Dependent pattern-matching in Coq

Daria Walukiewicz-Chrzaszcz

02 april 2019

Dependent types in programming

Compilation correctness — example from “Certified Programming with
Dependent Types’ by Adam Chlipala (MIT)

Certified Programming with
Dependent Types
A prag

Daria Walukiewicz-Chrzaszez

Dependent types in programming

Compilation correctness — example from “Certified Programming with
Dependent Types’ by Adam Chlipala (MIT)

Certified Programming with
Dependent Types
A prag

@ available: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.
Inductive exp : Set =

| Const : Z — exp
| Binop : binop — exp — exp — exp.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.
Inductive exp : Set =
| Const : Z — exp

| Binop : binop — exp — exp — exp.

Check Const 42.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.
Inductive exp : Set =

| Const : Z — exp
| Binop : binop — exp — exp — exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.
Inductive exp : Set =

| Const : Z — exp
| Binop : binop — exp — exp — exp.

Check Const 42.
Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z — exp
| Binop : binop — exp — exp — exp.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.
Inductive exp : Set =

| Const : Z — exp

| Binop : binop — exp — exp — exp.

Definition binopDenote (b : binop) : Z — Z — Z :=
match b with

| Plus = funxy = x+y
| Times = fun xy = x X y
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z — exp
| Binop : binop — exp — exp — exp.

Definition binopDenote (b : binop) : Z — Z — Z :=
match b with
| Plus = funxy = x+y
| Times = fun xy = x X y
end.

Fixpoint expDenote (e : exp) : Z :=
match e with
| Const n = n
| Binop b el e2 = (binopDenote b) (expDenote el) (expDenote e2)
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.
Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.
Check iConst 42 :: nil.
Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.

Definition stack := list Z.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.
Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack :=
match / with
| iConst n = Some (n :: s)
| iBinop b =
match s with
| argl :: arg2 :: 5" = Some ((binopDenote b) argl arg2 :: s’)
| - = None
end
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.
Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack := ...

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z — instr
| iBinop : binop — instr.

Definition prog := list instr.
Definition stack := list Z.
Definition instrDenote (i : instr) (s : stack) : option stack := ...

Fixpoint progDenote (p : prog) (s : stack) : option stack :=
match p with
| nil = Some s
| i :: p’ = match instrDenote i s with
| None = None
| Some s’ = progDenote p’ s’
end
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort

Source lang. Target lang. Correctness

Single sort: Compilation

Fixpoint compile (e : exp) : prog =
match e with
| Const n = iConst n :: nil

| Binop b el €2 = compile €2 ++ compile el ++ iBinop b :: nil
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Target lang. Compilation

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n = iConst n :: nil
| Binop b el €2 = compile €2 ++ compile el ++ iBinop b :: nil
end.

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Target lang. Compilation

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n = iConst n :: nil
| Binop b el €2 = compile €2 ++ compile el ++ iBinop b :: nil
end.

Theorem compile_correct :
V' e, progDenote (compile €) nil = Some (expDenote e :: nil).

Daria Walukiewicz-Chrzaszez

Ex: 1 sort Source lang. Target lang. Compilation

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n = iConst n :: nil
| Binop b el €2 = compile €2 ++ compile el ++ iBinop b :: nil
end.

Theorem compile_correct :
V' e, progDenote (compile €) nil = Some (expDenote e :: nil).

Lemma compile_correct’ : V e p s,
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort — sort — sort — Set :=
| MPlus : mbinop Mint Mint Mint

| MTimes : mbinop Mint Mint Mint

| MEq : V' s, mbinop s s Mbool

| MLt : mbinop Mint Mint Mbool.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort — sort — sort — Set :=
| MPlus : mbinop Mint Mint Mint

| MTimes : mbinop Mint Mint Mint

| MEq : V' s, mbinop s s Mbool

| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort — Set =

| MZConst : Z — mexp Mint

| MBConst : bool — mexp Mbool

| MBinop : V s1 s2 s, mbinop s1 s2 s — mexp s1 — mexp s2 — mexp s.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort — sort — sort — Set :=
| MPlus : mbinop Mint Mint Mint

| MTimes : mbinop Mint Mint Mint

| MEq : V' s, mbinop s s Mbool

| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort — Set =

| MZConst : Z — mexp Mint

| MBConst : bool — mexp Mbool

| MBinop : V s1 s2 s, mbinop s1 s2 s — mexp s1 — mexp s2 — mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort — sort — sort — Set :=
| MPlus : mbinop Mint Mint Mint

| MTimes : mbinop Mint Mint Mint

| MEq : V' s, mbinop s s Mbool

| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort — Set =

| MZConst : Z — mexp Mint

| MBConst : bool — mexp Mbool

| MBinop : V s1 s2 s, mbinop s1 s2 s — mexp s1 — mexp s2 — mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with
| Mint = Z
| Mbool = bool
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint = Z | Mbool = bool end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint = Z | Mbool = bool end.

