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Coinductive types Coinductive predicates Bisimulation Example

In Coq nontermination has to be avoided

General recursion will make Coq inconsistent

Fixpoint bad (u : unit) : P := bad u.

Fixpoint definition has its “guard condition” (recursive calls has to be
done on structurally smaller terms) and it reduces only when aki (the
argument one does recursion on) starts with a constructor:

(Fix f a1 ... aki) -> ti a1 ... aki

Fix and Case reductions are called together iota reduction

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne



Coinductive types Coinductive predicates Bisimulation Example

In Coq nontermination has to be avoided

General recursion will make Coq inconsistent

Fixpoint bad (u : unit) : P := bad u.

Fixpoint definition has its “guard condition” (recursive calls has to be
done on structurally smaller terms) and it reduces only when aki (the
argument one does recursion on) starts with a constructor:

(Fix f a1 ... aki) -> ti a1 ... aki

Fix and Case reductions are called together iota reduction

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne



Coinductive types Coinductive predicates Bisimulation Example

In Coq nontermination has to be avoided

General recursion will make Coq inconsistent

Fixpoint bad (u : unit) : P := bad u.

Fixpoint definition has its “guard condition” (recursive calls has to be
done on structurally smaller terms) and it reduces only when aki (the
argument one does recursion on) starts with a constructor:

(Fix f a1 ... aki) -> ti a1 ... aki

Fix and Case reductions are called together iota reduction

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne



Coinductive types Coinductive predicates Bisimulation Example

In Coq nontermination has to be avoided

General recursion will make Coq inconsistent

Fixpoint bad (u : unit) : P := bad u.

Fixpoint definition has its “guard condition” (recursive calls has to be
done on structurally smaller terms) and it reduces only when aki (the
argument one does recursion on) starts with a constructor:

(Fix f a1 ... aki) -> ti a1 ... aki

Fix and Case reductions are called together iota reduction

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne



Coinductive types Coinductive predicates Bisimulation Example

Lazy lists — LList

CoInductive LList (A:Set) :Set :=
LNil : LList A

| LCons : A -> LList A -> LList A

terms built from constructors
LList is the greatest set of terms built from LNil i LCons
containing infinite and finite terms
induction principle does not hold
constructors are injective and distinct (one may use tactics
injection and discriminate)
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Lazy trees — LTree

CoInductive LTree (A:Set) :Set :=
LLeaf : LTree A

| LBin : A -> LTree A -> LTree A -> LTree A

finite and infinite trees
some branches can be infinite
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Streams — Stream

CoInductive Stream (A:Set) :Set :=
Cons : A -> Stream A -> Stream A

there are no finite streams
every stream is of the form Cons a l
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Pattern-matching

Definition isEmpty (A:Type) (l:LList A) : Prop :=
match l with
| LNil => True
| LCons a l’ => False
end.

Definition LHead (A:Type) (l:LList A) : option A :=
match l with
| LNil => None
| LCons a l’ => Some a
end.
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Pattern-matching

Fixpoint LNth (A:Type) (n:nat) (l:LList A) {struct n} :
option A :=
match l with
| LNil => None
| LCons a l’ => match n with

| O => Some a
| S p => LNth p l’
end

end.

Eval compute in (LNth 2 (LCons 4 (LCons 3 (LCons 90 LNil)))).
= Some 90 : option nat
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Building infinite objects

Goal: to represent infinite objects in a finite way. Failed attempt:

Fixpoint from (n:nat) {struct n} : LList nat :=
Lcons n (from (S n)).

Reason: recursive call from is not applied to structurally smaller
argument. Successful attempt:

CoFixpoint from (n:nat) : LList nat := LCons n (from (S n)).

Definition Nats : LList nat := from 0.
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Corecursive functions — introduction

all computations in Coq are finite,
recursive function consumes values of an inductive type,
corecursive function produces values in a coinductive type,
result may be infinite, but its every finite aproximation should be
computable in finite time,
corecursive functions have its “guard conditions”.
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Corecursive functions — guard condition

Definition by cofixpoint is correct if every (co)recursive call is one of
the arguments of some constructor of a coniductive type.

similarity: in lazy programming languages constructors do not
evaluate its arguments
if coinductive values are matched against patterns, then guard
condition ensures that every recursive call of a corecursive function
produces in a finite time its head-constructor
recursive function reduces when it is applied to a value with
constructor in head position; corecursive function reduces when it is
an argument to pattern-matching
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Examples

Eval simpl in (from 3).
= from 3 : LLIst nat

Eval simpl in (LHead (LTail (from 3))).
= Some 4 : option nat

CoFixpoint forever (A:Type)(a:A):LList A:=LCons a (forever a).

CoFixpoint LAppend (A:Type) (u v:LList A) : LList A :=
match u with
| LNil => v
| LCons a u’ => LCons a (LAppend u’ v)
end.

