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Abstract. We study infinite games where one of the players always
has a positional (memory-less) winning strategy, while the other player
may use a history-dependent strategy. We investigate winning conditions
which guarantee such a property for all arenas, or all finite arenas. We
establish some closure properties of such conditions, and discover some
common reasons behind several known and new positional determinacy
results. We exhibit several new classes of winning conditions having this
property: the class of concave conditions (for finite arenas) and the classes
of monotonic conditions and geometrical conditions (for all arenas).

1 Introduction

The theory of infinite games is relevant for computer science because of its
potential application to verification of interactive systems. In this approach, the
system and environment are modeled as players in an infinite game played on a
graph (called arena) whose vertices represent possible system states. The players
(conventionally called Eve and Adam) decide which edge (state transition, or
move) to choose; each edge has a specific color. The desired system’s behavior
is expressed as a winning condition of the game — the winner depends on the
sequence of colors which appear during an infinite play. If a winning strategy
exists in this game, the system which implements it will behave as expected.
Positional strategies (i.e. depending only on the position, not on the history of
play — also called memoryless) are of special interest here, because of their good
algorithmic properties which can lead to an efficient implementation.

Among the most often used winning conditions are the parity conditions,
which admit positional determinacy ([Mos91], [EJ91], [McN93]). However, not
always it is possible to express the desired behavior as a parity condition. An in-
teresting question is, what properties are enough for the winning condition to be
positionally determined, i.e. admit positional winning strategies independently
on the arena on which the game is played. Recently some interesting characteri-
zations of such positionally determined winning conditions have been found. In
[CN06] it has been proven that every (prefix independent) condition which ad-
mits positional determinacy for all finite and infinite arenas (with colored moves)
is a parity condition (up to renaming colors). There are more such conditions if
we only consider finite arenas. In [GZ05] it has been proven that a winning con-
dition is positionally determined for all finite arenas whenever it is so for finite
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arenas where only one player is active. Another interesting characterization can
be found in [GZ04]. For a survey of recent results on positional determinacy see
[Gra04].

Our work attempts to obtain similar characterizations and find interesting
properties (e.g. closure properties) of half-positionally determined winning condi-
tions, i.e. ones such that all games using such a winning condition are positionally
determined for one of the players (us, say), but the other player (environment)
can have an arbitrary strategy. We give uniform arguments to prove several
known and several new half-positional determinacy results. As we will see, some
results on positional determinacy have natural generalizations to half-positional
determinacy, but some do not. This makes the theory of half-positional condi-
tions harder than the theory of positional conditions.

We also exhibit some large classes of half-positionally determined winning
conditions. One example is the class of concave winning conditions; among
examples of such conditions are the parity conditions, Rabin conditions, and
the geometrical condition associated with convex subsets of [0, 1]n. Concavity
is sufficient for half-positional determinacy only in the case of games on fi-
nite arenas. We investigate to what extent the results on geometrical conditions
can be extended to infinite arenas. Another example is the class of monotonic
winning conditions, which are defined using a deterministic finite automaton
with a monotonic transition function, and includes winning conditions such as
Cω−C∗(anC∗)ω. Monotonic winning conditions are half-positionally determined
on all arenas.

Due to space limitations we had to omit most of proofs and algorithms.
They will be presented in the full version of this paper. Its draft can be found
at [Kop06].

2 Preliminaries

We consider perfect information antagonistic infinite games played by two play-
ers, called conventionally Adam and Eve. Let C be a set of colors (possibly
infinite).

An arena over C is a tuple G = (PosA,PosE ,Mov), where:

– Elements of Pos = PosE ∪ PosA are called positions; PosA and PosE are
disjoint sets of Adam’s positions and Eve’s positions, respectively.

– Elements of Mov ⊆ Pos×Pos×C are called moves; (v1, v2, c) is a move from
v1 to v2 colored by c. We denote source(v1, v2, c) = v1, target(v1, v2, c) = v2,
rank(v1, v2, c) = c.

