
Dependent pattern-matching in Coq

Daria Walukiewicz-Chrząszcz

02 april 2019

Ex: 1 sort Ex: m sorts Match and fix

Dependent types in programming

Compilation correctness — example from “Certified Programming with
Dependent Types” by Adam Chlipala (MIT)

available: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix

Dependent types in programming

Compilation correctness — example from “Certified Programming with
Dependent Types” by Adam Chlipala (MIT)

available: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Check Const 42.

Check Binop Plus (Const 2) (Const 2).

Check Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Definition binopDenote (b : binop) : Z → Z → Z :=
match b with
| Plus ⇒ fun x y ⇒ x + y
| Times ⇒ fun x y ⇒ x × y
end.

Fixpoint expDenote (e : exp) : Z :=
match e with
| Const n ⇒ n
| Binop b e1 e2 ⇒ (binopDenote b) (expDenote e1) (expDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Definition binopDenote (b : binop) : Z → Z → Z :=
match b with
| Plus ⇒ fun x y ⇒ x + y
| Times ⇒ fun x y ⇒ x × y
end.

Fixpoint expDenote (e : exp) : Z :=
match e with
| Const n ⇒ n
| Binop b e1 e2 ⇒ (binopDenote b) (expDenote e1) (expDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Source language denotation

Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
| Const : Z → exp
| Binop : binop → exp → exp → exp.

Definition binopDenote (b : binop) : Z → Z → Z :=
match b with
| Plus ⇒ fun x y ⇒ x + y
| Times ⇒ fun x y ⇒ x × y
end.

Fixpoint expDenote (e : exp) : Z :=
match e with
| Const n ⇒ n
| Binop b e1 e2 ⇒ (binopDenote b) (expDenote e1) (expDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Check iConst 42 :: nil.

Check iConst 2 :: iConst 2 :: iBinop Plus :: nil.

Check iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| iConst n ⇒ Some (n :: s)
| iBinop b ⇒
match s with
| arg1 :: arg2 :: s’ ⇒ Some ((binopDenote b) arg1 arg2 :: s’)
| ⇒ None
end

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| iConst n ⇒ Some (n :: s)
| iBinop b ⇒
match s with
| arg1 :: arg2 :: s’ ⇒ Some ((binopDenote b) arg1 arg2 :: s’)
| ⇒ None
end

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| iConst n ⇒ Some (n :: s)
| iBinop b ⇒
match s with
| arg1 :: arg2 :: s’ ⇒ Some ((binopDenote b) arg1 arg2 :: s’)
| ⇒ None
end

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack := ...

Fixpoint progDenote (p : prog) (s : stack) : option stack :=
match p with
| nil ⇒ Some s
| i :: p’ ⇒ match instrDenote i s with

| None ⇒ None
| Some s’ ⇒ progDenote p’ s’

end
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Target language denotation

Inductive instr : Set :=
| iConst : Z → instr
| iBinop : binop → instr.

Definition prog := list instr.

Definition stack := list Z.

Definition instrDenote (i : instr) (s : stack) : option stack := ...

Fixpoint progDenote (p : prog) (s : stack) : option stack :=
match p with
| nil ⇒ Some s
| i :: p’ ⇒ match instrDenote i s with

| None ⇒ None
| Some s’ ⇒ progDenote p’ s’

end
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Compilation

Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ iConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ iBinop b :: nil
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ iConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ iBinop b :: nil
end.

Theorem compile correct :
∀ e, progDenote (compile e) nil = Some (expDenote e :: nil).

Lemma compile correct’ : ∀ e p s,
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ iConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ iBinop b :: nil
end.

Theorem compile correct :
∀ e, progDenote (compile e) nil = Some (expDenote e :: nil).

Lemma compile correct’ : ∀ e p s,
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Single sort: Compilation correctness

Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ iConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ iBinop b :: nil
end.