Eval compute in (LNth 123 (LAppend (forever 33) Nats)).
= Some 33 : option nat

Eval compute in
(LNth 123 (LAppend (LCons 0 (LCons 1 (LCons 2 LNil))) Nats)).
= Some 120 : option nat
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Incorrect definitions by cofixpoint

CoFixpoint filter (A:Set) (p: A->bool) (l:LList A) : LList A
:=
match l with
| LNil => LNil
| LCons a l’ => if (p a) then LCons a (filter p l’)

else (filter p l’) end.

LHead (filter (fun p:nat =>
match p with 0 => true | S n => false end)

(from 1))

would cause an infinite computation
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Decomposition lemmas

Definition LList decompose (A:Type) (l:LList A) : LList A :=
match l with
| LNil => LNil
| LCons a l’ => LCons a l’
end.

Eval simpl in (LList decompose (forever 33)).
= LCons 33 (forever 33) : LList nat

Lemma LList decomposition : forall (A:Type) (l:LList A), l =
LList decompose l.
Proof.
intros A l; case l; trivial.

Qed.
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Proofs using decomposition

Ltac LList unfold term := apply trans equal with
(1 := LList decomposition term).

Lemma LAppend LNil : forall (A:Type) (v:LList A),
LAppend LNil v = v.

Proof.
intros A v.
LList unfold (LAppend LNil v).
case v; simpl in |- *; reflexivity.

Qed.
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Inductive predicates on coinductive types

Inductive Finite (A:Type) : LList A -> Prop :=
| Finite LNil : Finite LNil
| Finite LCons : forall (a:A) (l:LList A), Finite l -> Finite

(LCons a l).

Remark one two three : Finite (LCons 1 (LCons 2 (LCons 3 LNil))).
Proof.
repeat constructor.

Qed.

Theorem Finite of LCons :
forall (A:Type) (a:A) (l:LList A),

Finite (LCons a l) -> Finite l.
Proof.
intros A a l H; inversion H; assumption.

Qed.
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Coinductive predicates

CoInductive Infinite (A:Type) : LList A -> Prop :=
Infinite LCons :
forall (a:A) (l:LList A), Infinite l -> Infinite (LCons a l).

We want to prove that forall n:nat, Infinite (from n).
We need an auxiliary decomposition lemma for from:

Lemma from unfold : forall n:nat, from n = LCons n (from (S
n)).
Proof.
intro n.
LList unfold (from n).
simpl in |- *; trivial.

Qed.
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Proof of forall n:nat, Infinite (from n)

The proof will be a corecursive function — the greatest fixpoint of
F from:

Definition F from :
(forall n:nat, Infinite (from n)) -> forall n:nat, Infinite

(from n).

intros H n; rewrite (from unfold n).
constructor; auto.

Defined.

Theorem from Infinite V0 : forall n:nat, Infinite (from n).
Proof (cofix H : forall n:nat, Infinite (from n) := F from H).

Lemma from Infinite : forall n:nat, Infinite (from n).
Proof.
cofix H.
intro n; rewrite (from unfold n).
constructor; apply H.

Qed.
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Wrong proof of forall n:nat, Infinite (from n)

Lemma from Infinite buggy : forall n:nat, Infinite (from n).
Proof.
cofix H.
auto with llists.
Qed.

Error: Recursive definition of “H” is ill-formed.
In environment
H: ∀ n:nat, Infinite (from n)
ungarded recursive call in H

Note: you may use command Guarded, to check that “guard condition” is
still satisfied
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Elimination of coinductive assumptions

Tactics case and inversion work for coinductive types:

Lemma LNil not Infinite : forall A:Type, ˜ Infinite (@LNil A).
Proof.
intros A H; inversion H.

Qed.
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Equality of coinductive objects

Equality eq is adequate if finite number of simplification results in
identical terms. There are examples when it does not hold:

Lemma Lappend of Infinite 0 :
forall (A:Type) (u:LList A), Infinite u -> forall v:LList A,

u = LAppend u v.

Equality eq is too strong, one needs a weaker predicate.
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Bisimilarity

CoInductive bisimilar (A:Type) : LList A -> LList A -> Prop
:=
| bisim0 : bisimilar LNil LNil
| bisim1 :

forall (a:A) (l l’:LList A),
bisimilar l l’ -> bisimilar (LCons a l) (LCons a l’).
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Bisimulation

Definition bisimulation (A:Type) (R:LList A -> LList A -> Prop)
:=
forall l1 l2:LList A,
R l1 l2 ->
match l1 with
| LNil => l2 = LNil
| LCons a l’1 =>

match l2 with
| LNil => False
| LCons b l’2 => a = b ∧ R l’1 l’2
end

end.
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Park principle

Bisimilarity is the greatest relation containing the pair Lnil, LNil and
closed under application of LCons.