A game is a pair (G, W ), where G is an arena, and W is a winning condition.
A winning condition W over C is a subset of Cω which is prefix independent,
i.e., u ∈ W ⇐⇒ cu ∈ W for each c ∈ C, u ∈ Cω. We name specific winning
conditions WA, WB , . . . . For example, the parity condition of rank n is the
winning condition over C = {0, 1, . . . , n} defined with

WPn = {w ∈ Cω : lim sup
i→∞

wi is even}. (1)
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The game (G, W ) carries on in the following way. The play starts in some
position v1. The owner of v1 (e.g. Eve if v1 ∈ PosE) chooses one of the moves
leaving v1, say (v1, v2, c1). If the player cannot choose because there are no moves
leaving v1, he or she loses. The next move is chosen by the owner of v2; denote
it by (v2, v3, c2). And so on: in the n-th move the owner of vn chooses a move
(vn, vn+1, cn). If c1c2c3 . . . ∈ W , Eve wins the infinite play; otherwise Adam
wins.

A play in the arena G is any sequence of moves π such that source(πn+1) =
target(πn). By source(π) and target(π) we denote the initial and final position
of the play, respectively. The play can be finite (π ∈ Pos ∪ Mov+, where by
π ∈ Pos we represent the play which has just started in the position π) or
infinite (π ∈ Movω; infinite plays have no target).

A strategy for player X is a partial function s : Pos ∪Mov+ → Mov. For
a finite play π such that target(π) ∈ PosX , s(π) says what X should do in the
next move. A strategy s is winning (for X) from the position v if s(π) is defined
for each finite play π starting in v, consistent with s, and ending in PosX , and
each infinite play starting in v consistent with s is winning for X.

A strategy s is positional if it depends only on target(π), i.e., for each finite
play π we have s(π) = s(target(π)).

A game is determined if for each starting position one of the players has a
winning strategy. This player may depend on the starting position in the given
play. Thus if the game is determined, the set Pos can be split into two sets
WinE and WinA and there exist strategies sE and sA such that each play π
with source(π) ∈ WinX and consistent with sX is winning for X. All games
with a Borel winning condition are determined [Mar75], but there exist (exotic)
games which are not determined. A winning condition W is determined if for
each arena G the game (G, W ) is determined.

We are interested in games and winning conditions for which one or both
of the players have positional winning strategies. Thus, we introduce the no-
tion of a determinacy type, given by three parameters: admissible strategies
for Eve (positional or arbitrary), admissible strategies for Adam (positional or
arbitrary), and admissible arenas (finite or infinite). We say that a winning con-
dition W is (α, β, γ)-determined if for every γ-arena G the game (G, W ) is
(α, β)-determined, i.e. for every starting position either Eve has a winning α-
strategy, or Adam has a winning β-strategy. Clearly, there are 8 determinacy
types in total. For short, we call (positional, positional, infinite)-determined
winning conditions positionally determined or just positional, (positional,
arbitrary, infinite)-determined winning conditions half-positional, (arbitrary,
positional, infinite)-determined winning conditions co-half-positional. If we
restrict ourselves to finite arenas, we add finitely, e.g. (positional, arbitrary,
finite)-determined conditions are called finitely half-positional. For a deter-
minacy type D = (α, β, γ), D-arenas mean γ-arenas, and D-strategies mean
α-strategies (if they are strategies for Eve) or β-strategies (for Adam).

Note that if a game (G, W ) is (α, β)-determined, then its dual game obtained
by using the complement winning condition and switching the roles of players is
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(β, α)-determined. Thus, W is (α, β, γ)-determined iff its complement is (β, α, γ)-
determined.

In the games defined above the moves are colored. In the literature one often
studies similar games where positions are colored instead — in this case instead
of Mov ⊆ Pos×Pos×C we have Mov ⊆ Pos×Pos and a function rank : Pos → C.
The winner of a play in such games is defined similarly.

