Mean squared test error

0.10

0.05 7

0.00
0.0 01 02 0.3 04 05 0.6 0.7 0.8 0.9

Proportion of pairs held out from training




Comparing OILP with the Baseline

045
- baseline

040 — JILP

0.35
0.30
0.25
0.20

0.15

Mean squared test error

0.10

0.05 /@/ )

0.00
0.0 01 02 0.3 04 05 0.6 0.7 0.8 0.9

Proportion of pairs held out from training




Limitations

e |ocal minima!
e Memory use!

| P;|

2-m-t- Y |d(rd)] - |el(r?)|
1=1

n=|G| < |P|-|C]*+1
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Overview

What is Neural Program Synthesis?
Learning logic programs

How to learn logic programs from examples
Differentiable Inductive Logic Programming
Experiments

Related Work
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6. Related Work
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Deduction, Abduction, Induction

Let A and A’ be sets of ground atoms and R be a set of first-order rules.

Then we can define;

e Deduction: given Rand A, find A’such thatR, A <A’
e Abduction: given R and A’, find A such thatR A A’
e Induction: given A and A’ find R suchthatR A A’
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First-Order Deduction using Neural Nets

Holldobler, Kalinke, and Storr (1999)

Given a set G of ground atoms, they define a function R : 26 4R
R(M) = E 4= lgll
geEM

Given a program P, they define a function fp : R — R on reals that mirrors the
consequence operator:

fp(z) = R(Tp(R™(2)))
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First-Order Abduction Using Neural Nets

Serafini and Garcez (2016)
e Aconstant cis represented by a vector G(c) € R”

e A function fis represented by G(f) € Raty(f)xn _, Rr
e A predicate p is represented by G(p) € R¥ity(f)xn _y [0, 1]

CGlf(Liyeentim) = GUFHG(EL) 0 GG ))
G504 i) G(p)(G(t1),...,G(tm))
G(—¢) 1-G(9)
G(¢1V ...Vphin) = p(G(¢1),...,G(¢dm))
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First-Order Induction Using Neural Nets

“Neural Theorem Prover”: Rocktaschel and Riedel (2016)
“NeuralLP”: Yang, Yang, and Cohen (2017)

“0ILP”: Evans and Grefenstette (2017)

“DiffLog”: Raghothaman et al (2018)

6 DeepMind Learning Explanatory Rules from Noisy Data



Conclusion

Neural Program Synthesis aims to combine the advantages of Symbolic Program
Synthesis with the advantages of Neural Program Induction:

e It has low sample complexity

e It can learn interpretable and general rules
e |tis robust to mislabelled data

e |t can handle ambiguous input

e |t can be integrated and trained jointly within larger neural systems/agents
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Conclusion

| have argued that Datalog is an excellent target language for program synthesis
because it is:

e referentially transparent

e highly expressive
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Conclusion

| have described one way for a neural network to induce Datalog programs from
examples.

e Convert the induction problem into a SAT problem
e Neuralise it, replacing discrete operations with differentiable operations

e Train using gradient descent
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