
Idris

Daria Walukiewicz-Chrząszcz

Advanced Functional Programming

15 March 2022



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:
Idris (1 lecture)
Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:
Idris (1 lecture)
Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:
Idris (1 lecture)
Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Advanced functional programming

My part of the lecture:
theorem proving and programming with dependent types

Plan:
Idris (1 lecture)
Coq (6 lectures)
Coq project (grades)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Motivation for dependent types: specifications

types become more precise
finer types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with
| Node n k l r ⇒ k
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Motivation for dependent types: specifications

types become more precise
finer types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with
| Node n k l r ⇒ k
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Motivation for dependent types: specifications

types become more precise
finer types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with
| Node n k l r ⇒ k
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Motivation for dependent types: specifications

types become more precise
finer types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with
| Node n k l r ⇒ k
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Motivation for dependent types: specifications

types become more precise
finer types better specify the properties of the function

Inductive ftree : nat → Set :=
| Leaf : ftree 0
| Node : ∀ n: nat, Z → ftree n → ftree n → ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z :=
match t with
| Node n k l r ⇒ k
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

M : Arrayn means that M is an array of size n,
Array : nat→ ? is a type constructor,
Zeroesn : Arrayn is an array of n zeroes,
mapping n 7→ Zeroesn has functional dependent type

∀n : nat.Arrayn

Notations:
∀n : nat.ftree n

Πn : nat.ftree n

forall n : nat, ftree n

(n : nat)→ ftree n

Convention: forall n : nat, bool ≡ nat→ bool
Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependencies in types

type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent type)
type vector A n depends on a type A and value n (dependent type)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

0 + y = y
(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

0 + y = y
(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

0 + y = y
(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

0 + y = y
(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - computations in types

ftree (2+2) ≡ ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

0 + y = y
(S x) + y = S (x+y)

2+2 computes to 4

0+n computes to n

but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j)
| Odd j => Odd (S j)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j)
| Odd j => Odd (S j)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j)
| Odd j => Odd (S j)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j) ?: S (S (j+j))
| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j) ?: S (S (j+j))
| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j) ?: S (S (j+j))
| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| Odd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n
parity O = Even O
parity (S 0) = Odd O
parity (S (S k)) = match (parity k) with
| Even j => Even (S j) ?: S (S (j+j))
| Odd j => Odd (S j)

Type of Even (S j) is Parity((S j) + (S j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j)) equals S (S (j+j))

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

started in 2008
http://www.idris-lang.org/
development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/
“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017
Idris1 based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)
Idris2 based on Quantitative Type Theory (“The Syntax and
Semantics of Quantitative Type Theory”, Robert Atkey, LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris

general purpose pure functional programming language with
dependent types
syntax similar to Haskell, but the meanings of : and :: are
interchanged
type declarations required
eager evaluation, lazy computations are possible
dependent types
types are first class language constructs (can be arguments to
functions, returned from functions)
dependent types provide better specifications of functions
but writing a function that satisfies its specification may need proofs
type-driven development treats programming as “solving a puzzle”:
the program is the solution to the puzzle, the type is the goal of the
puzzle
because of dependent types, evaluation is needed at type-checking
functions used in evaluation must be total and terminating
compiler gets rid of the arguments to functions and constructors
bound with quantity/multiplicity 0; erased arguments are still
relevant at compile time.

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html
idris2 foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)
compilation: idris2 --cg racket -o foo foo.idr
executable in build/exec

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html
idris2 foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)
compilation: idris2 --cg racket -o foo foo.idr
executable in build/exec

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html
idris2 foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)
compilation: idris2 --cg racket -o foo foo.idr
executable in build/exec

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris - getting started

installation: see https://www.idris-lang.org/pages/download.html
idris2 foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)
compilation: idris2 --cg racket -o foo foo.idr
executable in build/exec

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Idris and dependent types - examples

Hello.idr
Generic.idr
Let Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
WordLength vec.idr
ApplyVec.idr
Adder.idr
RemoveElem.idr
Parity.idr
Binary.idr
AppendVecRew.idr

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Interfaces

similar to type classes in Haskell
there can be many implementations for one type

(see Eq.idr Tree.idr)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Equality in Idris

== is not adequate
equality defined at the level of types

(see EqNat.idr, ExactLength.idr)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it
covers all possible inputs
is well-founded (in recursive calls arguments are decreasing)
does not use any data types which are not strictly positive
does not call any non-total functions

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it
covers all possible inputs
is well-founded (in recursive calls arguments are decreasing)
does not use any data types which are not strictly positive
does not call any non-total functions

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it
covers all possible inputs
is well-founded (in recursive calls arguments are decreasing)
does not use any data types which are not strictly positive
does not call any non-total functions

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it
covers all possible inputs
is well-founded (in recursive calls arguments are decreasing)
does not use any data types which are not strictly positive
does not call any non-total functions

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Totality checking

Function is total if it
covers all possible inputs
is well-founded (in recursive calls arguments are decreasing)
does not use any data types which are not strictly positive
does not call any non-total functions

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control
linearity (used exactly once)
erasure (not used at runtime)
and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control
linearity (used exactly once)
erasure (not used at runtime)
and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrząszcz Advanced functional programming



Intro Idris

Multiplicities

Allow to control
linearity (used exactly once)
erasure (not used at runtime)
and unrestricted use.

(see Multiplicities.idr)

Daria Walukiewicz-Chrząszcz Advanced functional programming


	Intro
	Idris