A position-colored game can be easily transformed into a move-colored game
— we just have to color each move m with the color rank(target(m)). Trans-
formation in the other way in general would require splitting positions when
they are targets of moves of different colors, which may cause a previously
non-positional strategy to become positional. Hence, for position-colored games
there are more (half-)positionally determined winning conditions than for move-
colored games. The facts proven or cited here do not necessarily hold in the case
of position-colored games.

3 Closure Properties of Half-positional Conditions

Now we will give some closure properties of half-positionally determined winning
conditions. We will start with a lemma which is used in many proofs of half-
positional determinacy of various winning conditions. This lemma can be proven
by transfinite induction.

Lemma 1. Let D be a determinacy type. Let W ⊆ Cω be a winning condition.
Suppose that, for each non-empty D-arena G over C, there exists a non-empty
subset M ⊆ G such that in game (G, W ) one of the players has a D-strategy
winning from M . Then W is D-determined.

Definition 1. For S ⊆ C, WBS is the set of infinite words where elements of
S occur infinitely often, i.e. (C∗S)ω. Winning conditions of this form are called
Büchi conditions. Complements of Büchi conditons, WB ′

S = C∗(C − S)ω are
called co-Büchi conditions.

Theorem 1. Let D be a determinacy type. Let W ⊆ Cω be a winning condition,
and S ⊆ C. If W is D-determined, then so is W ∪WBS.

Proof. We will show that the assumption of Lemma 1 holds. Let our arena be
G = (PosE ,PosA,Mov). S-moves are moves m such that rank(m) ∈ S.

Let G′ be G with a new position > added. The position > belongs to Adam
and has no outgoing moves, hence Adam loses here. For each S-move m we
change target(m) to >.

Since Adam immediately loses after doing an S-move in G′, the winning
conditions W and W∪WBS are equivalent for G′, thus we can use D-determinacy
of W to find the winning sets Win′E ,Win′A and winning D-strategies s′E , s′A in
G′.

Suppose Win′A 6= ∅. We can see that since Adam’s strategy wins in G′ from
a starting position in Win′A, he also wins in G from there by using the same
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strategy (the game G′ is ,,harder” for Adam than G). Thus the assumption of 1
holds (we take M = Win′A).

Now suppose that Win′A = ∅. We will show that Eve has a winning D-
strategy s in Pos everywhere, hence the assumption of Lemma 1 also holds (we
take M = Win′E).

The strategy is as follows. For a finite play π we take s(π) = sE(π′), where
π′ is the longest final segment without any S-moves. If sE tells Eve to make
an S-move, Eve makes its counterpart (or one of its counterparts) in G instead.
The strategy s is positional if sE is positional. It can be easily shown that s is
indeed a winning strategy. ut

Note that, by duality, Thm 1 implies that if W is D-determined, then so
is W ∩ WB ′

S . This yields an easy proof of positional determinacy of parity
conditions. It is enough to start with an empty winning condition (which is
positionally determined) and apply Thm 1 and its dual n times.

A union of co-Büchi and co-half-positional conditions does not need to be
co-half-positional (WB ′

{a} ∪ WB ′
{b} is not). What about a union of co-Büchi

and a half-positional condition, does it have to be half-positional? We have no
proof nor counterexample for this yet. This conjecture can be generalized to the
following:

Conjecture 1. Let W be a (finite, countable, . . . ) family of half-positionally (fi-
nitely) determined winning conditions. Then

⋃
W is a half-positionally (finitely)

determined winning condition.

Note that we assume prefix independence here. It is very easy to find two
prefix dependent winning conditions which are positionally determined, but their
union is not half-positionally determined.

This conjecture also fails for non-countable families and infinite arenas, even
for such simple conditions as Büchi and co-Büchi conditions:

Theorem 2. There exists a family of 2ω Büchi (co-Büchi) conditions such that
its union is not a half-positionally determined winning condition.

Proof. Let I = ωω. Our arena A consists of one Eve’s position E and infinitely
many Adam’s positions (An)n∈ω. In E Eve can choose n ∈ ω and go to An by
move (E,An, ?). In each An Adam can choose r ∈ ω and return to E by move
(An, E, (n, r)).

