
Dependent structures

Daria Walukiewicz-Chrząszcz

9 april 2019

Dependent pattern-matching Dependent structures Definitions Examples

Destruction - match

match m as x in I ~y return (P ~y x) with

(c1 x11 ... x1k1
)⇒ f1 | . . . | (cn xn1...xnkn

)⇒ fn end

for m : I~a~b the expression above has type P~bm, where

I : ∀(p1 : A1) . . . (pp : Ap)(z1 : Z1) . . . (zm : Zm).s

P : ∀(z1 : Z1) . . . (zm : Zm)(c : I~a~z).T ype

If

ci : ∀(p1 : A1) . . . (pp : Ap)(v1 : V1) . . . (vki
: Vki

).I~p~w

then

fi : ∀(v1 : V1) . . . (vki
: Vki

).P ~w(ci~a~v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Destruction - match

match m as x in I ~y return (P ~y x) with

(c1 x11 ... x1k1
)⇒ f1 | . . . | (cn xn1...xnkn

)⇒ fn end

for m : I~a~b the expression above has type P~bm, where

I : ∀(p1 : A1) . . . (pp : Ap)(z1 : Z1) . . . (zm : Zm).s

P : ∀(z1 : Z1) . . . (zm : Zm)(c : I~a~z).T ype

If

ci : ∀(p1 : A1) . . . (pp : Ap)(v1 : V1) . . . (vki
: Vki

).I~p~w

then

fi : ∀(v1 : V1) . . . (vki
: Vki

).P ~w(ci~a~v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Destruction - match

match m as x in I ~y return (P ~y x) with

(c1 x11 ... x1k1
)⇒ f1 | . . . | (cn xn1...xnkn

)⇒ fn end

for m : I~a~b the expression above has type P~bm, where

I : ∀(p1 : A1) . . . (pp : Ap)(z1 : Z1) . . . (zm : Zm).s

P : ∀(z1 : Z1) . . . (zm : Zm)(c : I~a~z).T ype

If

ci : ∀(p1 : A1) . . . (pp : Ap)(v1 : V1) . . . (vki
: Vki

).I~p~w

then

fi : ∀(v1 : V1) . . . (vki
: Vki

).P ~w(ci~a~v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Destruction - match

match m as x in I ~y return (P ~y x) with

(c1 x11 ... x1k1
)⇒ f1 | . . . | (cn xn1...xnkn

)⇒ fn end

for m : I~a~b the expression above has type P~bm, where

I : ∀(p1 : A1) . . . (pp : Ap)(z1 : Z1) . . . (zm : Zm).s

P : ∀(z1 : Z1) . . . (zm : Zm)(c : I~a~z).T ype

If

ci : ∀(p1 : A1) . . . (pp : Ap)(v1 : V1) . . . (vki
: Vki

).I~p~w

then

fi : ∀(v1 : V1) . . . (vki
: Vki

).P ~w(ci~a~v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Destruction - match

match m as x in I ~y return (P ~y x) with

(c1 x11 ... x1k1
)⇒ f1 | . . . | (cn xn1...xnkn

)⇒ fn end

for m : I~a~b the expression above has type P~bm, where

I : ∀(p1 : A1) . . . (pp : Ap)(z1 : Z1) . . . (zm : Zm).s

P : ∀(z1 : Z1) . . . (zm : Zm)(c : I~a~z).T ype

If

ci : ∀(p1 : A1) . . . (pp : Ap)(v1 : V1) . . . (vki
: Vki

).I~p~w

then

fi : ∀(v1 : V1) . . . (vki
: Vki

).P ~w(ci~a~v)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Lists with length: ilist

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function app on ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2)
:=

match ls1 in (ilist n1) return (ilist (n1 + n2)) with
| Nil ⇒ ls2 ≡ f1
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2) ≡ f2 x ls’

end.

P = fun (i : nat)(ls : ilist i)⇒ ilist(i+ n2)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : ilist(0 + n2)

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), ilist(S n′ + n2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function app on ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2)
:=

match ls1 in (ilist n1) return (ilist (n1 + n2)) with
| Nil ⇒ ls2 ≡ f1
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2) ≡ f2 x ls’

end.

P = fun (i : nat)(ls : ilist i)⇒ ilist(i+ n2)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : ilist(0 + n2)

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), ilist(S n′ + n2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function app on ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2)
:=

match ls1 in (ilist n1) return (ilist (n1 + n2)) with
| Nil ⇒ ls2 ≡ f1
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2) ≡ f2 x ls’

end.

