Ewelina Zatorska

Interests

My main interest is analysis of Partial Differential Equations describing the compressible and incompressible complex flows arising in the modelling of traffic, collective behaviour of agents, multi-component and multi-phase models of mixtures. I am also interested in aggregation-diffusion equations modelling dynamical networks (of animals, polymers, etc.).

 

Preprints

  1. Pressureless Euler with nonlocal interactions as a singular limit of degenerate Navier-Stokes system
    J.A. Carrillo, A. Wróblewska-Kamińska, EZ, submitted.  arXiv
  2. Modelling pattern formation through differential repulsion
    J. Barré, P. Degond,  D. Peurichard, EZ, submitted.  arXiv
  3. Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data 
    Y.  Li, Y. Sun, EZ, submitted.  arXiv

Book chapters

  1. Singular Cucker-Smale Dynamics
    P. Minakowski, P. B. Mucha, J. Peszek, EZ, Springer Book Active Particles, Volume 2 (2019).  arXiv
  2. Existence Of Stationary Weak Solutions For The Heat Conducting Flows
    P. B. Mucha, M. Pokorný, EZ, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, p 1-68 (2016).
    Springer

Journal publications

  1. On the  maximal L− Lregularity of solutions to a general linear parabolic system
    T. Piasecki, Y. Shibata, EZ, to appear in J. Differential Equations.  arXiv
  2. On the strong dynamics of compressible two-component mixture flow  
    T. Piasecki, Y. Shibata, EZ, SIAM J. Math. Anal., Vol. 51, No. 4, 2793–2849 (2019).  arXiv    SIMA  
  3. On the isothermal compressible multi-component mixture flow: the local existence and maximal L− Lregularity of solutions 
    T. Piasecki, Y. Shibata, EZ, Nonlinear Analysis, Vol. 189, 111571 (2019).  arXiv    NA
  4. Finite-Energy Solutions for Compressible Two-Fluid Stokes System
    D. Bresch and P. B. Mucha, EZ,  Arch. Ration. Mech. Anal., Vol. 232, No. 2, 987–1029  (2019).   arXiv   ARMA
  5. On long-time asymptotic for viscous hydrodynamic models of collective behaviour with damping and nonlocal interactions
    J.A. Carrillo and A. Wróblewska-Kamińska, EZ, Math. Models Methods Appl. Sci., Vol. 29, No. 1, 31–63 (2019). arXiv   M3AS
  6. Transport of congestion in two-phase compressible/incompressible flows 
    P. Degond, P. Minakowski, EZ, Nonlinear Analysis Real World Applicatios, Vol. 42, 485–510 (2018).  arXiv   NARWA
  7. Finite Volume approximations of the Euler system with variable congestion
    P. Degond, P. Minakowski, L. Navoret, EZ, Computers & Fluids, Fluids, Vol. 169, 23–39 (2018).  arXiv   C&F
  8. Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions
    J. Barré, J. A. Carrillo, P. Degond, D. Peurichard, EZ, J. Nonlinear Science, Vol. 28, Issue 1, 235–268, (2018). 
    arXiv   JNS
  9. Incompressible limit of the Navier-Stokes model with growth term
    N. Vauchelet, EZ, Nonlinear Analysis, Vol. 163, p. 34–59 (2017).  arXiv   NA
  10. Kinetic theory of particle interactions mediated by dynamical networks
    J. Barré, P. Degond, EZ, Multiscale Model. Simul. (SIAM), 15(3), 1294–1323, (2017).  arXiv   MMS
  11. On the pressureless damped Euler-Poisson equations with non-local forces: Critical thresholds and large-time behavior 
    J. A. Carrillo, Y-P.  Choi, EZ, Math. Models Methods Appl. Sci. Vol. 26, No. 12, 2311–2340 (2016).  arXiv   M3AS
  12. Existence of weak solutions for compressible Navier-Stokes equations with entropy transport 
    D. Maltese, M. Michalek, P. B. Mucha, A. Novotn, M. Pokorn, EZ, J. Differential Equations, 261, No. 8, 4448-4485 (2016)
    .  arXiv   JDE
  13. From the highly compressible Navier-Stokes equations to the Porous Medium equation - rate of convergence
    B. Haspot, EZ,  Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 6, 3107–3123 (2016).  arXiv
  14. On singular limits arising in the scale analysis of stratified fluid flows
    E. Feireisl, R. Klein, A. Novotn, EZ,  Math. Models Methods Appl. Sci., Vol. 26, No. 3, 419–443 (2016).  M3AS
  15. Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution
    P. B. Mucha, M. Pokorn, EZ,  SIAM J. Math. Anal., 47(5), 3747–3797 (2015).  SIMA
  16. On the steady flow of reactive gaseous mixture
    V. Giovangigli, M. Pokorný, EZ, Analysis (Berlin) Vol. 35, No. 4, 319–341 (2015).  Analysis
  17. Mixtures: sequential stability of variational entropy weak solutions,
    EZ, J. Math. Fluid Mech. 17, No.3, 437–461 (2015).
      JMFM
  18. Multicomponent Mixture Model. The Issue of Existence via Time Discretization
    P. B. Mucha, EZ, Commun. Math. Sci., Vol. 13, No. 8, 1975–2003 (2015).  CMS
  19. Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems
    V. Giovangigli, D. Bresch, EZ, J. Math. Pures Appl., Vol. 104, No. 4, 762–800 (2015).  JMPA
  20. Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ–entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities
    D. Bresch, B. Desjardins, EZ, J. Math. Pures Appl. Vol. 104, No. 4, 801–836 (2015).  JMPA
  21. Free/Congested Two-Phase Model from Weak Solutions to Multi-Dimensional Compressible Navier–Stokes Equations
    Charlotte Perrin, EZ, Commun. PDEs, 40: 1558–1589, (2015).  CPDE
  22. Singular limit of the Navier-Stokes system leading to a free/congested zones two-phase model
    D. Bresch, C. Perrin, EZ, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics,  352:  685-690 (2014).  CR
  23. Approximate solutions to a model of two-component reactive flow
    P. B. Mucha, M. Pokorný, EZ, Discrete Contin. Dyn. Syst. Ser. S, 7, No. 5 , 1079–1099 (2014).  DCDS
  24. Chemically reacting mixtures in terms of degenerated parabolic setting
    P. B. Mucha, M. Pokorný, EZ, J. Math. Phys., 54, 071501 (2013).  JMP
  25. On the flow of chemically reacting gaseous mixture
    EZ, J. Differential Equations, 253:3471-3500 (2012).  JDE
  26. Analysis of semidiscretization of the compressible Navier-Stokes equations
    EZ, J. Math. Anal.and Appl., 386:559-580 (2012).  JMAA
  27. On the steady flow of multicomponent, compressible, chemically reacting gas
    EZ, Nonlinearity, 24:3267-3278  (2011).  Nonlinearity
  28. Analysis of nonlocal model of compressible fluid in 1-D
    EZ, Math. Methods Appl. Sci., 34:198-212 (2011).  MMAS
     

Ph.D. Thesis

Fundamental problems to equations of compressible chemically reacting flows.  pdf

Outreach

EZ: Dynamical networks,  De Morgan Association Newsletter 2017/18.  UCL

 

Site Map Login Powered by gp|Easy CMS