Coq - introduction

Daria Walukiewicz-Chrzaszcz

22 March 2022

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
(x v *)
(* <0___,, *)

. lJ
' (x \VV/ %)
{5} x /] %)
(%)

— http://coq.inria.fr/ (kkskokkkok Kok ok)

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

(* <0___,, *)

' G AW/ %)
r/ /W
(*)

http://coq.inria.fr/ (kkskokkkok Kok ok)

@ rich (pure) functional programming language

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

(* <0___,, *)

' G AW/ %)
r/ /W
(*)

http://coq.inria.fr/ (kkskokkkok Kok ok)

@ rich (pure) functional programming language

@ rich logical language

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

\ (x <0___,, *)

(x \VV/ %)

r/ CR72E
(* *)

http://coq.inria.fr/ (kok sk kokok ok Kk)

@ rich (pure) functional programming language
@ rich logical language

@ user writes proofs

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

(* <0___,, *)

j (¢ \W/ %)
/_r) (x /] %)
(x *)
— http://coq.inria.fr/ (kkskokkkok Kok ok)
@ rich (pure) functional programming language
@ rich logical language

@ user writes proofs

o Coq makes sure every step is correct

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

(* <0___,, *)

' (e W/)
r/ /0w
(* *)

o http://coq.inria.fr/ (okkokok sk ko ok oKk)

rich (pure) functional programming language
rich logical language
user writes proofs

Coq makes sure every step is correct

and solves subgoals for which automated proving algorithms have
been implemented

Daria Walukiewicz-Chrzaszez

Coq — interactive proof assistant

(koK sk koK s ok k sk ok %)
) (x v *)

(* <0___,, *)

' (e W/)
r/ /0w
(* *)

o http://coq.inria.fr/ (okkokok sk ko ok oKk)

@ rich (pure) functional programming language
@ rich logical language

@ user writes proofs

@ Coq makes sure every step is correct

@ and solves subgoals for which automated proving algorithms have
been implemented

o (proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrzaszez

Proving in Coq

Intuitionistic logic

Daria Walukiewicz-Chrzaszez

Proving in Coq

Intuitionistic logic

Curry-Howard isomorphism

of a given formula

Daria Walukiewicz-Chrzaszez

Proving in Coq

Intuitionistic logic

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

Daria Walukiewicz-Chrzaszez

Proving in Coq

Intuitionistic logic

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

AzA7BZONy A B 22(y2) : (A= B—=C)— (A— B)— (A= 0)

Daria Walukiewicz-Chrzaszez

Proving in Coq

Intuitionistic logic

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

AzA7BZONy A B 22(y2) : (A= B—=C)— (A— B)— (A= 0)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrzaszez

Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

Fw cc
F
AP2 1 polimorphism
/" type constructors
o APw — dependent types
A— AP

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

e CIC typing
o reduction

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

e CIC typing
e reduction
o environment (definitions, axioms etc).

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

@ the rest, responsible for:

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

@ the rest, responsible for:
o user interface

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

@ the rest, responsible for:

e user interface
o file management

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
o reduction
o environment (definitions, axioms etc).
o modules
@ the rest, responsible for:

e user interface
o file management
e sections

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
o reduction
o environment (definitions, axioms etc).
o modules
@ the rest, responsible for:
user interface
file management

sections
namespace management

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

CIC typing

reduction

environment (definitions, axioms etc).

modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:

CIC typing

reduction

environment (definitions, axioms etc).

modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism
auto-generation of inductive principles

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
@ core / kernel, responsible for:
e CIC typing
e reduction
o environment (definitions, axioms etc).
e modules

@ the rest, responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism
auto-generation of inductive principles

Daria Walukiewicz-Chrzaszez

Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)

1991 Coq - calculus of inductive constructions - C. Paulin
(version 5.6)

2000 version 7.0 with new (safer) architecture

2003 version 7.4 with modules

2004 version 8.0 with new syntax

2009 version 8.2 with “type classes”

2012 version 8.4 with eta-reduction, structural proof syntax...
2019 version 8.11 with new tactic language Ltac2

2020 version 8.13 with definitional proof irrelevance for the
equality type in SProp (introduced in 8.10)

Daria Walukiewicz-Chrzaszez

Coq — famous formalizations

o Fundamental theorem of algebra, Nijmegen 2000

@ JavaCard Platform formalization, Trusted Logic 2003
September 2007: a big step in program certification in the real world:
The Technology and Innovation group at Gemalto has successfully
completed a Common Criteria (CC) evaluation on a JavaCard based
commercial product. This evaluation is the world’s first CC certifi-
cate of a Java product involving EAL7 components. (the official press
release)

@ Four color theorem, Cambridge 2004

@ CompCert certified Clight compiler, 2008-now
The main result of the project is the CompCert C verified compiler,
a high-assurance compiler for almost all of the ISO C90 / ANSI C
language, generating efficient code for the PowerPC, ARM and x86
Drocessors.