For each y ∈ I, let Sy = {(n, yn) : n ∈ ω} ⊆ C, and S′y = C − Sy − {?}. Let
WA1 =

⋃
y∈I WBSy

, WA2 =
⋃

y∈I WB ′
S′

y
.

The games (A,WA1) and (A,WA2) are not half-positionally determined. Let
(nk) and (rk) be n and r chosen by Eve and Adam in the k-th round, respectively.
If Eve always plays nk = k, she will win both the conditions WBSy and WB ′

S′
y
,

where yk = rk. However, if Eve plays with a positional strategy nk = n, Adam
can win by playing rk = k. ut

There is however a subclass of half-positional winning conditions for which
we can prove that it is closed under countable union.
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Definition 2. A suspendable winning strategy for X is a pair (s,Σ), where
s : Pos ∪Mov+ → Mov is a strategy, and Σ ⊆ Mov∗, such that:

– s is defined for every finite play π such that target(π) ∈ PosX .
– every infinite play π that is consistent with s from some point t 1 has a prefix

longer than t which is in Σ;
– Every infinite play π that has infinitely many prefixes in Σ is winning for

X.

We say that X has a suspendable winning strategy in WinX when he has
a suspendable winning strategy in the arena (PosA∩WinX ,PosE ∩WinX ,Mov∩
WinX ×WinX × C).

A winning condition W is positional/suspendable if for each arena G in
the game (G, W ) Eve has a positional winning strategy in WinE and Adam has
a suspendable winning strategy in WinA.

Intuitively, if at some moment X decides to play consistently with s, the
play will eventually reach Σ; Σ is the set of moments when X can temporarily
suspend using the strategy s and return to it later without a risk of ruining his
or her victory.

A suspendable winning strategy is a winning strategy, because the condi-
tions above imply that each play which is always consistent with s has infinitely
many prefixes in Σ, and thus is winning for X. The co-Büchi condition is posi-
tional/suspendable; more examples will be given in Theorems 5 and 6. However,
the parity condition WP2 is positional, but not positional/suspendable, because
a suspendable strategy cannot be winning for Adam — it is possible that the
play enters state 2 infinitely many times while it is suspended.

Theorem 3. A union of countably many positional/suspendable conditions is
also positional/suspendable.

If Adam has a suspendable winning strategy for each of given winning con-
ditions and each starting position, then he can use them all in a play — he just
has to activate and suspend each of them infinitely many times. Otherwise, we
use a lemma similar to Lemma 1 to remove all positions from where Eve can
win.

4 Concave Winning Conditions

We will now give some examples of half-positionally determined winning condi-
tions. We will start by giving a simple combinatorial property which guarantees
finite half-positional determinacy.

Definition 3. A word w ∈ Σ∗ ∪ Σω is a (proper) combination of words w1

and w2, iff for some sequence of words (un), un ∈ Σ∗

1 That is, for each prefix u of π which is longer than t and such that target(u) ∈ PosX ,
the next move is given by s(u).
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– w =
∏

k∈N uk = u0u1u2u3u4u5u6u7u8 . . .,
– w1 =

∏
k∈N u2k+1 = u1u3u5u7 . . .,

– w2 =
∏

k∈N u2k = u0u2u4u6 . . ..

Definition 4. A winning condition W is convex if as a subset of Cω it is closed
under combinations, and concave if its complement is convex.

Example 1. Parity conditions (including Büchi and co-Büchi conditions) are
both convex and concave.

Example 2. Let C be an infinite set. The folowing winning conditions are both
convex and concave:

– Exploration condition: the set of all v in Cω such that {vn : n ∈ ω} is infinite.
– Unboundedness condition: the set of all v in Cω such that no color appears

infinitely often.

Decidability and positional determinacy of these conditions on (infinite)
pushdown arenas where each position has a distinct color has been studied in
[Gim04] (exploration condition) and [BSW03], [CDT02] (unboundedness condi-
tion).

Example 3. Concave winning conditions are closed under union. Convex winning
conditions are closed under intersection.

