Coq Survival Kit

David Pichardie, Sandrine Blazy
ENS Rennes - IRISA - Université Rennes 1

Table of contents

- admit
- intros
- intros names
- assert
- assumption
- split
- left/right
- destruct on $P / \backslash Q$
- destruct on $P \backslash / Q$
- destruct on False
- destruct on a term
- apply
- exists
- rewrite
- simpl
- unfold
-i
- induction term
- congruence
- omega

Tactics used in Lecture3.v

destruct

on a hypothesis of the form $P / \triangle Q$

destruct

on a hypothesis of the form PV/Q

destruct
on a hypothesis of the form False

```
H : False
```


destruct H

```
no more subgoal
```


destruct

on a term with an inductive type

left／right

tac1 ; tac2

If tac1 generates several subgoals, tac2 is applied on each of them.

simpl

see also simpl in＊

```
```

Definition pred (n:nat) :=

```
```

Definition pred (n:nat) :=
match n with
match n with
| 0 => 0
| 0 => 0
S m => m
S m => m
end.

```
```

 end.
    ```
```


But the behavior of the command is not always that simple ．．．

intros

intros names

admit

no more subgoal
P

- solve the current subgoal with an axiom
- this is cheating!

congruence

It solves automatically a subgoal using only the following deduction rules

$$
\overline{x=x} \quad \frac{x=y \quad(P x)}{(P y)}
$$

Examples

$$
\overline{(C x) \neq\left(C^{\prime} y\right)} \quad \frac{(C x)=(C y)}{x=y}
$$

```
n : nat
H : S n = S m congruence
=====================
    \xrightarrow { C } \text { no more subgoal}
plus n p = plus m p
n : nat
H : S n = O
```



```
congruence
    no more subgoal
False
```


induction

on a term with an inductive type

assert

rewrite

．．．a ．．．

$\mathrm{H}: \mathrm{a}=\mathrm{b}$

ニニニニニニニニニニニニニニニニニニコニ

エewエ1te H

$\mathrm{H}: \mathrm{a}=\mathrm{b}$

ニニニニニニニニニニニニニニニニコニニニ
．．．b

$\mathrm{H}: \mathrm{a}=\mathrm{b}$

ニニニニニニニニニニニニニニニニニニニニ

omega

(do a Require Import ZArith before using it)
It solves automatically a subgoal using only arithmetic reasoning on nat and z.
Beware, this is only for linear arithmetic: multiplication is only understood if one of the arguments is a numerical constant.

Examples

$$
\begin{aligned}
& \mathrm{H}: \mathrm{x}<=\mathrm{y}+1 \\
& \mathrm{HO}: 2 * \mathrm{y}<=\mathrm{z}-3 \\
& =====================
\end{aligned}
$$

$$
2 * x+1<=z
$$

omega

no more subgoal

$x+(y+z)=(x+y)+z$

apply

Q

$=======================$ Q a (f a)
H : forall x Y, P x y-> $\mathrm{Q} y$ ========================= Q (f a)
H : forall x y, P y -> Q x y
H : forall x y, P y -> Q x y
=========================
P (f a)
Coq guesses how to instantiate the quantifiers


```
H : P -> Q
```


P

H : forall x y, P x y -> Q y

Pa(fa)

Other useful tactics

assumption

no more subgoal

unfold

replace a name by its definition

Definition succ (n:nat) := S n.

split

exists

ニニニニニニニニニニニニニニニ＝
exists $\mathrm{x}, \mathrm{P} \mathrm{x}$

inv

can be loaded with the library MSMLib given
or by inserting Ltac inv H := inversion H; clear H; try subst.

```
Inductive le (n : nat) : nat -> Prop :=
    | le_n :
        (* ==== *)
        le n n
    | le_S m
        (Hle: n <= m):
        (* ==== *)
        le n (S m).
```