P = fun (i : nat)(ls : ilist i)⇒ ilist(i+ n2)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : ilist(0 + n2)

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), ilist(S n′ + n2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function app on ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2)
:=

match ls1 in (ilist n1) return (ilist (n1 + n2)) with
| Nil ⇒ ls2 ≡ f1
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2) ≡ f2 x ls’

end.

P = fun (i : nat)(ls : ilist i)⇒ ilist(i+ n2)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : ilist(0 + n2)

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), ilist(S n′ + n2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function app on ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2)
:=

match ls1 in (ilist n1) return (ilist (n1 + n2)) with
| Nil ⇒ ls2 ≡ f1
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2) ≡ f2 x ls’

end.

P = fun (i : nat)(ls : ilist i)⇒ ilist(i+ n2)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : ilist(0 + n2)

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), ilist(S n′ + n2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Elimination of equality

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
eq refl => l ≡ f1

P = fun (m : nat)(h : n = m)⇒ ilist m

Since eq refl : ∀ (A : Set)(a : A).eq A a a one has

f1 : P n (eq refl nat n)

therefore
f1 : ilist n

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist

Definition hd1 n (ls : ilist (S n)) : A :=
match

ls as ls0 in (ilist n0)
return

(match n0 with
| 0 => unit
| S n1 => A
end)

with

| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist

Definition hd1 n (ls : ilist (S n)) : A :=
match

ls as ls0 in (ilist n0)
return

(match n0 with
| 0 => unit
| S n1 => A
end)

with

| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist cont.

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (S n′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist cont.

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (S n′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist cont.

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (S n′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist cont.

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (S n′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd1 on ilist cont.

P= fun (n0:nat)(ls0:ilist n0) =>
(match n0 with

| 0 => unit
| S n1 => A

end)

Since Nil : ilist 0 one has

f1 : P 0 Nil

Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (S n′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures Definitions Examples

Function hd2 on ilist

Definition hd pom n (ls : ilist n) :=
match ls in (ilist n)

return (match n with O => unit | S => A end) with
| Nil => tt ≡ f1
| Cons h => h ≡ f2 h
end.

P = fun (i : nat)(ls : ilist i)⇒ (match n with 0 ⇒ unit | S ⇒ A end)

Since Nil : ilist 0 one has f1 : P 0 Nil
Since Cons : ∀(n′ : nat)(a : A)(l : ilist n′), ilist (S n′) one has

f2 : ∀(n′ : nat)(a : A)(l : ilist n′), P (Sn′) (Cons n′ a l)

therefore
f1 : unit

f2 : ∀ (n′ : nat)(a : A)(l : ilist n′), A

Definition hd2 n (ls : ilist (S n)) := hd pom (S n) ls.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Note: there are no terms of type fin 0 !

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Note: there are no terms of type fin 0 !

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Note: there are no terms of type fin 0 !

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Initial subsets of natural numbers

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).

Values of type fin 3 are: First 2, Next (First 1), i Next (Next (First 0)).

Note: there are no terms of type fin 0 !

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function get (1)

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒ ?
| Cons x ls’ ⇒ fun idx ⇒
match idx with
| First ⇒ x
| Next idx’ ⇒ get ls’ idx’

end
end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function get (2)

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls in ilist k return fin k → A with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun ls’ ⇒ get ls’ idx’

end ls’
end.

The third return needed to connect the type of idx’ and the type of
idx. There is a problem with recursive call to get

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function get (2)

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls in ilist k return fin k → A with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun ls’ ⇒ get ls’ idx’

end ls’
end.

The third return needed to connect the type of idx’ and the type of
idx. There is a problem with recursive call to get

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function get (3)

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return (fin (pred n’) → A) → A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun get ls’ ⇒ get ls’ idx’

end (get ls’)
end.

End ilist.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples

Arguments Nil [A]. Arguments Cons [A n].
Arguments First [n]. Arguments Next [n].

Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A → Type.

Inductive hlist : list A → Type :=
| HNil : hlist nil
| HCons : ∀ (x : A) (ls : list A), B x → hlist ls → hlist (x :: ls).

Variable elm : A.

Inductive member : list A → Type :=
| HFirst : ∀ ls, member (elm :: ls)
| HNext : ∀ x ls, member ls → member (x :: ls).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A → Type.

Inductive hlist : list A → Type :=
| HNil : hlist nil
| HCons : ∀ (x : A) (ls : list A), B x → hlist ls → hlist (x :: ls).

Variable elm : A.

Inductive member : list A → Type :=
| HFirst : ∀ ls, member (elm :: ls)
| HNext : ∀ x ls, member ls → member (x :: ls).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Heterogenic lists

Section hlist.
Variable A : Type.
Variable B : A → Type.