Theorem compile correct :
∀ e, progDenote (compile e) nil = Some (expDenote e :: nil).

Lemma compile correct’ : ∀ e p s,
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort → sort → sort → Set :=
| MPlus : mbinop Mint Mint Mint
| MTimes : mbinop Mint Mint Mint
| MEq : ∀ s, mbinop s s Mbool
| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort → Set :=
| MZConst : Z → mexp Mint
| MBConst : bool → mexp Mbool
| MBinop : ∀ s1 s2 s, mbinop s1 s2 s → mexp s1 → mexp s2 → mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort → sort → sort → Set :=
| MPlus : mbinop Mint Mint Mint
| MTimes : mbinop Mint Mint Mint
| MEq : ∀ s, mbinop s s Mbool
| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort → Set :=
| MZConst : Z → mexp Mint
| MBConst : bool → mexp Mbool
| MBinop : ∀ s1 s2 s, mbinop s1 s2 s → mexp s1 → mexp s2 → mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort → sort → sort → Set :=
| MPlus : mbinop Mint Mint Mint
| MTimes : mbinop Mint Mint Mint
| MEq : ∀ s, mbinop s s Mbool
| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort → Set :=
| MZConst : Z → mexp Mint
| MBConst : bool → mexp Mbool
| MBinop : ∀ s1 s2 s, mbinop s1 s2 s → mexp s1 → mexp s2 → mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort → sort → sort → Set :=
| MPlus : mbinop Mint Mint Mint
| MTimes : mbinop Mint Mint Mint
| MEq : ∀ s, mbinop s s Mbool
| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort → Set :=
| MZConst : Z → mexp Mint
| MBConst : bool → mexp Mbool
| MBinop : ∀ s1 s2 s, mbinop s1 s2 s → mexp s1 → mexp s2 → mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language

Inductive sort : Set := Mint | Mbool.

Inductive mbinop : sort → sort → sort → Set :=
| MPlus : mbinop Mint Mint Mint
| MTimes : mbinop Mint Mint Mint
| MEq : ∀ s, mbinop s s Mbool
| MLt : mbinop Mint Mint Mbool.

Inductive mexp : sort → Set :=
| MZConst : Z → mexp Mint
| MBConst : bool → mexp Mbool
| MBinop : ∀ s1 s2 s, mbinop s1 s2 s → mexp s1 → mexp s2 → mexp s.

Check MBinop MPlus (MZConst 2) (MZConst 2) : mexp Mint.

Check MBinop (MEq Mint) (MBinop MPlus (MZConst 2) (MZConst 2))
(MZConst 7) : mexp Mbool.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with
| Mint ⇒ Z
| Mbool ⇒ bool

end.
Definition mbinopDenote arg1 arg2 res (b : mbinop arg1 arg2 res)

: sortDenote arg1 → sortDenote arg2 → sortDenote res :=
match b with
| MPlus ⇒ Z.add
| MTimes ⇒ Z.mul
| MEq Mint ⇒ Z.eqb
| MEq Mbool ⇒ Bool.eqb
| MLt ⇒ Z.ltb

end.
Fixpoint mexpDenote s (e : mexp s) : sortDenote s :=
match e with
| MZConst n ⇒ n
| MBConst b ⇒ b
| MBinop b e1 e2 ⇒

(mbinopDenote b) (mexpDenote e1) (mexpDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint ⇒ Z | Mbool ⇒ bool end.

Definition mbinopDenote arg1 arg2 res (b : mbinop arg1 arg2 res)
: sortDenote arg1 → sortDenote arg2 → sortDenote res :=
match b with
| MPlus ⇒ Z.add
| MTimes ⇒ Z.mul
| MEq Mint ⇒ Z.eqb
| MEq Mbool ⇒ Bool.eqb
| MLt ⇒ Z.ltb

end.

