
Dependent typed and equality

Daria Walukiewicz-Chrząszcz

16 april 2019

Dependent types Inductive predicates Equality

Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat) : Type :=
match n with
| 0 => unit
| S n => T * tuple n
end.

Definition tuple hd a : tuple (S a) -> T := @fst .

How to define the last element of a nonempty tuple ?

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat) : Type :=
match n with
| 0 => unit
| S n => T * tuple n
end.

Definition tuple hd a : tuple (S a) -> T := @fst .

How to define the last element of a nonempty tuple ?

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Dependent type of n-tuples

Section tuple.
Variable T : Type.

Fixpoint tuple (n : nat) : Type :=
match n with
| 0 => unit
| S n => T * tuple n
end.

Definition tuple hd a : tuple (S a) -> T := @fst .

How to define the last element of a nonempty tuple ?

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Last element by proof

Definition grabtype n: Type :=
match n with O => unit | S n => T end.

Lemma lastL: forall (n: nat), tuple n -> grabtype n.
Proof.
induction n.
- simpl; trivial.
- simpl.
destruct n.
+ intro H; destruct H; assumption.
+ simpl in IHn.
intro.
apply IHn.
destruct X.
destruct t0.
split.
exact t0.
exact t1.

Defined.
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Last element by proof

Definition grabtype n: Type :=
match n with O => unit | S n => T end.

Lemma lastL: forall (n: nat), tuple n -> grabtype n.
Proof.
induction n.
- simpl; trivial.
- simpl.
destruct n.
+ intro H; destruct H; assumption.
+ simpl in IHn.
intro.
apply IHn.
destruct X.
destruct t0.
split.
exact t0.
exact t1.

Defined.
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Definition of lastOfNonempty

Definition lastOfNonempty (n:nat)(t:tuple (S n)): T :=
lastL (S n) t.

Variable a b c: T.

Definition f: tuple 1 := (a,tt).
Definition g: tuple 2 := (b, f).
Definition h: tuple 3 := (c, g).

Eval compute in (lastOfNonempty h).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Definition of lastOfNonempty

Definition lastOfNonempty (n:nat)(t:tuple (S n)): T :=
lastL (S n) t.

Variable a b c: T.

Definition f: tuple 1 := (a,tt).
Definition g: tuple 2 := (b, f).
Definition h: tuple 3 := (c, g).

Eval compute in (lastOfNonempty h).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Last element by Fixpoint

Fixpoint lastF (n: nat): tuple n -> grabtype n:=
match n as x return (tuple x -> grabtype x) with
| O => fun t => t
| S m => fun t (* : tuple S m *) =>

(match m as n1
return ((tuple n1 -> grabtype n1) -> T * tuple n1 -> T)

with
| 0 => fun H => let (t,) := H in t
| S n1 => fun IHn0 X =>

IHn0 (let (,t0) := X in let (t1,t2) := t0 in (t1,t2))
end) (ostF m) t

end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Equivalence of two definitions of last

Lemma last eq: forall n (t:tuple n), lastL n t = lastF n t.
Proof.
intros.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Typing as an inductive predicate (1)

Inductive exp : Set :=
| Nat : nat → exp
| Plus : exp → exp → exp
| Bool : bool → exp
| And : exp → exp → exp.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Typing as an inductive predicate (2)

Inductive type : Set := TNat | TBool.
Inductive hasType : exp → type → Prop :=
| HtNat : ∀ n,

hasType (Nat n) TNat
| HtPlus : ∀ e1 e2,

hasType e1 TNat
→ hasType e2 TNat
→ hasType (Plus e1 e2) TNat

| HtBool : ∀ b,
hasType (Bool b) TBool

| HtAnd : ∀ e1 e2,
hasType e1 TBool
→ hasType e2 TBool
→ hasType (And e1 e2) TBool.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Decidability of equality

Definition eq type dec : ∀ t1 t2 : type, {t1 = t2 } + {t1 6= t2}.
decide equality.

Defined.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Unicity of typing — by induction on proof

Lemma hasType det : ∀ e t1,
hasType e t1
→ ∀ t2, hasType e t2
→ t1 = t2.

induction 1; inversion 1; auto.
Qed.

See: hastype.v

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Conversion — definitional equality

conversion rule

Γ `M : A Γ ` A =βηδζι B Γ ` B : s

Γ `M : B

Γ ` A =βηδζι B

if
Γ ` A .∗ A′

Γ ` B .∗ B′

A′ = B′ or
(A′ = λx : T.A′′ and Γ, x : T ` B′x =βηδζι A

′′) or
(B′ = λx : T.B′′ and Γ, x : T ` A′x =βηδζι B

′′)

Γ ` A . B

transitive closure of beta, iota, delta and zeta reductions

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Conversion — definitional equality

conversion rule

Γ `M : A Γ ` A =βηδζι B Γ ` B : s

Γ `M : B

Γ ` A =βηδζι B

if
Γ ` A .∗ A′

Γ ` B .∗ B′

A′ = B′ or
(A′ = λx : T.A′′ and Γ, x : T ` B′x =βηδζι A

′′) or
(B′ = λx : T.B′′ and Γ, x : T ` A′x =βηδζι B

′′)

Γ ` A . B

transitive closure of beta, iota, delta and zeta reductions

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Reduction rules — examples

Definition pred’ (x : nat) :=
match x with
| O ⇒ O
| S n’ ⇒ let y := n’ in y

end.