= % -

Progmedan

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type

@ abstraction and application

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type
@ abstraction and application

@ inductive types,

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application

inductive types,

(structural) recursion

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application
inductive types,

(structural) recursion

polimorphism

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application
inductive types,

(structural) recursion

polimorphism

e 6 6 6 o o

dependant types and dependent pattern-matching

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type

abstraction and application

inductive types,

(structural) recursion

polimorphism

dependant types and dependent pattern-matching

e 6 6 6 o o6 o

modules i functors

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type

abstraction and application

inductive types,

(structural) recursion

polimorphism

dependant types and dependent pattern-matching

modules i functors

®© 6 6 66 6 o o o

type classes

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type

abstraction and application

inductive types,

(structural) recursion

polimorphism

dependant types and dependent pattern-matching
modules i functors

type classes

®© 6 6 6 6 6 o o o

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic

e impredicative sort Prop

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic
e impredicative sort Prop

o forall and implication built-in

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic
e impredicative sort Prop
o forall and implication built-in

@ boolean connectives, false, exists (defined)

Daria Walukiewicz-Chrzaszez

Coq — logic

intuitionistic higher-order logic

impredicative sort Prop

"]

("]

o forall and implication built-in

@ boolean connectives, false, exists (defined)
("]

inductive predicates (including equality)

Daria Walukiewicz-Chrzaszez

Coq — logic

intuitionistic higher-order logic

impredicative sort Prop

boolean connectives, false, exists (defined)

o

o

o forall and implication built-in

o

e inductive predicates (including equality)
o

Daria Walukiewicz-Chrzaszez

Coq proof machinery

e interactive proof mode (goal management)

Daria Walukiewicz-Chrzaszez

Coq proof machinery

e interactive proof mode (goal management)

@ built-in tactics (constructing a bit of proof-term): intro, apply, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

@ interactive proof mode (goal management)
@ built-in tactics (constructing a bit of proof-term): intro, apply, etc.
@ automatic ad-hoc tactics: auto, intuition, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

@ interactive proof mode (goal management)

@ built-in tactics (constructing a bit of proof-term): intro, apply, etc.
@ automatic ad-hoc tactics: auto, intuition, etc.
°

decision procedures: lia, ring, field, tauto, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.

decision procedures: lia, ring, field, tauto, etc.

tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof

@ extracted program satisfies its specification by definition

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof
@ extracted program satisfies its specification by definition

@ extraction — “elimination” of logical parts from the proof-term

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof
@ extracted program satisfies its specification by definition
@ extraction — “elimination” of logical parts from the proof-term

@ extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

Daria Walukiewicz-Chrzaszez

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition

extraction — “elimination” of logical parts from the proof-term

extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

target languages: O'Caml, Haskell, Scheme

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/

Certified Programming with
cdent T

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
e Coq Art, Yves Bertot, Pierre Castéran

Certified Programming with
cdent T

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
e Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
e Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
e Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrzaszez

Typing

Typing

environment - term: type

Daria Walukiewicz-Chrzaszez

Typing

Typing

environment - term: type

environment: global and local declarations and definitions

Daria Walukiewicz-Chrzaszez

environment - term: type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type;

Daria Walukiewicz-Chrzaszez

environment - term: type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type;

but there are terms that are not types, ex. fun n:nat => n

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B

simple types abstraction rule: TFwAM ASB

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B
'FXx:AM : A—> B

simple types abstraction rule:

I,x:AF M : B(x)
I'EX:AM : Tlx:A.B(x)

dependent types abstraction rule:

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B
'FXx:AM : A—> B

simple types abstraction rule:

I,x:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B
'FXx:AM : A—> B

simple types abstraction rule:

I,x:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Shorthand: A — B is Va:A.B, where © ¢ FV(B)

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B

simple types abstraction rule: TFwAM ASB

I,x:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:
Shorthand: A — B is Va:A.B, where © ¢ FV(B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B

simple types abstraction rule: TFwAM ASB

I,x:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Shorthand: A — B is Va:A.B, where © ¢ FV(B)
concrete Coq syntax:

fun n:nat => M : forall n:nat, vector n

application rule:

'rF:A—-B T'HG:A
I'FFG:B

Daria Walukiewicz-Chrzaszez

Typing

Coq — formalism: fun for all

Ie:A-M: B
'FXx:AM : A—> B

simple types abstraction rule:

T,z:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Shorthand: A — B is Va:A.B, where © ¢ FV(B)
concrete Coq syntax:

fun n:nat => M : forall n:nat, vector n

application rule:

''-F:A—-B THG:A 'FF:Ve:AB(x) THG: A
I'-FG:B '+ FG: B[G/x]

Daria Walukiewicz-Chrzaszez

Coq — typing rules: sorts

e Sorts in Coq:

Prop))
Set Type; : Types : ...

