Dependent structures

Daria Walukiewicz-Chrzaszcz

9 april 2019



Dependent pattern-matching

Destruction - match

match m as z in I _ i return (P § x) with

(c1 11 oo 21ky) = f1 ] -+ | (en Tp1eeTng,, ) = fn end

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Destruction - match

match m as z in I _ i return (P § x) with
(c1 11 oo 21ky) = f1 ] -+ | (en Tp1eeTng,, ) = fn end

for m : Idb the expression above has type Pbm, where

I:V(p1:A1)...(pp: Ap)(z1: Z1) ... (2m : Zin)-8

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Destruction - match

match m as z in I _ i return (P § x) with
(c1 11 oo 21ky) = f1 ] -+ | (en Tp1eeTng,, ) = fn end

for m : Idb the expression above has type Pbm, where

I:V(p1:A1)...(pp: Ap)(z1: Z1) ... (2m : Zin)-8

P:V(z1:21)...(2m : Zp)(c: 1dZ).Type

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Destruction - match

match m as z in I _ i return (P § x) with
(c1 11 oo 21ky) = f1 ] -+ | (en Tp1eeTng,, ) = fn end

for m : Idb the expression above has type Pbm, where

I:V(p1:A1)...(pp: Ap)(z1: Z1) ... (2m : Zin)-8

P:V(z1:21)...(2m : Zp)(c: 1dZ).Type

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Destruction - match

match m as z in I _ i return (P § x) with
(c1 11 oo 21ky) = f1 ] -+ | (en Tp1eeTng,, ) = fn end

for m : Idb the expression above has type Pbm, where

I:V(p1:A1)...(pp: Ap)(z1: Z1) ... (2m : Zin)-8

P:V(z1:21)...(2m : Zp)(c: 1dZ).Type

then
fi:V(m:Vl)...(vki ZVk o

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Lists with length: ilist

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set :=
| Nil :ilist O
| Cons : ¥V n, A — ilist n — ilist (S n).

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function app on ilist

Fixpoint app’ nl (/sI :ilist nI) n2 (Is2 : ilist n2) : ilist (nI + n2)

match /sI in (ilist n1) return (ilist (nI + n2)) with
| Nil = /s2 =f1
| Cons x Is1’ = Cons x (app’ Is1’ Is2) =2 _ x Is'
end.

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function app on ilist

Fixpoint app’ nl (/sI :ilist nI) n2 (Is2 : ilist n2) : ilist (nI + n2)

match /sI in (ilist n1) return (ilist (nI + n2)) with
| Nil = /s2 =f1
| Cons x Is1’ = Cons x (app’ Is1’ Is2) =2 _ x Is'
end.

P = fun (i : nat)(ls : ilist i) = ilist(i + n2)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function app on ilist

Fixpoint app’ nl (/sI :ilist nI) n2 (Is2 : ilist n2) : ilist (nI + n2)

match /sI in (ilist n1) return (ilist (nI + n2)) with
| Nil = /s2 =f1
| Cons x Is1’ = Cons x (app’ Is1’ Is2) =2 _ x Is'
end.

P = fun (i : nat)(ls : ilist i) = ilist(i + n2)
Since Nil : ilist 0 one has

f1: PO Nil

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function app on ilist

Fixpoint app’ nl (/sI :ilist nI) n2 (Is2 : ilist n2) : ilist (nI + n2)

match /sI in (ilist n1) return (ilist (nI + n2)) with
| Nil = /s2 =f1
| Cons x Is1’ = Cons x (app’ Is1’ Is2) =2 _ x Is'
end.

P = fun (i : nat)(ls : ilist i) = ilist(i + n2)
Since Nil : ilist 0 one has
f1: PO Nil
Since Cons : V(n' : nat)(a : A)(I : ilist n'),ilist (S n') one has
f2 :V(n' :nat)(a: A)(I :ilist n'), P (Sn') (Consn’ al)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function app on ilist

Fixpoint app’ nl (/sI :ilist nI) n2 (Is2 : ilist n2) : ilist (nI + n2)

match /sI in (ilist n1) return (ilist (nI + n2)) with
| Nil = /s2 =f1
| Cons x Is1’ = Cons x (app’ Is1’ Is2) =2 _ x Is'
end.