Theorem reduce me : pred’ 1 = 0.

Proof.
cbv delta.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Reduction rules —tactic cbv

============================
(fun x : nat ⇒ match x with

| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end) 1 = 0

cbv beta.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Reduction rules —tactic cbv

============================
match 1 with
| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end = 0

cbv iota.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Reduction rules —tactic cbv

============================
(fun n’ : nat ⇒ let y := n’ in y) 0 = 0

cbv beta.

============================
(let y := 0 in y) = 0

cbv zeta.

============================
0 = 0

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

@eq refl: forall (A : Type) (x : A), eq A x x

eq is Leibnitz equality:

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

@eq refl: forall (A : Type) (x : A), eq A x x

eq is Leibnitz equality:

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

eq — propositional equality

defined as inductive relation

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

@eq refl: forall (A : Type) (x : A), eq A x x

eq is Leibnitz equality:

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Problems with equality

lemmaUIP is not provable:

Lemma lemmaUIP : ∀ (x : A) (pf : x = x), pf =eq refl x.

but lemma2 is provable:

Lemma lemma2 : ∀ (x : A) (pf : x = x),
O = match pf with eq refl ⇒ O end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

The proof of lemma2

Definition lemma2 :=
fun (x : A) (pf : x = x) ⇒
match pf return (0 = match pf with

| eq refl ⇒ 0
end) with

| eq refl ⇒ eq refl 0
end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

UIP refl axiom

Check UIP refl.

UIP refl
: ∀ (U : Type) (x : U) (p : x = x), p = eq refl x

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

UIP refl is equivalent with Streicher K axiom

Check Streicher K.

Streicher K
: ∀ (U : Type) (x : U) (P : x = x → Prop),

P eq refl → ∀ p : x = x, P p

Streicher’s axiom K is consistent with CIC and not provable in CIC

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

For decidable types...

i.e. for types satisfying:

Variable eq dec : forall x y:A, {x = y} + {x <> y}.

UIP dec, UIP refl and K dec

forall (x y:A) (p1 p2:x = y), p1 = p2

forall (x y:A) (p:x = x), p = eq refl x

forall (x:A) (P:x = x -> Prop), P (eq refl x)
-> forall p:x = x, P p

hold without additional axioms (see module Eqdep dec from the
standard library)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Lemma UIP refl nat is provable in Coq

UIP refl nat
: ∀ (x : nat) (p : x = x), p = eq refl x

(see file UIP refl nat.v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Problems with equality cont.

The following theorem cannot “be stated”

Theorem vappend assoc : ∀ a b c
(va : vector a) (vb : vector b) (vc : vector c),
vappend (vappend va vb) vc = vappend va (vappend vb vc).

Error:
The term "vappend va (vappend vb vc)"
has type "vector (a + (b + c))"
while it is expected to have type "vector (a + b + c)".

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

The need of the “type-cast”

Theorem vappend assoc : ∀ a b c
(va : vector a) (vb : vector b) (vc : vector c),
vappend (vappend va vb) vc =
match Plus.plus assoc a b cin (= X)
return vector X with
| eq refl ⇒ vappend va (vappend vb vc)

end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Heterogenic equality

Inductive JMeq (A : Type) (x : A) : ∀ B : Type, B → Prop :=
JMeq refl : JMeq x x

Infix "==" := JMeq (at level 70, no associativity).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Relationship between eq and JMeq

JMeq rec type
: forall (A : Type) (x : A) (P : forall B : Type, B -> Type),
P A x -> forall (B : Type) (b : B), x == b -> P B b

eq rect
: forall (A : Type) (x : A) (P : A -> Type),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Relationship between eq and JMeq

Lemma eq JMeq : ∀ (A : Type) (x y : A), x = y → x == y.
intros; rewrite H; reflexivity.

Qed.

But the reverse implication is not provable (it is an axiom):

Check JMeq eq.

JMeq eq
: ∀ (A : Type) (x y : A), x == y → x = y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Relationship between eq and JMeq

Lemma eq JMeq : ∀ (A : Type) (x y : A), x = y → x == y.
intros; rewrite H; reflexivity.

Qed.

But the reverse implication is not provable (it is an axiom):

Check JMeq eq.

JMeq eq
: ∀ (A : Type) (x y : A), x == y → x = y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

JMeq eq axiom

can be safely added to CIC
can be used by rewrite tactic according to:

JMeq ind
: forall (A : Type) (x : A) (P : A -> Type),
P x -> forall y : A, x == y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

The proof of pairC’

Two ways:
using JMeq eq axiom
using standard induction rule for JMeq

Axioms in use can be listed:

Print Assumptions pairC’.

See file JMeqRew.v

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

The proof of pairC’

Two ways:
using JMeq eq axiom
using standard induction rule for JMeq

Axioms in use can be listed:

Print Assumptions pairC’.

See file JMeqRew.v

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent types Inductive predicates Equality

Proofs using UIP refl nat and transparent type-cast

Two proofs of Lemma vappend assoc
1 using UIP refl nat
2 using transparent definition of plus assoc.

See file vappend assoc.v

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

	Dependent types
	Inductive predicates
	Equality