Daria Walukiewicz-Chrzaszez

Coq — typing rules: sorts

e Sorts in Coq:

Prop))
Set Type; : Types : ...

e Cummulativity (or sub-sorting):

Prop < Set < Type, < Types < ...

Daria Walukiewicz-Chrzaszez

Coq — products

product rule
T'FA:s; I'z:AF B: s
I'EV2:A.B : s

if s1 and sg satisfy ...

Daria Walukiewicz-Chrzaszez

Coq — products

product rule
T'FA:s; I'z:AF B: s

I'EV2:A.B : s
@ s1 < s9, 0Or

if s1 and sg satisfy ...

cummulativity rule

Fl—M:sl,,I_ -
— |esli
TFM:sp, 0 51252

Daria Walukiewicz-Chrzaszez

Coq — products

product rule
T'FA:s; I'z:AF B: s

I'EV2:A.B : s
@ s1 < s9, 0Or

if s1 and sg satisfy ...

@ sy = Prop

cummulativity rule

Fl—M:sl,,I_ -
— |esli
TFM:s, 0 512952

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ae:A M

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ae:A M

o delta

(definition unfolding)

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ae:A M

o delta

(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ae:A M

o delta
(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

@ iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrzaszez

Typing
Cog — conversion

conversion rule
T'FM:A ' A=gp5c. A A :s
I'M:A

Daria Walukiewicz-Chrzaszez

Typing
Cog — conversion

conversion rule
T'FM:A ' A=gp5c. A A :s
I'M:A

vector nat 4 —;,, vector nat (2+2)

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in

@ in intuitionistic logic False, A, V cannot be defined from —

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in
@ in intuitionistic logic False, A, V cannot be defined from —

o they are defined as inductive types

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in
@ in intuitionistic logic False, A, V cannot be defined from —
o they are defined as inductive types

@ negation is defined —¢ = ¢ — False

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

Daria Walukiewicz-Chrzaszez

forall and implication are built-in

in intuitionistic logic Flalse, A, V cannot be defined from —
they are defined as inductive types

negation is defined -¢ = ¢ — False

in intuitionistic logic 3 cannot be defined from V

Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in

in intuitionistic logic Flalse, A, V cannot be defined from —
they are defined as inductive types

negation is defined -¢ = ¢ — False

in intuitionistic logic 3 cannot be defined from V

existential quantifier is defined as an inductive type

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in

in intuitionistic logic Flalse, A, V cannot be defined from —
they are defined as inductive types

negation is defined -¢ = ¢ — False

in intuitionistic logic 3 cannot be defined from V

existential quantifier is defined as an inductive type

e 6 6 6 o o

one can use classical logic - axioms needed (ex: excluded middle)

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in

in intuitionistic logic Flalse, A, V cannot be defined from —
they are defined as inductive types

negation is defined -¢ = ¢ — False

in intuitionistic logic 3 cannot be defined from V

existential quantifier is defined as an inductive type

one can use classical logic - axioms needed (ex: excluded middle)

e 6 6 6 o6 ¢ o

proof-checking is decidable (not provability)

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

False_ind
:forall P : Prop, False -> P

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

False_ind
:forall P : Prop, False -> P

Inductive True : Prop :=
I : True.

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B

A is an infix notation for and, V is an infix notation for or

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B

A is an infix notation for and, V is an infix notation for or

Inductive or (A B : Prop) : Prop :=
or_introl : A -> or A B
| or_intror : B -> or A B.

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B

A is an infix notation for and, V is an infix notation for or

Inductive or (A B : Prop) : Prop :=
or_introl : A -> or A B
| or_intror : B -> or A B.

or_ind
:forall ABP : Prop, (A ->P) -> (B ->P) >A B ->P

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex A P.

Daria Walukiewicz-Chrzaszez

Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex A P.

exists y, P y is a notation for ex

Daria Walukiewicz-Chrzaszez

	Typing
	Inductive definitions of logic connectives