P = fun (i : nat)(ls : ilist i) = ilist(i + n2)
Since Nil : ilist 0 one has
f1: PO Nil
Since Cons : V(n' : nat)(a : A)(I : ilist n'),ilist (S n') one has
f2 :V(n' :nat)(a: A)(I :ilist n'), P (Sn') (Consn’ al)

therefore
f1 2 dlist(0 +n2)
f2 :V (n' :nat)(a: A)(1 :ilist n'),ilist(S n' + n2)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

P = fun (m:nat)(h:n=m)=ilist m

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

P = fun (m:nat)(h:n=m)=ilist m

Since eq_refl : V (A : Set)(a: A).eq A a a one has

f1: Pn(eq_refl natn)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

P = fun (m:nat)(h:n=m)=ilist m

Since eq_refl : V (A : Set)(a: A).eq A a a one has

f1: Pn(eq_refl natn)
therefore

f1 :ilistn

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

P = fun (m:nat)(h:n=m)=ilist m

Since eq_refl : V (A : Set)(a: A).eq A a a one has

f1: Pn(eq_refl natn)
therefore

f1 :ilistn

@ That is an elimination from Prop to Set for a singleton type

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Definitions
Elimination of equality

Definition rowne (n,m:nat) (h:n=m)(l:ilist n): ilist m :=
match h in _=m with return (ilist m)
eq-refl => 1 = f1

P = fun (m:nat)(h:n=m)=ilist m

Since eq_refl : V (A : Set)(a: A).eq A a a one has

f1: Pn(eq_refl natn)
therefore

f1 :ilistn

@ That is an elimination from Prop to Set for a singleton type
@ That is how tactic rewrite works

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist

Definition hdl n (1s : ilist (S n)) : A :=
match
1ls as 1s0 in (ilist n0)
return
(match n0 with
| 0 => unit
| S nl =>A
end)
with

| Nil => tt = f1

| Cons h _=>h = f2 _ h _
end

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist

Definition hdl n (1s : ilist (S n)) : A :=
match
1ls as 1s0 in (ilist n0)
return
(match n0 with
| 0 => unit
| S nl =>A
end)
with

| Nil => tt = f1
| Cons h _=>h = f2 _ h _
end

P= fun (n0:nat) (1s0:ilist n0) =>
(match n0 with
| 0 => unit
| Snl =>A
end)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist cont.

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist cont.

P= fun (nO:nat)(1s0:ilist n0) =>
(match nO with
| 0 => unit
| Snl =>A
end)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist cont.

P= fun (nO:nat)(1s0:ilist n0) =>
(match n0 with

| 0 => unit
| Snil =>A

end)

Since Nil : ilist 0 one has
f1: PO Nil

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist cont.

P= fun (nO:nat)(1s0:ilist n0) =>
(match n0 with

| 0 => unit
| Snl=>A4A

end)

Since Nil : ilist 0 one has
f1: PO Nil

Since Cons : V(n' : nat)(a: A)(l :ilist n'),ilist (S n') one has

2 : V(0 inat)(a: A)(l:ilist n'), P (Sn') (Consn al)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hdl on ilist cont.

P= fun (nO:nat)(1s0:ilist n0) =>
(match n0 with

| 0 => unit
| Snl=>A4A

end)

Since Nil : ilist 0 one has
f1: PO Nil

Since Cons : V(n' : nat)(a: A)(l :ilist n'),ilist (S n') one has
2 : V(0 inat)(a: A)(l:ilist n'), P (Sn') (Consn al)

therefore
f1 : unit

f2 V(' :nat)(a: A1 :ilistn’), A

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching

Function hd2 on ilist

Definitions

Definition hd_pom n (1ls :

ilist n) :=
match 1s in (ilist n)

return (match n with 0 => unit |
| Nil => tt = f1

| Cons h _.=> h = f2 _ h _

end.

S _=> A end) with

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hd2 on ilist

Definition hd_pom n (1s : ilist n) :=
match 1s in (ilist n)
return (match n with O => unit | S _=> A end) with
| Nil => tt = f1
| Cons h _.=> h = f2 _ h _
end.

P = fun (i :nat)(ls : ilist i) = (match n with 0 = unit | S - = A end)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hd2 on ilist

Definition hd_pom n (1s : ilist n) :=
match 1s in (ilist n)
return (match n with O => unit | S _=> A end) with
| Nil => tt = f1
| Cons h _.=> h = f2 _ h _
end.

P = fun (i :nat)(ls : ilist i) = (match n with 0 = unit | S - = A end)
Since Nil : ilist 0 one has f1 : P 0 Nil

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hd2 on ilist

Definition hd_pom n (1s : ilist n) :=
match 1s in (ilist n)
return (match n with O => unit | S _=> A end) with
| Nil => tt = f1
| Cons h _.=> h = f2 _ h _
end.