Another example (which justifies the name) is given in Section 6 below.

Theorem 4. Concave winning conditions are half-positionally finitely deter-
mined.

The proof goes by induction over Mov, and is based on the following idea.
Let v be Eve’s position, with outgoing moves m1,m2, . . .. Suppose that Eve
cannot win by using only one of these moves. Then, since the winning condition
is concave, she also cannot win by using many of these moves — because it can
be written as a combination of subplays that appear after each move m1,m2, . . .,
and Adam wins all of these plays.

This theorem gives yet another proof of finite positional determinacy of par-
ity games, and also half-positional determinacy of unions of families of parity
conditions (where each parity condition may use a different rank for a given
color). Half-positional determinacy of Rabin conditions (finite unions of families
of parity conditions) over infinite arenas has been proven in [Kla92].

Note that concavity does not imply half-positional determinacy over infinite
arenas — for examples see Section 6 below, and also Example 2 and Thm 2. Also,
half-positional determinacy (even over infinite arenas) does not imply concavity
— examples can be found in Sections 6 and 7.

Concavity does not force any bound on the memory required by Adam. Con-
sider the game (G, W ), where G is the arena with one Adam’s position A and
two moves A → A colored 0 and 1 respectively, and W = WF ′([0, 1] − {x}),
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where x ∈ [0, 1] is irrational. (WF ′ is defined in Section 6 below.) Adam requires
unbounded memory here.

The following proposition gives some algorithmic properties of concavity,
assuming that our winning condition is an ω-regular language.

Proposition 1. Suppose that a winning condition W is given by a deterministic
parity automaton on infinite words using s states and d ranks. Then there exists
a polynomial algorithm of determining whether W is concave (or convex). If W
is concave and G is an arena with n positions, then the winning sets and Eve’s
positional strategy can be found in time O(n(ns)d/2 log s).

5 Weakening the Concavity Condition

In [GZ04] a result similar to Thm 4 has been obtained in the case of full positional
determinacy. To present it, we need the following definition:

Definition 5. A winning condition W is weakly convex iff for each sequence
of words (un), un ∈ C∗, if

1. u1u3u5u7 . . . ∈ W ,
2. u2u4u6u8 . . . ∈ W ,
3. (?) ∀i (ui)ω ∈ W ,

then u1u2u3u4 . . . ∈ W .
A winning condition W is weakly concave iff its complement is weakly

convex.

In the case of normal convexity there is no (?).
[GZ04] defines fairly mixing payoff mappings; in the case of prefix inde-

pendent winning conditions fairly mixing resolves to the conjunction of weak
concavity and weak convexity. Theorem 1 from [GZ04] says that games on finite
arenas with fairly mixing payoff mappings are positionally determined.

Unfortunately, weak concavity is not enough for half-positional finite deter-
minacy.

Proposition 2. There exists a weakly concave winning condition WQ which is
not half-positionally finitely determined.

Proof. Let C = {0, 1}. For w ∈ Cω let Pn(w) be the number of 1’s among
the first n letters of w, divided by n. The winning condition WQ is a set of
w such that Pn(w) is convergent and its limit is rational. It can be easily seen
that for each u ∈ C+ we have uω ∈ WQ . Therefore (?) is never satisfied for the
complement of WQ , hence WQ is a weakly concave winning condition. However,
WQ is not half-positionally determined. Consider the arena with two positions
E ∈ PosE , A ∈ PosA, and moves (E,A, 0), (E,A, 1), (A,E, 0) and (A,E, 1). If
Eve always moves in the same way, Adam can choose the moves 0 and 1 in an
irrational proportion, ensuring his victory. However, Eve wins by always moving
with the color opposite to Adam’s last move — the limit of Pn(w) is then 1/2.

ut
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Note that the given WQ satisfies the even stronger condition obtained by re-
placing ∀i by ∃i in (?) in Definition 5.

6 Geometrical Conditions

In this section we will show some half-positional determinacy results for geo-
metrical conditions, which are based on the ideas similar to that used by the
mean payoff game (also called Ehrenfeucht-Mycielski game). We will also show
the relations between geometrical conditions and concave winning conditions.