Fixpoint mexpDenote s (e : mexp s) : sortDenote s :=
match e with
| MZConst n ⇒ n
| MBConst b ⇒ b
| MBinop b e1 e2 ⇒

(mbinopDenote b) (mexpDenote e1) (mexpDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint ⇒ Z | Mbool ⇒ bool end.

Definition mbinopDenote arg1 arg2 res (b : mbinop arg1 arg2 res)
: sortDenote arg1 → sortDenote arg2 → sortDenote res :=
match b with
| MPlus ⇒ Z.add
| MTimes ⇒ Z.mul
| MEq Mint ⇒ Z.eqb
| MEq Mbool ⇒ Bool.eqb
| MLt ⇒ Z.ltb

end.

Fixpoint mexpDenote s (e : mexp s) : sortDenote s :=
match e with
| MZConst n ⇒ n
| MBConst b ⇒ b
| MBinop b e1 e2 ⇒

(mbinopDenote b) (mexpDenote e1) (mexpDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Source language denotation

Definition sortDenote (s : sort) : Set :=
match s with Mint ⇒ Z | Mbool ⇒ bool end.

Definition mbinopDenote arg1 arg2 res (b : mbinop arg1 arg2 res)
: sortDenote arg1 → sortDenote arg2 → sortDenote res :=
match b with
| MPlus ⇒ Z.add
| MTimes ⇒ Z.mul
| MEq Mint ⇒ Z.eqb
| MEq Mbool ⇒ Bool.eqb
| MLt ⇒ Z.ltb

end.

Fixpoint mexpDenote s (e : mexp s) : sortDenote s :=
match e with
| MZConst n ⇒ n
| MBConst b ⇒ b
| MBinop b e1 e2 ⇒

(mbinopDenote b) (mexpDenote e1) (mexpDenote e2)
end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Inductive minstr : sstack → sstack → Set :=
| MiZConst : ∀ ss, Z → minstr ss (Mint :: ss)
| MiBConst : ∀ ss, bool → minstr ss (Mbool :: ss)
| MiBinop : ∀ arg1 arg2 res ss,

mbinop arg1 arg2 res → minstr (arg1 :: arg2 :: ss) (res :: ss).

Inductive mprog : sstack → sstack → Set :=
| MNil : ∀ ss, mprog ss ss
| MCons : ∀ ss1 ss2 ss3, minstr ss1 ss2 → mprog ss2 ss3 → mprog ss1 ss3.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Inductive minstr : sstack → sstack → Set :=
| MiZConst : ∀ ss, Z → minstr ss (Mint :: ss)
| MiBConst : ∀ ss, bool → minstr ss (Mbool :: ss)
| MiBinop : ∀ arg1 arg2 res ss,

mbinop arg1 arg2 res → minstr (arg1 :: arg2 :: ss) (res :: ss).

Inductive mprog : sstack → sstack → Set :=
| MNil : ∀ ss, mprog ss ss
| MCons : ∀ ss1 ss2 ss3, minstr ss1 ss2 → mprog ss2 ss3 → mprog ss1 ss3.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language

Definition sstack := list sort.

Inductive minstr : sstack → sstack → Set :=
| MiZConst : ∀ ss, Z → minstr ss (Mint :: ss)
| MiBConst : ∀ ss, bool → minstr ss (Mbool :: ss)
| MiBinop : ∀ arg1 arg2 res ss,

mbinop arg1 arg2 res → minstr (arg1 :: arg2 :: ss) (res :: ss).