Definition mbinopDenote argl arg2 res (b : mbinop argl arg2 res)
: sortDenote argl — sortDenote arg2 — sortDenote res :=
match b with
| MPlus = Z.add
| MTimes = Z.mul
| MEq Mint = Z.egb
| MEq Mbool = Bool.eqb
| MLt = Z.Itb
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint = Z | Mbool = bool end.

Definition mbinopDenote argl arg2 res (b : mbinop argl arg2 res)
: sortDenote argl — sortDenote arg2 — sortDenote res :=
match b with
| MPlus = Z.add
| MTimes = Z.mul
| MEq Mint = Z.egb
| MEq Mbool = Bool.eqb
| MLt = Z.Itb
end.

Fixpoint mexpDenote s (e : mexp s) : sortDenote s :=
match e with
| MZConst n = n
| MBConst b = b
| MBinop b el e2 =
(mbinopDenote b) (mexpDenote el) (mexpDenote e2)
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Inductive minstr : sstack — sstack — Set :=
| MiZConst : ¥ ss, Z — minstr ss (Mint :: ss)
| MiBConst : V ss, bool — minstr ss (Mbool :: ss)
| MiBinop : ¥ argl arg2 res ss,
mbinop argl arg2 res — minstr (argl :: arg2 :: ss) (res :: ss).

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Inductive minstr : sstack — sstack — Set :=
| MiZConst : ¥ ss, Z — minstr ss (Mint :: ss)
| MiBConst : V ss, bool — minstr ss (Mbool :: ss)
| MiBinop : ¥ argl arg2 res ss,
mbinop argl arg2 res — minstr (argl :: arg2 :: ss) (res :: ss).

Inductive mprog : sstack — sstack — Set :=

| MNil : ¥ ss, mprog ss ss
| MCons : ¥ ss1 ss2 ss3, minstr ssl1 ss2 — mprog ss2 ss3 — mprog ssl ss3.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with
| nil = unit
| s it ss” = sortDenote s x vstack ss’
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with
| nil = unit
| s it ss” = sortDenote s x vstack ss’
end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool::Mbool::nil).

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil = unit | s :: ss’ = sortDenote s x vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool::Mbool::nil).

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil = unit | s :: ss’ = sortDenote s x vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool::Mbool::nil).

Definition minstrDenote ss ss’ (i : minstr ss ss') : vstack ss — vstack ss' :=
match / with
| MiZConst _ n = fun vs = (n, vs)
| MiBConst _ b = fun vs = (b, vs)
| MiBinop - b = fun vs =
let '(v1, (v2, vs')) := vs in ((mbinopDenote b) v1 v2, vs’)
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil = unit | s :: ss’ = sortDenote s x vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool::Mbool::nil).

Definition minstrDenote ss ss’ (i : minstr ss ss') : vstack ss — vstack ss' :=
match / with
| MiZConst _ n = fun vs = (n, vs)
| MiBConst _ b = fun vs = (b, vs)
| MiBinop - b = fun vs =
let '(v1, (v2, vs')) := vs in ((mbinopDenote b) v1 v2, vs’)
end.

Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss — vstack ss’ :=
match p with
| MNil _ = fun vs = vs
| MCons i p' = fun vs = mprogDenote p’ (minstrDenote i vs)
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Target lang. Correctness

Many sorts: Compilation

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n = MCons (MiZConst _ n) (MNil _)
| MBConst b = MCons (MiBConst _ b) (MNil _)
| MBinop b el e2 = mconcat (mcompile e2 _)
(mconcat (mcompile el _) (MCons (MiBinop - b) (MNil _)))
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Target lang. Compilation

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n = MCons (MiZConst _ n) (MNil _)
| MBConst b = MCons (MiBConst _ b) (MNil -)
| MBinop b el e2 = mconcat (mcompile e2 _)
(mconcat (mcompile el _) (MCons (MiBinop — b) (MNil _)))
end.

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Target lang. Compilation

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n = MCons (MiZConst _ n) (MNil _)
| MBConst b = MCons (MiBConst _ b) (MNil -)
| MBinop b el e2 = mconcat (mcompile e2 _)
(mconcat (mcompile el _) (MCons (MiBinop — b) (MNil _)))
end.

Theorem mcompile_correct : V s (e : mexp s),
mprogDenote (mcompile e nil) tt = (mexpDenote e, tt).