Inductive hlist : list A → Type :=
| HNil : hlist nil
| HCons : ∀ (x : A) (ls : list A), B x → hlist ls → hlist (x :: ls).

Variable elm : A.

Inductive member : list A → Type :=
| HFirst : ∀ ls, member (elm :: ls)
| HNext : ∀ x ls, member ls → member (x :: ls).

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function hget(1)

Fixpoint hget ls (mls : hlist ls) : member ls → B elm :=
match mls with
| HNil ⇒ fun mem ⇒
match mem in member ls’ return (match ls’ with

| nil ⇒ B elm
| :: ⇒ unit

end) with
| HFirst ⇒ tt
| HNext ⇒ tt

end

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Function hget(2)

| HCons e mls’ ⇒ fun mem ⇒
match mem in member ls’ return (match ls’ with

| nil ⇒ Empty set
| x’ :: ls’’ ⇒

B x’ → (member ls’’ → B elm) → B elm
end) with

| HFirst ⇒ fun e’ ⇒ e’
| HNext mem’ ⇒ fun get mls’ ⇒ get mls’ mem’

end e (hget mls’)
end.

End hlist.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Examples of heterogenic lists

Arguments HCons [A B x ls].
Arguments HNil [A B].

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T) bool

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set :=
| Unit : type
| Arrow : type → type → type.

Inductive exp : list type → type → Set :=
| Const : ∀ ts, exp ts Unit
| Var : ∀ ts t, member t ts → exp ts t
| App : ∀ ts dom ran, exp ts (Arrow dom ran) → exp ts dom → exp ts
ran
| Abs : ∀ ts dom ran, exp (dom :: ts) ran → exp ts (Arrow dom ran).

Arguments Const [ts].

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set :=
| Unit : type
| Arrow : type → type → type.

Inductive exp : list type → type → Set :=
| Const : ∀ ts, exp ts Unit
| Var : ∀ ts t, member t ts → exp ts t
| App : ∀ ts dom ran, exp ts (Arrow dom ran) → exp ts dom → exp ts
ran
| Abs : ∀ ts dom ran, exp (dom :: ts) ran → exp ts (Arrow dom ran).

Arguments Const [ts].

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus (1)

Inductive type : Set :=
| Unit : type
| Arrow : type → type → type.

Inductive exp : list type → type → Set :=
| Const : ∀ ts, exp ts Unit
| Var : ∀ ts t, member t ts → exp ts t
| App : ∀ ts dom ran, exp ts (Arrow dom ran) → exp ts dom → exp ts
ran
| Abs : ∀ ts dom ran, exp (dom :: ts) ran → exp ts (Arrow dom ran).

Arguments Const [ts].

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus (2)

Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit ⇒ unit
| Arrow t1 t2 ⇒ typeDenote t1 → typeDenote t2

end.

Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts →
typeDenote t :=
match e with
| Const ⇒ fun ⇒ tt
| Var mem ⇒ fun s ⇒ hget s mem
| App e1 e2 ⇒ fun s ⇒ (expDenote e1 s) (expDenote e2 s)
| Abs e’ ⇒ fun s ⇒ fun x ⇒ expDenote e’ (HCons x s)

end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus (2)

Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit ⇒ unit
| Arrow t1 t2 ⇒ typeDenote t1 → typeDenote t2

end.

Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts →
typeDenote t :=
match e with
| Const ⇒ fun ⇒ tt
| Var mem ⇒ fun s ⇒ hget s mem
| App e1 e2 ⇒ fun s ⇒ (expDenote e1 s) (expDenote e2 s)
| Abs e’ ⇒ fun s ⇒ fun x ⇒ expDenote e’ (HCons x s)

end.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.

= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.

= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.

= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.

= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of simply typed lambda calculus - examples

Eval simpl in expDenote Const HNil.

= tt : typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var
HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt : typeDenote Unit
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of λ→— summary

syntax, typing rules and semantics of evaluation for λ→

interpreter = implementation of denotational semantics
metatheorethical properties of λ→ follow from the properties of CIC
(subject reduction, strong normalization)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of λ→— summary

syntax, typing rules and semantics of evaluation for λ→

interpreter = implementation of denotational semantics
metatheorethical properties of λ→ follow from the properties of CIC
(subject reduction, strong normalization)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Dependent pattern-matching Dependent structures

Interpreter of λ→— summary

syntax, typing rules and semantics of evaluation for λ→

interpreter = implementation of denotational semantics
metatheorethical properties of λ→ follow from the properties of CIC
(subject reduction, strong normalization)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

	Dependent pattern-matching
	Definitions
	Examples

	Dependent structures

