Knowledge Base Update Methods

Ewa Madalińska

http://www.mimuw.edu.pl/~ewama/zajecia.htm
mail: ewama@mimuw.edu.pl
konsultacje pok. 4400

The problem description

Notation 1

- KB – knowledge base – a set of classical logic formulae or their conjunction
- α – a formula – a new observation of the world under consideration

What is a new KB, written KB'?

1. If KB and α are not in conflict then

 $KB' \equiv KB \land \alpha$,

 Go Example1
Notation 1

- \(KB \) – knowledge base – a set of classical logic formulae or their conjunction
- \(\alpha \) – a formula – a new observation of the world under consideration

What is a new \(KB \), written \(KB' \)?

1. If \(KB \) and \(\alpha \) are not in conflict then
 \[KB' \equiv KB \land \alpha, \]
 Go Example 1

2. And if they are ? (but are consistent in logical sense) The problem begins here.
 Go Example 2
The problem description

Notation 1

- KB – knowledge base – a set of classical logic formulae or their conjunction
- α – a formula – a new observation of the world under consideration

What is a new KB, written KB'?

1. If KB and α are not in conflict then
 $KB' \equiv KB \land \alpha$,

2. And if they are ? (but are consistent in logical sense) The problem begins here.

3. And if they are inconsistent?
Example 1

$KB = p \land (q \lor s), \alpha = p \land \neg t$

KB knows nothing about t and knows the same about p as α then there is no conflict and $KB' \equiv p \land \neg t \land (q \lor s)$ is intuitive.
Example 2

$KB = \neg p$ and $\alpha = p \lor q$

KB and α are consistent but $KB \land \alpha \equiv \neg p \land q$

This formula does not seem to be that we should expect. KB' should be rather $p \lor q$.

As we see, some more detailed assumptions are necessary.
Example 3

Consider the following situation.
There is exactly one person in the room – Alice or Bob, but we don’t know which one of them.

Thus, KB contains a formula

$$(RA \land \neg RB) \lor (RB \land \neg RA).$$

Consider the new observation – we see Bob in the hall, represented as

$$\alpha = HB$$
There are now three possibilities

1. We know that nobody has left the room.
 Conclusion – Alice is in the room. (Additional knowledge – it is impossible to be in two different places at once i.e. \(HB \iff \neg RB \))
There are now three possibilities

1. We know that nobody has left the room.
 Conclusion – Alice is in the room. (Additional knowledge – it is impossible to be in two different places at once i.e. $HB \iff \neg RB$)

2. We suppose that somebody might leave the room but we are not sure.
 Conclusion - There is Alice in the room or nobody.
There are now three possibilities

1. We know that nobody has left the room.
 Conclusion – Alice is in the room. (Additional knowledge – it is impossible to be in two different places at once i.e. \(HB \iff \neg RB \))

2. We suppose that somebody might leave the room but we are not sure.
 Conclusion - There is Alice in the room or nobody.

3. We see Bob leaving the room.
 Conclusion - nobody is in the room. (Additional knowledge – we know the action and its precondition \(RB \), i.e. to leave the room you must be in it before, thus, with the previous knowledge, we get the above conclusion).
Example 4

Consider the following schema:

\[KB = A \land (A \Rightarrow B) \]
\[\alpha = \neg A \]

\(KB \land \alpha\) is inconsistent then we must delete something from \(KB\) to receive consistent \(KB'\). In this case it is simple - deleting \(A\) we get \(KB' \equiv \neg A \land (A \Rightarrow B)\).

Assume now that \(\alpha = \neg B\) and \(KB\) is as before.

\(KB \land \alpha\) is inconsistent too and we must delete something from \(KB\). But now, it is not clear what should be deleted. The possible candidates are:

1. \(A\)
2. \(A \Rightarrow B\)
3. \(A \land (A \Rightarrow B)\)
The above examples show that depending on the context we need to consider three types of knowledge base modification

1. Belief revision
2. Belief update
3. Reasoning about action and change
Frame problem (inertia, persistence)
As little as possible should be changed (belief revision). The only things that should be changed are those which are known to be changed, the rest should remain unchanged (dynamical situations).

Ramification problem
Knowledge about the world under consideration – domain constraint axioms or integrity constraints. They have to be satisfied in all states of the world. It may lead to indirect effects and may collide with inertia.

Remark 1
It can not always be realized in a pure logical way. It often requires additional semantic information (a light example).
Example 5

Consider the following axiom.

\[l \leftrightarrow (sw_1 \leftrightarrow sw_2) \]

where \(l, sw_1, sw_2 \) denotes *light, switch1, switch2* respectively.

In the initial situation both switches are on (true) thus, by the axiom, the light is on.

We now make the switch1 off (false). The intended conclusion is that the light is off. But the resulting situation has two models

\[\{ \neg l, \neg sw_1, sw_2 \} \text{ and } \{ l, \neg sw_1, \neg sw_2 \} \]

The second one is unintended but we cannot eliminate it in a purely logical way.
Representation methods of Integrity Constraints

- Inertial and Non-inertial atoms

Besides IC, two disjoint sets of atoms are defined. One includes atoms which cannot be changed implicitly by an action and the other the atoms which can.
Representation methods of Integrity Constraints

▶ Inertial and Non-inertial atoms

Besides IC, two disjoint sets of atoms are defined. One includes atoms which cannot be changed implicitly by an action and the other the atoms which can.

▶ Influence Relation

It is binary relation between atoms. $R(a, b)$ denotes that if a is change by performing an action then b may change its value. Influence relation is transitive.
Causality Rules

IC are represented as *causal rules*. These are expressions of the form $\alpha \gg \beta$ and have the following intuitive interpretation:

1. The formula $\alpha \Rightarrow \beta$ holds in both the initial and the updated knowledge base.
2. If $\neg \alpha$ held in the initial knowledge base and α holds in the updated knowledge base, then there is a cause for β to hold in the updated knowledge base.
Qualification problem
It is not always possible to specify all preconditions of an action, i.e. conditions of its executability (reasoning about action). The idea is to keep them as separate formulae. It allows to add new preconditions in a simple way.
Belief revision

- A new observation is more reliable than the old one.
- We want to lose as little information as possible (persistence).
- Domain constraint axioms should remain unchanged.
Belief Update

- Both the new observation and the old one are reliable.
- Incompatibility is caused by performing an action.
- The only things that should be changed are those which are known to be changed, the rest should remain unchanged.
- Domain constraint axioms should remain unchanged.
General assumptions

Reasoning about action and change

- Both the new observation and the old one are reliable.
- Specification (i.e. preconditions and effects) of an action is known.
- Preconditions of the action must be satisfied otherwise the action has no effect.
- The only things that should be changed are those which are known to be changed, the rest should remain unchanged.
- Domain constraint axioms should remain unchanged.