Daria Walukiewicz-Chrzaszez

Ex: m sorts Source lang. Target lang. Compilation

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n = MCons (MiZConst _ n) (MNil _)
| MBConst b = MCons (MiBConst _ b) (MNil -)
| MBinop b el e2 = mconcat (mcompile e2 _)
(mconcat (mcompile el _) (MCons (MiBinop — b) (MNil _)))
end.

Theorem mcompile_correct : V s (e : mexp s),
mprogDenote (mcompile e nil) tt = (mexpDenote e, tt).

Lemma mcompile_correct’ : ¥V s (e : mexp s) ss (s : vstack ss),
mprogDenote (mcompile e ss) s = (mexpDenote e, s).

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred

Print pred.

pred = fun n : nat = match n with
|0=0
| Su=u
end

: nat— nat

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred_strongl

Lemma zgtz : 0 > 0 — False.
intro H.
inversion H.

Qed.

Definition pred_strongl (n: nat) : n >0 — nat :=
match n with
| O = fun pf : 0 > 0 = match zgtz pf with end
|Sn"= fun_ = n’
end.

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred_strongl

Lemma zgtz : 0 > 0 — False.
intro H.
inversion H.
Qed.
Definition pred_strongl (n: nat) : n >0 — nat :=
match n with
| O = fun pf : 0 > 0 = match zgtz pf with end
|Sn"= fun_ = n’
end.

Theorem two_gt0 : 2 > 0.
auto.
Qed.

Eval compute in pred_strongl two_gt0.
=1
> nat

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred_strongl’

Definition pred_strongl' (n: nat) (pf : n > 0) : nat :=
match n with
| O = match zgtz pf with end
|Sn" = n’
end.

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred_strongl’

Definition pred_strongl' (n: nat) (pf : n > 0) : nat :=
match n with
| O = match zgtz pf with end
|Sn" = n’
end.

Error: In environment

n : nat

pft :n>0

The term "pf" has type " n > 0" while it is expected to have
type "0 > O"

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Function pred_strongl with explicit return

Definition pred_strongl (n: nat) : n >0 — nat :=
match n return n > 0 — nat with
| O = fun pf : 0 > 0 = match zgtz pf with end
|Sn"= fun_=n’
end.

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Lists with length

Section ilist.
Variable A : Set.

Inductive ilist : nat — Set =
| INil : ilist O
| ICons : V n, A — ilist n — ilist (S n).

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Dependent pattern-matching for ilist (1)

match [:ilist m

with

[INil = ...

[ICons nx I'= ...
end. :Pm

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Dependent pattern-matching for ilist (2)

match lilist m
in (ilist k)
return (P k)

with
| INil= ..:PO
[ICons nx "= ...: P (S n)
end. :Pm

Daria Walukiewicz-Chrzaszez

Match and fix Definitions

Dependent pattern-matching for ilist (3)

match [:ilist m

as viilist k

in (ilist k)

return (P k v)
with

| INil = ... : P O INil

[IConsnx "= ...: P (Sn) (ICons nxl/)
end. :Pm/

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Destruction - match

Simple form:
match m with (c1 211 ... Z1p,) = fi | ... | (¢n Tp1...Tnp,) = frn end
Full form:
match m as x in I _ a return (P a x) with
(1 ®11 o T1py) = f1 | -+ | (Cn Tna1---Znp,) = fn end

For the purpose of presenting the inference rules, we use a more compact
notation :

case(m, P, Ax11 ... Z1p,-f1 | --- | A1 Znp, - fn)

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Destruction - match (2)

Type of branches. Let ¢ be a term of type C, we assume C'is a type of
constructor for an inductive definition I. Let P be a term that represents
the property to be proved. We assume r is the number of parameters.
We define a new type {c : C}¥ which represents the type of the branch
corresponding to the ¢ : C' constructor.

{e:(Iipr...prt1..)} =(Pti... tyc)
{c:¥Yz:T,C}° =Vz:T,{(cx):C}

We write {c} for {c: C} with C the type of c.

Example for ilist and s € S:
P: VYn:nat,ilist n — s
{(I1Cons)}¥ =Vn :nat,a: A,l:ilist n, P (S n) (ICons n a l).