P = fun (i :nat)(ls : ilist i) = (match n with 0 = unit | S - = A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : V(n' : nat)(a : A)(1 :ilist n'),ilist (S n') one has

2 :V¥(n' nat)(a: A)(l:ilist n'), P (Sn’) (Consn’ al)

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hd2 on ilist

Definition hd_pom n (1s : ilist n) :=
match 1s in (ilist n)
return (match n with O => unit | S _=> A end) with
| Nil => tt = f1
| Cons h _.=> h = f2 _ h _
end.

P = fun (i :nat)(ls : ilist i) = (match n with 0 = unit | S - = A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : V(n' : nat)(a : A)(1 :ilist n'),ilist (S n') one has

2 :V¥(n' nat)(a: A)(l:ilist n'), P (Sn’) (Consn’ al)

therefore
f1: unit

f2: Y (n' :nat)(a: A)(1 :ilist n'), A

Daria Walukiewicz-Chrzaszez



Dependent pattern-matching Definitions

Function hd2 on ilist

Definition hd_pom n (1s : ilist n) :=
match 1s in (ilist n)

return (match n with 0 => unit | S _=> A end) with
| Nil => tt = f1
| Cons h _.=> h = f2 _ h _
end.
P = fun (i :nat)(ls : ilist i) = (match n with 0 = unit | S - = A end)
Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : V(n' : nat)(a : A)(1 :ilist n'),ilist (S n') one has

2 :V¥(n' nat)(a: A)(l:ilist n'), P (Sn’) (Consn’ al)
therefore

f1: unit
f2: Y (n' :nat)(a: A)(1 :ilist n'), A

Definition hd2 n (1s : ilist (S n)) := hd_pom (S n) ls.

Daria Walukiewicz-Chrzaszez



Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set :=
| Nil :ilist O
| Cons :V n, A—ilist n — ilist (S n).

Daria Walukiewicz-Chrzaszez



Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set :=
| Nil :ilist O
| Cons :V n, A—ilist n — ilist (S n).

Inductive fin : nat — Set :=
| First : ¥ n, fin (S n)
| Next : ¥ n, fin n — fin (S n).

Daria Walukiewicz-Chrzaszez



Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set :=
| Nil :ilist O
| Cons :V n, A—ilist n — ilist (S n).

Inductive fin : nat — Set :=
| First : ¥ n, fin (S n)
| Next : ¥ n, fin n — fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Daria Walukiewicz-Chrzaszez



Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set :=
| Nil :ilist O
| Cons :V n, A—ilist n — ilist (S n).

Inductive fin : nat — Set :=
| First : ¥ n, fin (S n)
| Next : ¥ n, fin n — fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Note: there are no terms of type fin 0 !

Daria Walukiewicz-Chrzaszez



Dependent structures

Function get (1)

Fixpoint get n (/s :ilist n) : fin n — A :=
match /s with
| Nil = fun idx = 7
| Cons x Is” = fun idx =
match idx with
| First - = x
| Next idx’ = get Is’ idx’
end
end.

Daria Walukiewicz-Chrzaszez



Dependent structures

Function get (2)

Fixpoint get n (Is :ilist n) : fin n — A :=
match /s in ilist k return fin k — A with
| Nil = fun idx =
match idx in fin n’ return (match n’ with

|O= A
| S - = unit
end) with
| First - = tt
| Next _ = tt

end
| Cons x Is’ = fun idx =
match idx in fin n’ return A with
| First - = fun _ = x
| Next idx’ = fun Is’ = get Is’ idx’
end /s’
end.

Daria Walukiewicz-Chrzaszez



Dependent structures

Function get (2)

Fixpoint get n (Is :ilist n) : fin n — A :=
match /s in ilist k return fin k — A with
| Nil = fun idx =
match idx in fin n’ return (match n’ with

|O= A
| S - = unit
end) with
| First - = tt
| Next _ = tt

end
| Cons x Is’ = fun idx =
match idx in fin n’ return A with
| First - = fun _ = x
| Next idx’ = fun Is’ = get Is’ idx’
end /s’
end.

The third return needed to connect the type of idx’ and the type of
idx. There is a problem with recursive call to get

Daria Walukiewicz-Chrzaszez



Dependent structures

Function get (3)

Fixpoint get n (/s :ilist n) : fin n — A :=
match /s with
| Nil = fun idx =
match idx in fin n’ return (match n’ with

|O=A
| S - = unit
end) with
| First - = tt
| Next - = tt

end
| Cons x Is” = fun idx =
match idx in fin n’ return (fin (pred n’) - A) — A with
| First - = fun _ = x
| Next idx’ = fun get_Is’ = get_Is’ idx’
end (get Is")
end.
End ilist.

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

=0
: nat

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

=0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
=0
: nat
Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

=1
: nat

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

=0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

=1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
- ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
=0
: nat
Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).
=1
. nat
Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrzaszez



Dependent structures
Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A — Type.

