
Typing in Coq

Daria Walukiewicz-Chrząszcz

26 march 2019

Typing Inductive types Equality

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

λ→ λP

λω λPω

F

Fω

λP2

CC

↑ polimorphism
↗ type constructors
→ dependent types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)
1991 Coq - calculus of inductive constructions - C. Paulin

(version 5.6)
...

2000 version 7.0 with new (safer) architecture
2003 version 7.4 with modules
2004 version 8.0 with new syntax
2009 version 8.2 with “type classes”
2012 version 8.4 with eta-reduction, structural proof syntax...
2018 version 8.7.2 — fixes a critical bug in the universes

(present since 8.5)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — famous formalizations

Fundamental theorem of algebra, Nijmegen 2000
JavaCard Platform formalization, Trusted Logic 2003

September 2007: a big step in program certification in the real
world: The Technology and Innovation group at Gemalto has
successfully completed a Common Criteria (CC) evaluation on a
JavaCard based commercial product. This evaluation is the
world’s first CC certificate of a Java product involving EAL7
components. (the official press release)

Four color theorem, Cambridge 2004
CompCert certified Clight compiler, 2008-now

The main result of the project is the CompCert C verified
compiler, a high-assurance compiler for almost all of the ISO
C90 / ANSI C language, generating efficient code for the
PowerPC, ARM and x86 processors.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — typing judgment

environment ` term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
18 typing rules for CC,
4 typing rules for inductive types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — typing judgment

environment ` term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
18 typing rules for CC,
4 typing rules for inductive types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — typing judgment

environment ` term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
18 typing rules for CC,
4 typing rules for inductive types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — typing judgment

environment ` term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
18 typing rules for CC,
4 typing rules for inductive types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts

• Sorts in Coq:

Prop
Set : Type(1): Type(2): . . .

• Cummulativity (or sub-sorting):

Prop ≤ Set ≤ Type(1)≤ Type(2)≤ . . .

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts

• Sorts in Coq:

Prop
Set : Type(1): Type(2): . . .

• Cummulativity (or sub-sorting):

Prop ≤ Set ≤ Type(1)≤ Type(2)≤ . . .

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts Prop and Set

d : A: Prop

A is a formula, d is a proof of A

n: T : Set

T is a type, n is a value of type T

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts Prop and Set

d : A: Prop

A is a formula, d is a proof of A

n: T : Set

T is a type, n is a value of type T

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts Prop and Set

d : A: Prop

A is a formula, d is a proof of A

n: T : Set

T is a type, n is a value of type T

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — sorts Prop and Set

d : A: Prop

A is a formula, d is a proof of A

n: T : Set

T is a type, n is a value of type T

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — abstraction and application

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B to ∀x:A.B, where x 6∈ FV (B)

application rule:

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — abstraction and application

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B to ∀x:A.B, where x 6∈ FV (B)

application rule:

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — abstraction and application

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B to ∀x:A.B, where x 6∈ FV (B)

application rule:

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — products

Γ ` A : s s is a sort Γ, x:A ` B : Prop

Γ ` ∀x:A.B : Prop
Prod-Prop

Γ ` A : s s ∈ Prop, Set Γ, x:A ` B : Set

Γ ` ∀x:A.B : Set
Prod-Set

Γ ` A : Type(i) Γ, x:A ` B : Type(i)

Γ ` ∀x:A.B : Type(i)
Prod-Type

Prop is impredicative, Set, Type are predicative

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — products

Γ ` A : s s is a sort Γ, x:A ` B : Prop

Γ ` ∀x:A.B : Prop
Prod-Prop

Γ ` A : s s ∈ Prop, Set Γ, x:A ` B : Set

Γ ` ∀x:A.B : Set
Prod-Set

Γ ` A : Type(i) Γ, x:A ` B : Type(i)

Γ ` ∀x:A.B : Type(i)
Prod-Type

Prop is impredicative, Set, Type are predicative

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — conversion

conversion rule
Γ `M : A Γ ` A =βηδζι A

′ Γ ` A′ : s

Γ `M : A′

vector nat 4 =iota vector nat (2+2)

includes subtyping on sorts:

Γ `M : s1
Γ `M : s2

if s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — conversion

conversion rule
Γ `M : A Γ ` A =βηδζι A

′ Γ ` A′ : s

Γ `M : A′

vector nat 4 =iota vector nat (2+2)

includes subtyping on sorts:

Γ `M : s1
Γ `M : s2

if s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — conversion

conversion rule
Γ `M : A Γ ` A =βηδζι A

′ Γ ` A′ : s

Γ `M : A′

vector nat 4 =iota vector nat (2+2)

includes subtyping on sorts:

Γ `M : s1
Γ `M : s2

if s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types

functional type nat→ nat
Γ ` nat : Set Γ, x : nat ` nat : Set

Γ ` nat→ nat : Set
Prod-Set

type constructor (ex: List)
Γ ` Set : Type Γ, x : Set ` Set : Type

Γ ` Set→ Set : Type
Prod-Type

type of a predicate (ex: Even)
Γ ` nat : Set Γ, x : nat ` Prop : Type

Γ ` nat→ Prop : Type
Prod-Type

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types

functional type nat→ nat
Γ ` nat : Set Γ, x : nat ` nat : Set

Γ ` nat→ nat : Set
Prod-Set

type constructor (ex: List)
Γ ` Set : Type Γ, x : Set ` Set : Type

Γ ` Set→ Set : Type
Prod-Type

type of a predicate (ex: Even)
Γ ` nat : Set Γ, x : nat ` Prop : Type

Γ ` nat→ Prop : Type
Prod-Type

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types

functional type nat→ nat
Γ ` nat : Set Γ, x : nat ` nat : Set

Γ ` nat→ nat : Set
Prod-Set

type constructor (ex: List)
Γ ` Set : Type Γ, x : Set ` Set : Type

Γ ` Set→ Set : Type
Prod-Type

type of a predicate (ex: Even)
Γ ` nat : Set Γ, x : nat ` Prop : Type

Γ ` nat→ Prop : Type
Prod-Type

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types cont.

dependent type (ex: ftree)
Γ ` nat : Set Γ, x : nat ` Set : Type

Γ ` nat→ Set : Type
Prod-Type

polimorphic type ∀α : Set.α→ α : Type
Γ ` Set:Type Γ, α : Set ` α→ α : Type

Γ ` ∀α : Set.α→ α : Type
Prod-Type

impredicativity (type of Church numerals)

Γ ` Prop : Type Γ, α : Prop ` α→ (α→ α)→ α : Prop
Γ ` ∀α : Prop.α→ (α→ α)→ α : Prop

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types cont.

dependent type (ex: ftree)
Γ ` nat : Set Γ, x : nat ` Set : Type

Γ ` nat→ Set : Type
Prod-Type

polimorphic type ∀α : Set.α→ α : Type
Γ ` Set:Type Γ, α : Set ` α→ α : Type

Γ ` ∀α : Set.α→ α : Type
Prod-Type

impredicativity (type of Church numerals)

Γ ` Prop : Type Γ, α : Prop ` α→ (α→ α)→ α : Prop
Γ ` ∀α : Prop.α→ (α→ α)→ α : Prop

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Coq — examples of product types cont.

dependent type (ex: ftree)
Γ ` nat : Set Γ, x : nat ` Set : Type

Γ ` nat→ Set : Type
Prod-Type

polimorphic type ∀α : Set.α→ α : Type
Γ ` Set:Type Γ, α : Set ` α→ α : Type

Γ ` ∀α : Set.α→ α : Type
Prod-Type

impredicativity (type of Church numerals)

Γ ` Prop : Type Γ, α : Prop ` α→ (α→ α)→ α : Prop
Γ ` ∀α : Prop.α→ (α→ α)→ α : Prop

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Natural numbers

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Fixpoint plus (n m : nat) : nat :=
match n with
| O ⇒ m
| S n’ ⇒ S (plus n’ m)

end.

Theorem O plus n : ∀ n : nat, plus O n = n.
intro; simpl; reflexivity.

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Fixpoint plus (n m : nat) : nat :=
match n with
| O ⇒ m
| S n’ ⇒ S (plus n’ m)

end.

Theorem O plus n : ∀ n : nat, plus O n = n.
intro; simpl; reflexivity.

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Fixpoint plus (n m : nat) : nat :=
match n with
| O ⇒ m
| S n’ ⇒ S (plus n’ m)

end.

Theorem O plus n : ∀ n : nat, plus O n = n.
intro; simpl; reflexivity.

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction

Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.

The first subgoal:

plus O O = O

reflexivity.

holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

simpl.
rewrite IHn.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction

Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.

The first subgoal:

plus O O = O

reflexivity.

holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

simpl.
rewrite IHn.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction

Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.

The first subgoal:

plus O O = O

reflexivity.

holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

simpl.
rewrite IHn.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction

Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.

The first subgoal:

plus O O = O

reflexivity.

holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

simpl.
rewrite IHn.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction

Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.