Inductive mprog : sstack → sstack → Set :=
| MNil : ∀ ss, mprog ss ss
| MCons : ∀ ss1 ss2 ss3, minstr ss1 ss2 → mprog ss2 ss3 → mprog ss1 ss3.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with
| nil ⇒ unit
| s :: ss’ ⇒ sortDenote s × vstack ss’

end.
Check (5, (true, (false, tt))) : vstack (Mint::Mbool ::Mbool ::nil).
Definition minstrDenote ss ss’ (i : minstr ss ss’) : vstack ss → vstack ss’ :=
match i with
| MiZConst n ⇒ fun vs ⇒ (n, vs)
| MiBConst b ⇒ fun vs ⇒ (b, vs)
| MiBinop b ⇒ fun vs ⇒
let ’(v1, (v2, vs’)) := vs in ((mbinopDenote b) v1 v2, vs’)

end.
Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss → vstack ss’ :=
match p with
| MNil ⇒ fun vs ⇒ vs
| MCons i p’ ⇒ fun vs ⇒ mprogDenote p’ (minstrDenote i vs)

end.
Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with
| nil ⇒ unit
| s :: ss’ ⇒ sortDenote s × vstack ss’

end.
Check (5, (true, (false, tt))) : vstack (Mint::Mbool ::Mbool ::nil).
Definition minstrDenote ss ss’ (i : minstr ss ss’) : vstack ss → vstack ss’ :=
match i with
| MiZConst n ⇒ fun vs ⇒ (n, vs)
| MiBConst b ⇒ fun vs ⇒ (b, vs)
| MiBinop b ⇒ fun vs ⇒
let ’(v1, (v2, vs’)) := vs in ((mbinopDenote b) v1 v2, vs’)

end.
Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss → vstack ss’ :=
match p with
| MNil ⇒ fun vs ⇒ vs
| MCons i p’ ⇒ fun vs ⇒ mprogDenote p’ (minstrDenote i vs)

end.
Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil ⇒ unit | s :: ss’ ⇒ sortDenote s × vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool ::Mbool ::nil).

Definition minstrDenote ss ss’ (i : minstr ss ss’) : vstack ss → vstack ss’ :=
match i with
| MiZConst n ⇒ fun vs ⇒ (n, vs)
| MiBConst b ⇒ fun vs ⇒ (b, vs)
| MiBinop b ⇒ fun vs ⇒
let ’(v1, (v2, vs’)) := vs in ((mbinopDenote b) v1 v2, vs’)

end.

Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss → vstack ss’ :=
match p with
| MNil ⇒ fun vs ⇒ vs
| MCons i p’ ⇒ fun vs ⇒ mprogDenote p’ (minstrDenote i vs)

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil ⇒ unit | s :: ss’ ⇒ sortDenote s × vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool ::Mbool ::nil).

Definition minstrDenote ss ss’ (i : minstr ss ss’) : vstack ss → vstack ss’ :=
match i with
| MiZConst n ⇒ fun vs ⇒ (n, vs)
| MiBConst b ⇒ fun vs ⇒ (b, vs)
| MiBinop b ⇒ fun vs ⇒
let ’(v1, (v2, vs’)) := vs in ((mbinopDenote b) v1 v2, vs’)

end.

Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss → vstack ss’ :=
match p with
| MNil ⇒ fun vs ⇒ vs
| MCons i p’ ⇒ fun vs ⇒ mprogDenote p’ (minstrDenote i vs)

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Target language denotation

Fixpoint vstack (ss : sstack) : Set :=
match ss with nil ⇒ unit | s :: ss’ ⇒ sortDenote s × vstack ss’ end.

Check (5, (true, (false, tt))) : vstack (Mint::Mbool ::Mbool ::nil).

Definition minstrDenote ss ss’ (i : minstr ss ss’) : vstack ss → vstack ss’ :=
match i with
| MiZConst n ⇒ fun vs ⇒ (n, vs)
| MiBConst b ⇒ fun vs ⇒ (b, vs)
| MiBinop b ⇒ fun vs ⇒
let ’(v1, (v2, vs’)) := vs in ((mbinopDenote b) v1 v2, vs’)

end.

