
Idris

Daria Walukiewicz-Chrz¡szcz

Advanced Functional Programming

12 March 2024



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:

Idris (1 lecture)

Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:

Idris (1 lecture)

Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:

Idris (1 lecture)

Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:

Idris (1 lecture)

Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Motivation for dependent types: speci�cations

types become more precise

�ner types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with

| Node n k l r ⇒ k

end.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Motivation for dependent types: speci�cations

types become more precise

�ner types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with

| Node n k l r ⇒ k

end.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Motivation for dependent types: speci�cations

types become more precise

�ner types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with

| Node n k l r ⇒ k

end.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Motivation for dependent types: speci�cations

types become more precise

�ner types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with

| Node n k l r ⇒ k

end.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Motivation for dependent types: speci�cations

types become more precise

�ner types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with

| Node n k l r ⇒ k

end.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,

Array : nat → ⋆ is a type constructor,

Zeroesn : Arrayn is an array of n zeroes,

mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat) → ftree n

Convention: forall n : nat, bool ≡ nat → bool
Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependencies in types

type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent type)
type vector A n depends on a type A and value n (dependent type)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + de�ned by pattern matching on �rst argument:

0 + y = y

(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n

(equality can be proved by induction)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + de�ned by pattern matching on �rst argument:

0 + y = y

(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n

(equality can be proved by induction)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + de�ned by pattern matching on �rst argument:

0 + y = y

(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n

(equality can be proved by induction)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + de�ned by pattern matching on �rst argument:

0 + y = y

(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n

(equality can be proved by induction)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + de�ned by pattern matching on �rst argument:

0 + y = y

(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n

(equality can be proved by induction)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - in simpli�ed Idris

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j)

| Odd j => Odd (S j)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - in simpli�ed Idris

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j)

| Odd j => Odd (S j)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types - in simpli�ed Idris

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j)

| Odd j => Odd (S j)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j) ?: S (S (j+j))

| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j) ?: S (S (j+j))

| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j) ?: S (S (j+j))

| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where

| Even : forall n:nat, Parity (n + n)

| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity O = Even O

parity (S 0) = Odd O

parity (S (S k)) = match (parity k) with

| Even j => Even (S j) ?: S (S (j+j))

| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews

https://edwinb.wordpress.com/

�Type-driven development with Idris� Edwin Brady, published by
Manning, March 2017

Idris1 based on core Type Theory (�Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation�, Journal of Functional Programming 2013)

Idris2 based on Quantitative Type Theory (�The Syntax and
Semantics of Quantitative Type Theory�, Robert Atkey, LICS '18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9�12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are �rst class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better speci�cations of functions
but writing a function that satis�es its speci�cation may need proofs
type-driven development treats programming as �solving a puzzle�:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html

idris2 foo.idr enters the interactive environment, similar to ghci

commands, :t, :q (type :? for full list of commands)

compilation: idris2 --cg racket -o foo foo.idr

executable in build/exec

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html

idris2 foo.idr enters the interactive environment, similar to ghci

commands, :t, :q (type :? for full list of commands)

compilation: idris2 --cg racket -o foo foo.idr

executable in build/exec

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html

idris2 foo.idr enters the interactive environment, similar to ghci

commands, :t, :q (type :? for full list of commands)

compilation: idris2 --cg racket -o foo foo.idr

executable in build/exec

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html

idris2 foo.idr enters the interactive environment, similar to ghci

commands, :t, :q (type :? for full list of commands)

compilation: idris2 --cg racket -o foo foo.idr

executable in build/exec

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Idris and dependent types - examples

Hello.idr

Generic.idr

Let Where.idr

FCTypes.idr

Vectors.idr

TCVects.idr

WordLength vec.idr

ApplyVec.idr

Adder.idr

RemoveElem.idr

Parity.idr

Binary.idr

AppendVecRew.idr

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Interfaces

similar to type classes in Haskell

there can be many implementations for one type

(see Eq.idr Tree.idr)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Equality in Idris

== is not adequate

equality de�ned at the level of types

(see EqNat.idr, ExactLength.idr)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it

covers all possible inputs

is well-founded (in recursive calls arguments are decreasing)

does not use any data types which are not strictly positive

does not call any non-total functions

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it

covers all possible inputs

is well-founded (in recursive calls arguments are decreasing)

does not use any data types which are not strictly positive

does not call any non-total functions

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it

covers all possible inputs

is well-founded (in recursive calls arguments are decreasing)

does not use any data types which are not strictly positive

does not call any non-total functions

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it

covers all possible inputs

is well-founded (in recursive calls arguments are decreasing)

does not use any data types which are not strictly positive

does not call any non-total functions

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it

covers all possible inputs

is well-founded (in recursive calls arguments are decreasing)

does not use any data types which are not strictly positive

does not call any non-total functions

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control

linearity (used exactly once)

erasure (not used at runtime)

and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control

linearity (used exactly once)

erasure (not used at runtime)

and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control

linearity (used exactly once)

erasure (not used at runtime)

and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrz¡szcz Advanced functional programming


	Intro
	Idris

