Dependent typed and equality

Daria Walukiewicz-Chrzaszcz

16 april 2019



Dependent types
Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat)

: Type :=
match n with
| 0 => unit
| Sn=>T * tuple n
end.

Daria Walukiewicz-Chrzaszez



Dependent types
Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat) : Type :=
match n with

| 0 => unit
| Sn=>T * tuple n
end.

Definition tuple_hd a : tuple (S a) -> T := @fst __.

Daria Walukiewicz-Chrzaszez



Dependent types
Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat) : Type :=
match n with

| 0 => unit
| Sn=>T * tuple n
end.

Definition tuple_hd a : tuple (S a) -> T := @fst __.

How to define the last element of a nonempty tuple ?

Daria Walukiewicz-Chrzaszez



Dependent types
Last element by proof

Definition grabtype n: Type :=
match n with 0 => unit | S n => T end.

Daria Walukiewicz-Chrzaszez



Dependent types
Last element by proof

Definition grabtype n: Type :=
match n with 0 => unit | S n => T end.

Lemma lastL: forall (n: nat), tuple n -> grabtype n.
Proof.
induction n.
- simpl; trivial.
- simpl.
destruct n.
+ intro H; destruct H; assumption.
+ simpl in IHn.
intro.
apply IHn.
destruct X.
destruct tO.
split.
exact tO.
exact tl.

Defined.



Dependent types
Definition of lastOfNonempty

Definition lastOfNonempty (n:nat) (t:tuple (S mn)): T :=
lastL (S n) t.

Daria Walukiewicz-Chrzaszez



Dependent types
Definition of lastOfNonempty

Definition lastOfNonempty (n:nat) (t:tuple (S mn)): T :=
lastL (S n) t.

Variable a b c: T.

Definition f: tuple 1 := (a,tt).
Definition g: tuple 2 := (b, f).
Definition h: tuple 3 := (c, g).

Eval compute in (lastOfNonempty h).

Daria Walukiewicz-Chrzaszez



Dependent types
Last element by Fixpoint

Fixpoint lastF (n: nat): tuple n -> grabtype n:=

match n as x return (tuple x -> grabtype x) with
| 0 =>fun t => t
| Sm=>fun t (* : tuple S m *x) =>

(match m as nl

return ((tuple nl -> grabtype nl) -> T * tuple nl -> T)
with

| 0 =>fun _H => let (t, _) :=H in t

| S n1 => fun IHnO X =>

IHnO (let (_,t0) := X in let (t1,t2) := t0 in (t1,t2))
end) (ostF m) t

end.

Daria Walukiewicz-Chrzaszez



Dependent types
Equivalence of two definitions of last

Lemma last_eq: forall n (t:tuple n), lastL n t = lastF n t.
Proof.

intros.

reflexivity.

Qed.

Daria Walukiewicz-Chrzaszez



Inductive predicates

Typing as an inductive predicate (1)

Inductive exp : Set :=

| Nat : nat — exp

| Plus : exp — exp — exp
| Bool : bool — exp

| And : exp — exp — exp.

Daria Walukiewicz-Chrzaszez



Inductive predicates

Typing as an inductive predicate (2)

Inductive type : Set := TNat | TBool.

Inductive hasType : exp — type — Prop :=
| HtNat : V n,

hasType (Nat n) TNat
| HtPlus : V el e2,

hasType el TNat

— hasType e2 TNat

— hasType (Plus el e2) TNat
| HtBool : V b,

hasType (Bool b) TBool
| HtAnd : V el e2,

hasType el TBool

— hasType e2 TBool

— hasType (And el e2) TBool.

Daria Walukiewicz-Chrzaszez



Inductive predicates
Decidability of equality

Definition eq-type_dec : V t1 t2 : type, {tl1 = t2 } + {tI # t2}.
decide equality.
Defined.

Daria Walukiewicz-Chrzaszez



Inductive predicates

Unicity of typing — by induction on proof

Lemma hasType_det : V e tI,
hasType e t1
— V t2, hasType e t2
— t1 = t2.
induction 1; inversion 1; auto.
Qed.

See: hastype.v

Daria Walukiewicz-Chrzaszez



Equality

Conversion — definitional equality

conversion rule

IFM:A TFA=pgsaB TFB:s
THDM:B

Daria Walukiewicz-Chrzaszez



Equality

Conversion — definitional equality

conversion rule

IFM:A TFA=pgsaB TFB:s
THDM:B

if
o' Ap* A’
o' Bp* B’
o A'=DBor
(A=Xz:T.A" and ',z : T+ B'x =gy5¢, A”) or
(B'=Xe:T.B" and ',z : T+ A'w =g,5¢, B”)

I'A>B

transitive closure of beta, iota, delta and zeta reductions

Daria Walukiewicz-Chrzaszez



Equality
Reduction rules — examples

Definition pred’ (x : nat) :=
match x with
|O=0
|Sn"=1lety:=n"iny
end.

Theorem reduce_me : pred’ 1 = 0.

Proof.
cbv delta.

Daria Walukiewicz-Chrzaszez



Equality
Reduction rules —tactic cbv

(fun x : nat = match x with

|0=10
|Sn"=lety:=n"iny
end) 1 =10

cbv beta.

Daria Walukiewicz-Chrzaszez



Equality
Reduction rules —tactic cbv

match 1 with

|0=10
|Sn"=lety:=n"iny
end =0

cbv iota.

Daria Walukiewicz-Chrzaszez



Equality
Reduction rules —tactic cbv

(funn':nat=lety:=n"iny)0=0

cbv beta.

(let y:=0iny)=0

cbv zeta.