Fixpoint mprogDenote ss ss’ (p : mprog ss ss’) : vstack ss → vstack ss’ :=
match p with
| MNil ⇒ fun vs ⇒ vs
| MCons i p’ ⇒ fun vs ⇒ mprogDenote p’ (minstrDenote i vs)

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Compilation

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n ⇒ MCons (MiZConst n) (MNil)
| MBConst b ⇒ MCons (MiBConst b) (MNil)
| MBinop b e1 e2 ⇒ mconcat (mcompile e2)
(mconcat (mcompile e1) (MCons (MiBinop b) (MNil)))

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n ⇒ MCons (MiZConst n) (MNil)
| MBConst b ⇒ MCons (MiBConst b) (MNil)
| MBinop b e1 e2 ⇒ mconcat (mcompile e2)
(mconcat (mcompile e1) (MCons (MiBinop b) (MNil)))

end.

Theorem mcompile correct : ∀ s (e : mexp s),
mprogDenote (mcompile e nil) tt = (mexpDenote e, tt).

Lemma mcompile correct’ : ∀ s (e : mexp s) ss (s : vstack ss),
mprogDenote (mcompile e ss) s = (mexpDenote e, s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n ⇒ MCons (MiZConst n) (MNil)
| MBConst b ⇒ MCons (MiBConst b) (MNil)
| MBinop b e1 e2 ⇒ mconcat (mcompile e2)
(mconcat (mcompile e1) (MCons (MiBinop b) (MNil)))

end.

Theorem mcompile correct : ∀ s (e : mexp s),
mprogDenote (mcompile e nil) tt = (mexpDenote e, tt).

Lemma mcompile correct’ : ∀ s (e : mexp s) ss (s : vstack ss),
mprogDenote (mcompile e ss) s = (mexpDenote e, s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Source lang. Target lang. Compilation Correctness

Many sorts: Compilation correctness

Fixpoint mcompile s (e : mexp s) (ss : sstack) : mprog ss (s :: ss) :=
match e with
| MZConst n ⇒ MCons (MiZConst n) (MNil)
| MBConst b ⇒ MCons (MiBConst b) (MNil)
| MBinop b e1 e2 ⇒ mconcat (mcompile e2)
(mconcat (mcompile e1) (MCons (MiBinop b) (MNil)))

end.

Theorem mcompile correct : ∀ s (e : mexp s),
mprogDenote (mcompile e nil) tt = (mexpDenote e, tt).

Lemma mcompile correct’ : ∀ s (e : mexp s) ss (s : vstack ss),
mprogDenote (mcompile e ss) s = (mexpDenote e, s).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred

Print pred.

pred = fun n : nat ⇒ match n with
| 0 ⇒ 0
| Su ⇒ u
end

: nat→ nat

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred strong1

Lemma zgtz : 0 > 0 → False.
intro H.
inversion H.

Qed.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

Theorem two gt0 : 2 > 0.
auto.

Qed.

Eval compute in pred strong1 two gt0.

= 1
: nat

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred strong1

Lemma zgtz : 0 > 0 → False.
intro H.
inversion H.

Qed.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

Theorem two gt0 : 2 > 0.
auto.

Qed.

Eval compute in pred strong1 two gt0.

= 1
: nat

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred strong1’

Definition pred strong1’ (n : nat) (pf : n > 0) : nat :=
match n with
| O ⇒ match zgtz pf with end
| S n’ ⇒ n’

end.

Error: In environment
n : nat
pf : n > 0
The term "pf" has type " n > 0" while it is expected to have
type "0 > 0"

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred strong1’

Definition pred strong1’ (n : nat) (pf : n > 0) : nat :=
match n with
| O ⇒ match zgtz pf with end
| S n’ ⇒ n’

end.