Let C = [0, 1]n (where [0, 1] is the real interval; we can also use any compact
and convex subset of a normed space). For a word w ∈ C+, let P (w) be the
average color of w, i.e., 1

|w|
∑|w|

k=1 wk. For a word w ∈ Cω, let Pn(w) = P (w|n)
(w|n — an n-letter prefix of w).

Let A ⊆ C. We want to construct a winning condition W such that w ∈ W
whenever the limit of Pn(w) belongs to A. Since not every sequence has a limit,
we have to define the winner for all other sequences.

Let WF (A) be a set of w such that each cluster point of Pn(w) is an element
of A. Let WF ′(A) be a set of w such that at least one cluster point of Pn(w) is
an element of A. Note that WF ′(A) = Cω −WF (C −A).

As we will see, for half-positional determinacy the important property of A
is whether the complement of A is convex — we will call such sets A co-convex
(as concave usually means “non-convex” in geometry).

Geometrical conditions have a connection with the mean payoff game, whose
finite positional determinacy has been proven in [EM79]. In the mean payoff
game, C is a segment in R and the payoff mapping is u(w) = lim supn→∞ Pn(w)
or u(w) = lim infn→∞ Pn(w). If A = {x : x ≥ x0} then u−1(A) (“Eve wants x0

or more”) is exactly the geometrical condition WF (A) or WF ′(A). Geometrical
conditions are a generalization of such winning conditions to a larger class of
sets A and C.

The following table summarizes what we know about concavity and half-
positional determinacy of geometrical conditions. In every point except No. 0
we assume that A is non-trivial, i.e. ∅ 6= A ( C. The first two columns specify
assumptions about A and whether we consider WF (A) or WF ′(A), and the
last two answer whether the considered condition is concave and whether it has
finite and/or infinite half-positional determinacy. Negative answer means that
the answer is negative for all sets A in the given class; the question mark means
that the given problem has not been solved yet (but we suppose that the answer
is positive).

No. A condition concavity finite infinite

0 trivial WF ′(A) or WF (A) yes yes yes
1 not co-convexWF ′(A) or WF (A) no no no
2 co-convex WF ′(A) yes yes no
3 co-convex, not open WF (A) weak only yes? no
4 co-convex, open WF (A) weak only yes? yes?
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Note that, for any set A which is co-convex and non-trivial, WF ′(A) is finitely
half-positionally determined, but not infinitely half-positionally determied. This
shows a big gap between half-positional determinacy on finite and infinite arenas.

The point 4 remains open in general, but we have a positive result for a
special A. Its proof is quite complicated; it uses a similar idea as the proof of
Thm 6 below (instead of a state, we use here a real number meaning Eve’s
,,reserve” before falling out of A).

Theorem 5. Let f be an affine function on C, and A = f−1({x ∈ R : x < 0}).
The condition WF (A) = {w : lim supPn(f(w)) < 0} is positional/suspendable.

Note that WF (A1) ∪ WF (A2) usually is not equal to WF (A1 ∪ A2), so a
union of positional/suspendable conditions given above usually is not of form
WF (A) itself.

7 Monotonic Automata

In this section we will show yet another class of half-positionally determined
winning conditions. It is based on a different idea than that of concave conditions,
and guarantees half-positional determinacy even for infinite arenas. We will need
to introduce a special kind of deterministic finite automaton.

Definition 6. A monotonic automaton A = (n, σ) over an alphabet C is a
deterministic finite automaton where:

– the set of states is Q = {0, . . . , n};
– the initial state is 0, and the accepting state is n;
– the transition function σ : Q× C → Q is monotonic in the first component,

i.e., q ≤ q′ implies σ(q, c) ≤ σ(q′, c).

Actually, we need not require that the set of states is finite. All the results
presented here except for Thm 7 and the remark about finite memory of Adam
can be proven with a weaker assumption that Q has a minimum (initial state)
and its each non-empty subset has a maximum.

