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@ rich (pure) functional programming language
@ rich logical language

@ user writes proofs

@ Coq makes sure every step is correct

@ and solves subgoals for which automated proving algorithms have
been implemented

o (proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...
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Proving in Coq

Intuitionistic logic

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

AzA7BZONy A B 22(y2) : (A= B—=C)— (A— B)— (A= 0)

Correctness of Coq relies on correctness of type-checking
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Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

Fw cc
F
AP2 1 polimorphism
/" type constructors
o APw — dependent types
A— AP
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Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)

1991 Coq - calculus of inductive constructions - C. Paulin
(version 5.6)

2000 version 7.0 with new (safer) architecture

2003 version 7.4 with modules

2004 version 8.0 with new syntax

2009 version 8.2 with “type classes”

2012 version 8.4 with eta-reduction, structural proof syntax...
2019 version 8.11 with new tactic language Ltac2

2020 version 8.13 with definitional proof irrelevance for the
equality type in SProp (introduced in 8.10)
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Coq — famous formalizations

o Fundamental theorem of algebra, Nijmegen 2000

@ JavaCard Platform formalization, Trusted Logic 2003
September 2007: a big step in program certification in the real world:
The Technology and Innovation group at Gemalto has successfully
completed a Common Criteria (CC) evaluation on a JavaCard based
commercial product. This evaluation is the world’s first CC certifi-
cate of a Java product involving EAL7 components. (the official press
release)

@ Four color theorem, Cambridge 2004

@ CompCert certified Clight compiler, 2008-now
The main result of the project is the CompCert C verified compiler,
a high-assurance compiler for almost all of the ISO C90 / ANSI C
language, generating efficient code for the PowerPC, ARM and x86
Drocessors.

= % -

Progmedan
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impredicative sort Prop
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Coq — logic

intuitionistic higher-order logic

impredicative sort Prop

boolean connectives, false, exists (defined)

o

o

o forall and implication built-in

o

e inductive predicates (including equality)
o
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Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.

decision procedures: lia, ring, field, tauto, etc.

tactic language (Ltac mytactic:=...)
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Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition

extraction — “elimination” of logical parts from the proof-term

extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

target languages: O'Caml, Haskell, Scheme
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Resources

@ https://coq.inria.fr/
e Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/
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environment - term: type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type;

but there are terms that are not types, ex. fun n:nat => n
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Coq — formalism: fun for all

Ie:A-M: B

simple types abstraction rule: TFwAM  ASB
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I,x:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Shorthand: A — B is Va:A.B, where © ¢ FV(B)
concrete Coq syntax:

fun n:nat => M : forall n:nat, vector n
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Typing

Coq — formalism: fun for all

Ie:A-M: B
'FXx:AM : A—> B

simple types abstraction rule:

T,z:AF M : B(x)
' Xx:AM : Va:A.B(x)

dependent types abstraction rule:

Shorthand: A — B is Va:A.B, where © ¢ FV(B)
concrete Coq syntax:

fun n:nat => M : forall n:nat, vector n

application rule:

''-F:A—-B THG:A 'FF:Ve:AB(x) THG: A
I'-FG:B '+ FG: B[G/x]
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Coq — typing rules: sorts

e Sorts in Coq:

Prop ) )
Set Type; : Types : ...
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Coq — typing rules: sorts

e Sorts in Coq:

Prop ) )
Set Type; : Types : ...

e Cummulativity (or sub-sorting):

Prop < Set < Type, < Types < ...
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Coq — products

product rule
T'FA:s; I'z:AF B: s
I'EV2:A.B : s

if s1 and sg satisfy ...
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Coq — products

product rule
T'FA:s; I'z:AF B: s

I'EV2:A.B : s
@ s1 < s9, 0Or

if s1 and sg satisfy ...

cummulativity rule

Fl—M:sl,,I_ -
— |esli
TFM:sp, 0 51252
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Coq — products

product rule
T'FA:s; I'z:AF B: s

I'EV2:A.B : s
@ s1 < s9, 0Or

if s1 and sg satisfy ...

@ sy = Prop

cummulativity rule

Fl—M:sl,,I_ -
— |esli
TFM:s, 0 512952
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Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ae:A M

o delta
(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

@ iota

(inductive types reductions — soon :)
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Typing
Cog — conversion

conversion rule
T'FM:A ' A=gp5c. A A :s
I'M:A
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Typing
Cog — conversion

conversion rule
T'FM:A ' A=gp5c. A A :s
I'M:A

vector nat 4 —;,, vector nat (2+2)
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Inductive definitions of logic connectives

Coq implements intuitionistic logic

o forall and implication are built-in

in intuitionistic logic Flalse, A, V cannot be defined from —
they are defined as inductive types

negation is defined -¢ = ¢ — False

in intuitionistic logic 3 cannot be defined from V

existential quantifier is defined as an inductive type

one can use classical logic - axioms needed (ex: excluded middle)

e 6 6 6 o6 ¢ o

proof-checking is decidable (not provability)
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Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.
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Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

False_ind
:forall P : Prop, False -> P

Inductive True : Prop :=
I : True.
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Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B
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Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A ->B ->and A B

A is an infix notation for and, V is an infix notation for or

Inductive or (A B : Prop) : Prop :=
or_introl : A -> or A B
| or_intror : B -> or A B.

or_ind
:forall ABP : Prop, (A ->P) -> (B ->P) >A B ->P
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Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex A P.
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Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex A P.

exists y, P y is a notation for ex
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