Error: In environment
n : nat
pf : n > 0
The term "pf" has type " n > 0" while it is expected to have
type "0 > 0"

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Function pred strong1 with explicit return

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n return n > 0 → nat with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Lists with length

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| INil : ilist O
| ICons : ∀ n, A → ilist n → ilist (S n).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Dependent pattern-matching for ilist (1)

match l :ilist m

with
| INil ⇒ ...
| ICons n x l’ ⇒ ...

end. : P m

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Dependent pattern-matching for ilist (2)

match l :ilist m
in (ilist k)
return (P k)

with
| INil ⇒ ... : P 0
| ICons n x l’ ⇒ ... : P (S n)

end. : P m

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Dependent pattern-matching for ilist (3)

match l :ilist m
as v :ilist k
in (ilist k)
return (P k v)

with
| INil ⇒ ... : P 0 INil
| ICons n x l’ ⇒ ... : P (S n) (ICons n x l’)

end. : P m l

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Destruction - match

Simple form:

match m with (c1 x11 ... x1p1)⇒ f1 | . . . | (cn xn1...xnpn)⇒ fn end

Full form:

match m as x in I a return (P a x) with

(c1 x11 ... x1p1)⇒ f1 | . . . | (cn xn1...xnpn)⇒ fn end

For the purpose of presenting the inference rules, we use a more compact
notation :

case(m,P, λx11 ... x1p1 .f1 | . . . | λxn1...xnpn .fn)

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Destruction - match (2)

Type of branches. Let c be a term of type C, we assume C is a type of
constructor for an inductive definition I. Let P be a term that represents
the property to be proved. We assume r is the number of parameters.
We define a new type {c : C}P which represents the type of the branch
corresponding to the c : C constructor.

{c : (Ii p1 . . . pr t1 . . . tp)}P ≡ (P t1 . . . tp c)

{c : ∀ x : T,C}P ≡ ∀ x : T, {(c x) : C}P

We write {c}P for {c : C}P with C the type of c.

Example for ilist and s ∈ S:
P : ∀n : nat, ilist n→ s
{(ICons)}P ≡ ∀n : nat, a : A, l : ilist n, P (S n) (ICons n a l).

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]

[I:s1|I -> s2] for any s1 ∈ Set, Type(j), s2 ∈ S
[I:Prop|I -> Prop]

[I:Prop|I -> s] for I empty or singleton definition, s ∈ S

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]

[I:s1|I -> s2] for any s1 ∈ Set, Type(j), s2 ∈ S
[I:Prop|I -> Prop]

[I:Prop|I -> s] for I empty or singleton definition, s ∈ S

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]

[I:s1|I -> s2] for any s1 ∈ Set, Type(j), s2 ∈ S
[I:Prop|I -> Prop]

[I:Prop|I -> s] for I empty or singleton definition, s ∈ S

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Allowed elimination sorts

[I:A |B] is the smallest relation satisfying the following rules:
if [(I x):A’|B’] then [I:forall x:A, A’|forall x:A, B’]

[I:s1|I -> s2] for any s1 ∈ Set, Type(j), s2 ∈ S
[I:Prop|I -> Prop]

[I:Prop|I -> s] for I empty or singleton definition, s ∈ S

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Destruction - match (3)

Typing rule.
Our very general destructor for inductive definition enjoys the following
typing rule

E[Γ] ` m : (I q1 . . . qr t1 . . . ts)
E[Γ] ` P : B

[(I q1 . . . qr)|B]
(E[Γ] ` fi : {(cpi q1 . . . qr)}P)i=1...l

E[Γ] ` case(m,P, f1| . . . |fl) : (P t1 . . . ts m)

provided I is an inductive type in a declaration Ind(∆)[r](ΓI := ΓC) with
ΓC = [c1 : C1; . . . ; cn : Cn] and cp1 . . . cpl are the only constructors of I.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Iota reduction

A ι-reduction has the following form

case((cpi q1 . . . qr a1 . . . am), P, f1| . . . |fn) .ι (fi a1 . . . am)

with cpi the i-th constructor of the inductive type I with r parameters.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: pred strong1

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n return n > 0 → nat with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end : 0>0 → nat
| S n’ ⇒ fun ⇒ n’ : S n’> 0 → nat

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: pred strong1

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n return n > 0 → nat with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end : 0>0 → nat
| S n’ ⇒ fun ⇒ n’ : S n’> 0 → nat

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: append of ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 +n2) :=
match ls1 in (ilist k) return (ilist (k +n2)) with
| INil ⇒ ls2
| ICons x ls1’ ⇒ ICons x (app’ ls1’ ls2)

end.