The function σ is extended to C∗ as usual: σ∗(q, ε) = q, σ∗(q, wc) = σ(σ∗(q, w), c)
(w ∈ C∗, c ∈ C). So defined σ∗ is still monotonic. By LA we denote the language
accepted (recognized) by A, i.e., the set of words w ∈ C∗ such that σ(0, w) = n.

Example 4. Monotonic automata can recognize the following languages: C∗anC∗,
C∗an−1bC∗, C∗ban−1C∗. Monotonic automata cannot recognize the following
languages: C∗a2b2C∗, C∗babC∗, C∗bacC∗.

Definition 7. A monotonic condition is a winning condition of form WM A =
Cω − Lω

A for some monotonic automaton A.

Note that if w ∈ LA then uw ∈ LA for each u ∈ C∗. Hence LA = C∗LA.
Therefore Lω

A is equal to LA(C∗LA)ω = (LAC∗)ω. Hence without affecting WM A

we can assume that σ(n, c) = n for each c.
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Theorem 6. Any monotonic condition is positional/suspendable.

The proof is based on the folowing idea. We construct a new game (G′,W ′)
where Pos′ = Pos × Q, moves are natural and W ′ = Cω − LACω. This game
is positionally determined (equivalent to WP1). From monotonicity we know
which position (g, q) for a given g is worst for Eve, and she can always play as
if she were in the worst possible state. If Eve can win nowhere, then Adam wins
everywhere in the original game; otherwise, Eve wins in some subset of G using
a positional strategy, which we can remove using Lemma 1. It is worth to remark
that although Adam’s strategy given in the proof is not positional, it uses only
finite memory (Q is the set of memory states).

From this theorem and the examples of languages recognized by monotonic
automata above one can see that e.g. WAn, the complement of the set of words
containing an infinitely many times, is monotonic and thus half-positionally de-
termined.

For n = 1 the set WAn is just a co-Büchi condition. However, for n > 1 it
is easily shown that WAn is not (fully) positionally determined, and also that it
is not concave. For example, for n = 2 the word (bababbabab)ω is a combination
of (bbbaa)ω and (aabbb)ω. However, all monotonic conditions are weakly concave
(if ∀iw

ω
i ∈ WLω

A for A = (n, σ), then w1w2w3 . . . ∈ WLω
A).

Proposition 3. Monotonic conditions are closed under finite union.

A countable union of monotonic conditions is not necessarily defined by a sin-
gle monotonic automaton, but it is still positional/suspendable; however, a union
of cardinality 2ω of monotonic conditions does not have to be half-positionally
determined, since co-Büchi conditions are monotonic. Monotonic conditions are
not closed under other Boolean operations.

Theorem 7. Let W1 ⊆ Cω be a concave winning condition, and A be a monotonic
automaton. Then the union W = W1 ∪WM A is a half-positionally finitely de-
termined winning condition.

8 Conclusion and future work

We would like to know more closure properties of the class of half-positionally
determined winning conditions. Specifically we want to know whether it is closed
under finite and countable union (Conjecture 1). In this paper we have proven
that it is closed under union with Büchi conditions and intersection with co-Büchi
conditions (Thm 1). We have also proven (Theorem 3) that positional/suspendable
winning conditions are closed under countable union; and many half-positional
winning conditions fall into this category. It seems worthwhile to extend Thm
3 to conditions obtained by using Thm 1 on positional/suspendable winning
conditions.

Additionally, some of our results give new proofs of known facts about posi-
tional determinacy. Many previous proofs can be simplified by using Lemma 1.
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In our opinion the proof of positional determinacy of parity conditions obtained
by using Thm 1 is simpler than the proofs previously known to us.

Another direction of further research is to find more examples of half-positional
conditions. Theorems 1 and 3 can be used to create new half-positional condi-
tions from old ones. They could be also obtained e.g. by generalizing the results
on geometrical conditions and monotonic automata. It would be also interesting
to see whether monotonic automata have applications in other areas of automata
theory.
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