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
o if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
o if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]
@ [I:s1|I -> s2] for any sl € Set, Type(j), s2 € S

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
o if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]
@ [I:s1|I -> s2] for any sl € Set, Type(j), s2 € S
@ [I:ProplI -> Propl

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:

if [(I x):A’|B”] then [I:forall x:A, A’|forall x:A, B’]
[I:s1]I -> s2] for any sl € Set, Type(j), s2 € S

[I:ProplI -> Prop]

[I:ProplI -> s] for I empty or singleton definition, s € S

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Destruction - match (3)

Typing rule.
Our very general destructor for inductive definition enjoys the following
typing rule
ElflEm:(Iqr...q t1...15)
El+-P:B
(T a1 .)|B]

(BT F fi: {(cpy @1+ @)})i=1..0
E[l)F case(m, P, f1|...|f1) : (P t1...ts m)

provided I is an inductive type in a declaration Ind(A)[r](T'; := T'¢) with
Io=le1:Chi...5¢n : Cyl and ¢y, ... ¢p, are the only constructors of I.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

lota reduction

A -reduction has the following form

case((cp;, q1---Gr G1...Qm), P, fi|.. [fo) > (fia1...am)

with ¢, the i-th constructor of the inductive type I with r parameters.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: pred_strongl

Definition pred_strongl (n: nat) : n >0 — nat :=
match n with
| O = fun pf : 0 > 0 = match zgtz pf with end
|Sn" = fun_ = n’
end.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: pred_strongl

Definition pred_strongl (n: nat) : n >0 — nat :=
match n with
| O = fun pf : 0 > 0 = match zgtz pf with end
|Sn" = fun_ = n’
end.

Definition pred_strongl (n: nat): n>0 — nat :=
match n return n > 0 — nat with
| O = fun pf : 0 > 0 = match zgtz pf withend :0>0 — nat
|Sn"=fun_=n" :Sn>0— nat
end.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: append of ilist

Fixpoint app’ nl (/sI :ilist n1) n2 (Is2 :ilist n2) : ilist (n1 +n2) :=
match /sI in (ilist k) return (ilist (k +n2)) with
| INil = 52
| ICons _ x IsI’ = ICons x (app' Is1’ Is2)
end.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: append of ilist

Fixpoint app’ nl (/sI :ilist n1) n2 (Is2 :ilist n2) : ilist (n1 +n2) :=
match /sI in (ilist k) return (ilist (k +n2)) with
| INil = 52
| ICons _ x IsI’ = ICons x (app' Is1’ Is2)
end.

Fixpoint app’ nl (IsI :ilist n1) n2 (Is2 : ilist n2) : ilist (n1 +n2) :
match /s in (ilist k) return (ilist (k +n2)) with
| INil = [s2 :ilist (0+n2)
| ICons n” x Is1" = 1Cons x (app’ Is1' [s2) :ilist (S n"+n2)
end.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: strong elimination

Definition sel (n:nat) := match n with
| 0 => False
| S _=> True

Daria Walukiewicz-Chrzaszez

Match and fix

Typing: strong elimination

Examples

Definition sel (n:nat)
| 0 => False
| S _=> True

:= match n with

Elimination from nat to Type is needed to show that 0 # 1:

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: strong elimination

Definition sel (n:nat) := match n with
| 0 => False
| S _=> True

Elimination from nat to Type is needed to show that 0 # 1:

Goal 0=1 -> False.
intro H.

change (sel 1).
rewrite <- H.

red.

constructor.

Qed.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(1l:ilist n): ilist m :=
match h in _=m with return (ilist m)
| eq_refl =>1

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: eq elimination

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq_refl =>1

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq-refl =>1 : ilist n

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: eq elimination

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq_refl =>1

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq-refl =>1 : ilist n

P = fun (m : nat)(h:n=m) = ilist m

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: eq elimination

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq_refl =>1

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq-refl =>1 : ilist n

P = fun (m : nat)(h:n=m) = ilist m

@ That is an elimination from Prop to Set for a singleton type

Daria Walukiewicz-Chrzaszez

Match and fix Examples

Typing: eq elimination

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq_refl =>1

Definition rowne (n,m:nat) (h:n=m)(1l:ilist n): ilist m :
match h in _=m with return (ilist m)
| eq-refl =>1 : ilist n

P = fun (m : nat)(h:n=m) = ilist m

@ That is an elimination from Prop to Set for a singleton type

@ That is how tactic rewrite works

Daria Walukiewicz-Chrzaszez

Match and fix Examples

For nonsingleton types in Prop elimination to Prop only

Inductive or (A B:Prop) : Prop :=
lintro : A -> or A B | rintro : B -> or A B.

Daria Walukiewicz-Chrzaszez

Match and fix Examples

For nonsingleton types in Prop elimination to Prop only

Inductive or (A B:Prop) : Prop :=
lintro : A -> or A B | rintro : B -> or A B.

Incorrect:

Definition choice (A B: Prop) (x:or A B): bool :=
match x with lintro a => true | rintro b => false end.

Error: Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop is not allowed
on a predicate in sort Set because proofs can be eliminated
only to build proofs.

Daria Walukiewicz-Chrzaszez

	Ex:1sort
	Source lang.
	Target lang.
	Compilation
	Correctness

	Ex:msorts
	Source lang.
	Target lang.
	Compilation
	Correctness

	Match and fix
	Examples
	Definitions