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 +n2) :=
match ls1 in (ilist k) return (ilist (k +n2)) with
| INil ⇒ ls2 : ilist (0+n2)
| ICons n’ x ls1’ ⇒ ICons x (app’ ls1’ ls2) : ilist (S n’+n2)

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: append of ilist

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 +n2) :=
match ls1 in (ilist k) return (ilist (k +n2)) with
| INil ⇒ ls2
| ICons x ls1’ ⇒ ICons x (app’ ls1’ ls2)

end.

Fixpoint app’ n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 +n2) :=
match ls1 in (ilist k) return (ilist (k +n2)) with
| INil ⇒ ls2 : ilist (0+n2)
| ICons n’ x ls1’ ⇒ ICons x (app’ ls1’ ls2) : ilist (S n’+n2)

end.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: strong elimination

Definition sel (n:nat) := match n with
| 0 => False
| S => True

Elimination from nat to Type is needed to show that 0 6= 1:

Goal 0=1 -> False.
intro H.
change (sel 1).
rewrite <- H.
red.
constructor.
Qed.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: strong elimination

Definition sel (n:nat) := match n with
| 0 => False
| S => True

Elimination from nat to Type is needed to show that 0 6= 1:

Goal 0=1 -> False.
intro H.
change (sel 1).
rewrite <- H.
red.
constructor.
Qed.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: strong elimination

Definition sel (n:nat) := match n with
| 0 => False
| S => True

Elimination from nat to Type is needed to show that 0 6= 1:

Goal 0=1 -> False.
intro H.
change (sel 1).
rewrite <- H.
red.
constructor.
Qed.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l : ilist n

P = fun (m : nat)(h : n = m)⇒ ilist m

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l : ilist n

P = fun (m : nat)(h : n = m)⇒ ilist m

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l : ilist n

P = fun (m : nat)(h : n = m)⇒ ilist m

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l : ilist n

P = fun (m : nat)(h : n = m)⇒ ilist m

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

Typing: eq elimination

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l

Definition rowne (n,m:nat)(h:n=m)(l:ilist n): ilist m :=
match h in =m with return (ilist m)
| eq refl => l : ilist n

P = fun (m : nat)(h : n = m)⇒ ilist m

That is an elimination from Prop to Set for a singleton type
That is how tactic rewrite works

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

For nonsingleton types in Prop elimination to Prop only

Inductive or (A B:Prop) : Prop :=
lintro : A -> or A B | rintro : B -> or A B.

Incorrect:

Definition choice (A B: Prop) (x:or A B): bool :=
match x with lintro a => true | rintro b => false end.

Error: Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop is not allowed
on a predicate in sort Set because proofs can be eliminated
only to build proofs.

Daria Walukiewicz-Chrząszcz Advanced functional programming

Ex: 1 sort Ex: m sorts Match and fix Examples Definitions

For nonsingleton types in Prop elimination to Prop only

Inductive or (A B:Prop) : Prop :=
lintro : A -> or A B | rintro : B -> or A B.

Incorrect:

Definition choice (A B: Prop) (x:or A B): bool :=
match x with lintro a => true | rintro b => false end.

Error: Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop is not allowed
on a predicate in sort Set because proofs can be eliminated
only to build proofs.

Daria Walukiewicz-Chrząszcz Advanced functional programming

	Ex:1sort
	Source lang.
	Target lang.
	Compilation
	Correctness

	Ex:msorts
	Source lang.
	Target lang.
	Compilation
	Correctness

	Match and fix
	Examples
	Definitions