Bisimulation is any relation satisfying these closure properties. Hence:

Theorem park principle :
forall (A:Type) (R:LList A -> LList A -> Prop),
bisimulation R -> forall l1 l2:LList A, R l1 l2 ->
bisimilar l1 l2.
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Coinductive operational semantics for while-programs
(example from CPDT)

Nonterminating (and terminating) programs will be modeled using
coinductive types.

Definition var := nat.

Definition vars := var → nat.
Definition set (vs : vars) (v : var) (n : nat) : vars :=
fun v’ ⇒ if beq nat v v’ then n else vs v’.
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Expressions

Inductive exp : Set :=
| Const : nat → exp
| Var : var → exp
| Plus : exp → exp → exp.

Fixpoint evalExp (vs : vars) (e : exp) : nat :=
match e with
| Const n ⇒ n
| Var v ⇒ vs v
| Plus e1 e2 ⇒ evalExp vs e1 + evalExp vs e2

end.
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Instructions

Inductive cmd : Set :=
| Assign : var → exp → cmd
| Seq : cmd → cmd → cmd
| While : exp → cmd → cmd.
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Operational semantics

A program that does not terminate in a particular initial state is related
to any final state.

CoInductive evalCmd : vars → cmd → vars → Prop :=
| EvalAssign : ∀ vs v e, evalCmd vs (Assign v e) (set vs v (evalExp vs
e))
| EvalSeq : ∀ vs1 vs2 vs3 c1 c2, evalCmd vs1 c1 vs2
→ evalCmd vs2 c2 vs3
→ evalCmd vs1 (Seq c1 c2) vs3

| EvalWhileFalse : ∀ vs e c, evalExp vs e = 0
→ evalCmd vs (While e c) vs

| EvalWhileTrue : ∀ vs1 vs2 vs3 e c, evalExp vs1 e 6= 0
→ evalCmd vs1 c vs2
→ evalCmd vs2 (While e c) vs3
→ evalCmd vs1 (While e c) vs3.
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Bisimulation for evalCmd

Section evalCmd coind.
Variable R : vars → cmd → vars → Prop.

Hypothesis AssignCase : ∀ vs1 vs2 v e, R vs1 (Assign v e) vs2
→ vs2 = set vs1 v (evalExp vs1 e).

Hypothesis SeqCase : ∀ vs1 vs3 c1 c2, R vs1 (Seq c1 c2) vs3
→ ∃ vs2, R vs1 c1 vs2 ∧ R vs2 c2 vs3.

Hypothesis WhileCase : ∀ vs1 vs3 e c, R vs1 (While e c) vs3
→ (evalExp vs1 e = 0 ∧ vs3 = vs1)
∨ ∃ vs2, evalExp vs1 e 6= 0 ∧ R vs1 c vs2 ∧ R vs2 (While e c)

vs3.
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Bisimulation for evalCmd cont.

Theorem evalCmd coind : ∀ vs1 c vs2, R vs1 c vs2 → evalCmd vs1
c vs2.

cofix; intros; destruct c.
rewrite (AssignCase H); constructor.
destruct (SeqCase H) as [? [? ?]]; econstructor; eauto.
destruct (WhileCase H) as [[? ?] | [? [? [? ?]]]]; subst;

econstructor; eauto.
Qed.

End evalCmd coind.
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Optimization

Fixpoint optExp (e : exp) : exp :=
match e with
| Plus (Const 0) e ⇒ optExp e
| Plus e1 e2 ⇒ Plus (optExp e1) (optExp e2)
| ⇒ e

end.

Fixpoint optCmd (c : cmd) : cmd :=
match c with
| Assign v e ⇒ Assign v (optExp e)
| Seq c1 c2 ⇒ Seq (optCmd c1) (optCmd c2)
| While e c ⇒ While (optExp e) (optCmd c)

end.
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Optimization correctness for expressions

Lemma optExp correct : ∀ vs e, evalExp vs (optExp e) = evalExp vs e.
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Optimization correctness for instructions

Lemma optCmd correct1 : ∀ vs1 c vs2, evalCmd vs1 c vs2
→ evalCmd vs1 (optCmd c) vs2.

Lemma optCmd correct2 : ∀ vs1 c vs2, evalCmd vs1 (optCmd c) vs2
→ evalCmd vs1 c vs2.
intros; apply (evalCmd coind (fun vs1 c vs2 ⇒ evalCmd vs1

(optCmd c) vs2));
crush; finisher.

Qed.
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Optimization correctness for instructions, cont.

Theorem optCmd correct : ∀ vs1 c vs2, evalCmd vs1 (optCmd c) vs2
↔ evalCmd vs1 c vs2.
split; apply optCmd correct1 || apply optCmd correct2;

assumption.
Qed.
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