Daria Walukiewicz-Chrzaszez



Dependent structures
Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A — Type.

Inductive hlist : list A — Type :=
| HNil : hlist nil
| HCons : V (x : A) (Is : list A), B x — hlist [s — hlist (x :: Is).

Daria Walukiewicz-Chrzaszez



Dependent structures
Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A — Type.

Inductive hlist : list A — Type :=
| HNil : hlist nil
| HCons : V (x : A) (Is : list A), B x — hlist [s — hlist (x :: Is).

Variable e/lm : A.

Inductive member : list A — Type :=
| HFirst : V Is, member (elm :: Is)
| HNext : V x s, member /s — member (x :: Is).

Daria Walukiewicz-Chrzaszez



Dependent structures

Function hget(1)

Fixpoint hget Is (mls : hlist /s) : member /s — B elm :=
match mls with
| HNil = fun mem =
match mem in member /s’ return (match /s’ with
| nil = B elm
| - :: = = unit
end) with
| HFirst _ = tt
| HNext - - = tt
end

Daria Walukiewicz-Chrzaszez



Dependent structures

Function hget(2)

| HCons e mls’ = fun mem =
match mem in member /s’ return (match /s" with
| nil = Empty_set
| x" i Is" =
B x" — (member /s" — B elm) — B elm
end) with
| HFirst - = fune’' - = ¢’
| HNext - mem’ = fun _ get-mls’ = get_mls’ mem’
end e (hget mls’)
end.
End hlist.

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun 7 : Set = T) someTypes :=
HCons 5 (HCons true HNil).

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun 7 : Set = T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun 7 : Set = T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

=15
:(fun T : Set = T) nat

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun 7 : Set = T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

=15
:(fun T : Set = T) nat

Eval simpl in hget someValues (HNext HFirst).

Daria Walukiewicz-Chrzaszez



Dependent structures
Examples of heterogenic lists

Arguments HCons [A B x Is].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun 7 : Set = T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.
=5
:(fun T : Set = T) nat
Eval simpl in hget someValues (HNext HFirst).

= true
:(fun T : Set = T) bool

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set =
| Unit : type
| Arrow : type — type — type.

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set =
| Unit : type
| Arrow : type — type — type.

Inductive exp : list type — type — Set :=

| Const : V ts, exp ts Unit

| Var : V ts t, member t ts — exp ts t

| App : ¥V ts dom ran, exp ts (Arrow dom ran) — exp ts dom — exp ts
ran

| Abs : V ts dom ran, exp (dom :: ts) ran — exp ts (Arrow dom ran).

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set =
| Unit : type
| Arrow : type — type — type.

Inductive exp : list type — type — Set :=
| Const : V ts, exp ts Unit
| Var : V ts t, member t ts — exp ts t

| App : ¥V ts dom ran, exp ts (Arrow dom ran) — exp ts dom — exp ts
ran

| Abs : V ts dom ran, exp (dom :: ts) ran — exp ts (Arrow dom ran).

Arguments Const [ts].

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus (2)

Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit = unit
| Arrow tI t2 = typeDenote tI — typeDenote t2
end.

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus (2)

Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit = unit
| Arrow tI t2 = typeDenote tI — typeDenote t2
end.

Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts —
typeDenote t :=
match e with
| Const - = fun _ = tt
| Var mem = fun s = hget s mem
| App el e2 = fun s = (expDenote el s) (expDenote €2 s)
| Abs e’ = fun s = fun x = expDenote e’ (HCons x s)
end.

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.
= tt : typeDenote Unit

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.
= tt : typeDenote Unit
Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit = x
: typeDenote (Arrow Unit Unit)

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.
= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit = x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x _ : unit = x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.
= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit = x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x _ : unit = x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun _ x0 : unit = x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Daria Walukiewicz-Chrzaszez



Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.
= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit = x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x _ : unit = x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun _ x0 : unit = x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit



Dependent structures
Interpreter of A™— summary

@ syntax, typing rules and semantics of evaluation for A~

Daria Walukiewicz-Chrzaszez



Dependent structures
Interpreter of A™— summary

@ syntax, typing rules and semantics of evaluation for A~

@ interpreter = implementation of denotational semantics

Daria Walukiewicz-Chrzaszez



Dependent structures
Interpreter of A™— summary

@ syntax, typing rules and semantics of evaluation for A~
@ interpreter = implementation of denotational semantics

@ metatheorethical properties of A= follow from the properties of CIC
(subject reduction, strong normalization)

Daria Walukiewicz-Chrzaszez



	Dependent pattern-matching
	Definitions
	Examples

	Dependent structures