Daria Walukiewicz-Chrzaszez



Equality
eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A — Prop := eq-_refl : x = x

Daria Walukiewicz-Chrzaszez



Equality
eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A — Prop := eq-_refl : x = x

Q@eq-refl: forall (A : Type) (x : A), eq A x X

Daria Walukiewicz-Chrzaszez



Equality
eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A — Prop := eq-_refl : x = x
Q@eq-refl: forall (A : Type) (x : A), eq A x X

eq is Leibnitz equality:

eq-ind: forall (A : Type) (x : A) (P : A -> Prop),
Px ->forally : A, x=y ->Py

Daria Walukiewicz-Chrzaszez



Equality
Problems with equality

lemmaUIP is not provable:

Lemma lemmaUIP : ¥V (x : A) (pf : x = x), pf =eq_refl x.

but lemma2 is provable:

Lemma lemma2 : V (x : A) (pf : x = x),
O = match pf with eq_refl = O end.

Daria Walukiewicz-Chrzaszez



The proof of lemma?2

Definition lemma2 :=
fun (x : A) (pf : x = x) =
match pf return (0 = match pf with
| eq-refl = 0
end) with
| eq_refl = eq_refl 0
end.

Daria Walukiewicz-Chrzaszez



Equality
UIP_refl axiom

Check UIP_refl.

UIP _refl
2V (U :Type) (x: U) (p: x = x), p = eq-refl x

Daria Walukiewicz-Chrzaszez



Equality

UIP_refl is equivalent with Streicher_K axiom

Check Streicher_K.

Streicher_K
:V (U : Type) (x : U) (P : x = x — Prop),
Peq_refl > Vp:x=x Pp

Streicher’'s axiom K is consistent with CIC and not provable in CIC

Daria Walukiewicz-Chrzaszez



For decidable types...

i.e. for types satisfying:

Variable eq-dec : forall x y:A, {x = y} + {x <> y}.
UIP_dec, UIP_refl and K_dec

forall (x y:A) (pl p2:x =y), pl = p2

forall (x y:A) (p:x = x), p = eq_refl x

forall (x:A) (P:x = x -> Prop), P (eq_refl x)
-> forall p:x =x, Pp

hold without additional axioms (see module Eqdep_dec from the
standard library)

Daria Walukiewicz-Chrzaszez



Equality
Lemma UIP_refl_nat is provable in Coq

UIP _refl_nat
1V (x :nat) (p: x =x), p=eq-refl x

(see file UIP_refl_nat.v)

Daria Walukiewicz-Chrzaszez



Equality
Problems with equality cont.

The following theorem cannot “be stated”

Theorem vappend_assoc : V a b ¢
(va : vector a ) (vb : vector b) (vc : vector ¢ ),
vappend (vappend va vb) vc = vappend va (vappend vb vc).

Error:

The term "vappend va (vappend vb vc)"

has type "vector (a + (b + c))"

while it is expected to have type "vector (a + b + c)".

Daria Walukiewicz-Chrzaszez



The need of the “type-cast”

Theorem vappend_assoc : V a b ¢
(va : vector a ) (vb : vector b) (vc : vector c ),
vappend (vappend va vb) vc =
match Plus.plus_assoc a b cin (- = X)
return vector X with
| eq_refl = vappend va (vappend vb vc)
end.

Daria Walukiewicz-Chrzaszez



Equality
Heterogenic equality

Inductive JMeq (A : Type) (x : A) : V B : Type, B — Prop :=
JMeq_refl : JMeq x x

n__n

Infix := JMeq (at level 70, no associativity).

Daria Walukiewicz-Chrzaszez



Equality
Relationship between eq and JMeq

JMeq_rec_type
: forall (A : Type) (x : A) (P : forall B : Type, B -> Type),
P A x -> forall (B : Type) (b : B), x ==b ->P B b

eq-rect

: forall (A : Type) (x : A) (P : A -> Type),
Px ->forally : A, x=y ->Py

Daria Walukiewicz-Chrzaszez



Equality
Relationship between eq and JMeq

Lemma eq_JMeq : V (A : Type) (x y : A), x =y = x ==
intros; rewrite H; reflexivity.
Qed.

Daria Walukiewicz-Chrzaszez



Equality
Relationship between eq and JMeq

Lemma eq_JMeq : V (A : Type) (x y : A), x =y = x ==
intros; rewrite H; reflexivity.
Qed.

But the reverse implication is not provable (it is an axiom):
Check JMeq_eq.

JMeq_eq
V(A:Type) (xy : A, x==y > x=y

Daria Walukiewicz-Chrzaszez



Equality
JMeq_eq axiom

@ can be safely added to CIC

@ can be used by rewrite tactic according to:
JMeq-ind

: forall (A : Type) (x : A) (P : A -> Type),
Px ->forally : A, x==y ->Py

Daria Walukiewicz-Chrzaszez



The proof of pairC’

Two ways:
@ using JMeq-eq axiom

@ using standard induction rule for JMeq

Daria Walukiewicz-Chrzaszez



The proof of pairC’

Two ways:
@ using JMeq-eq axiom

@ using standard induction rule for JMeq

Axioms in use can be listed:

Print Assumptions pairC’.

See file JMeqRew.v

Daria Walukiewicz-Chrzaszez



Equality

Proofs using UIP_refl_nat and transparent type-cast

Two proofs of Lemma vappend_assoc
© using UIP_refl_nat
@ using transparent definition of plus_assoc.

See file vappend_assoc.v

Daria Walukiewicz-Chrzaszez



	Dependent types
	Inductive predicates
	Equality