The first subgoal:

plus O O = O

reflexivity.

holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

simpl.
rewrite IHn.
reflexivity.
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction principle

Check nat ind.

nat ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Theorem n plus O’ : ∀ n : nat, plus n O = n.
apply (nat ind (fun n ⇒ plus n O = n));

[reflexivity | intros n IHn; simpl; rewrite IHn; reflexivity].
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction principle

Check nat ind.

nat ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Theorem n plus O’ : ∀ n : nat, plus n O = n.
apply (nat ind (fun n ⇒ plus n O = n));

[reflexivity | intros n IHn; simpl; rewrite IHn; reflexivity].
Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Natural numbers — induction principle and recursors

Print nat ind.

nat ind =
fun P : nat → Prop ⇒ nat rect P

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Print nat rec.

nat rec =
fun P : nat → Set ⇒ nat rect P

: ∀ P : nat → Set,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Check nat rect.

nat rect
: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Natural numbers — induction principle and recursors

Print nat ind.

nat ind =
fun P : nat → Prop ⇒ nat rect P

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Print nat rec.

nat rec =
fun P : nat → Set ⇒ nat rect P

: ∀ P : nat → Set,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Check nat rect.

nat rect
: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Natural numbers — induction principle and recursors

Print nat ind.

nat ind =
fun P : nat → Prop ⇒ nat rect P

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Print nat rec.

nat rec =
fun P : nat → Set ⇒ nat rect P

: ∀ P : nat → Set,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Check nat rect.

nat rect
: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Primitives fix and match

Print nat rect.

nat rect =
fun (P : nat → Type) (f : P O) (f0 : ∀ n : nat, P n → P (S n)) ⇒
fix F (n : nat) : P n :=
match n as n0 return (P n0) with
| O ⇒ f
| S n’ ⇒ f0 n’ (F n’)
end

: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons : T → list T → list T.

Check list ind.

list ind
: ∀ (T : Set) (P : list T → Prop),
P (Nil T) →
(∀ (t : T) (l : list T), P l → P (Cons T t l)) →
∀ l : list T, P l

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons : T → list T → list T.

Check list ind.

list ind
: ∀ (T : Set) (P : list T → Prop),
P (Nil T) →
(∀ (t : T) (l : list T), P l → P (Cons T t l)) →
∀ l : list T, P l

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].

Fixpoint length {T} (ls : list T) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.

Fixpoint app {T} (ls1 ls2 : list T) : list T :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2)

end.

Theorem length app : ∀ T (ls1 ls2 : list T), length (app ls1 ls2)
= plus (length ls1) (length ls2).
induction ls1....

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].

Fixpoint length {T} (ls : list T) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.

Fixpoint app {T} (ls1 ls2 : list T) : list T :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2)

end.

Theorem length app : ∀ T (ls1 ls2 : list T), length (app ls1 ls2)
= plus (length ls1) (length ls2).
induction ls1....

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].

Fixpoint length {T} (ls : list T) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.

Fixpoint app {T} (ls1 ls2 : list T) : list T :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2)

end.

Theorem length app : ∀ T (ls1 ls2 : list T), length (app ls1 ls2)
= plus (length ls1) (length ls2).
induction ls1....

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].

Fixpoint length {T} (ls : list T) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.

Fixpoint app {T} (ls1 ls2 : list T) : list T :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2)

end.

Theorem length app : ∀ T (ls1 ls2 : list T), length (app ls1 ls2)
= plus (length ls1) (length ls2).
induction ls1....

Qed.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Typing Inductive types Equality

Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista ind.

lista ind:
forall P : (forall A : Set, lista A -> Prop),
(forall A : Set, P A (Nila A)) ->
(forall (A : Set) (a : A) (l : lista A),

P A l -> P A (Consa A a l)) ->
forall (P0 : Set) (l : lista P0), P P0 l

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista ind.

lista ind:
forall P : (forall A : Set, lista A -> Prop),
(forall A : Set, P A (Nila A)) ->
(forall (A : Set) (a : A) (l : lista A),

P A l -> P A (Consa A a l)) ->
forall (P0 : Set) (l : lista P0), P P0 l

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista ind.

lista ind:
forall P : (forall A : Set, lista A -> Prop),
(forall A : Set, P A (Nila A)) ->
(forall (A : Set) (a : A) (l : lista A),

P A l -> P A (Consa A a l)) ->
forall (P0 : Set) (l : lista P0), P P0 l

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Trees

Inductive nat btree : Set :=
| NLeaf : nat btree
| NNode : nat btree → nat → nat btree → nat btree.

Check nat btree ind.

nat btree ind
: ∀ P : nat btree → Prop,
P NLeaf →
(∀ n : nat btree, P n → ∀ (n0 : nat) (n1 : nat btree),
P n1 → P (NNode n n0 n1)) →
∀ n : nat btree, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Trees

Inductive nat btree : Set :=
| NLeaf : nat btree
| NNode : nat btree → nat → nat btree → nat btree.

Check nat btree ind.

nat btree ind
: ∀ P : nat btree → Prop,
P NLeaf →
(∀ n : nat btree, P n → ∀ (n0 : nat) (n1 : nat btree),
P n1 → P (NNode n n0 n1)) →
∀ n : nat btree, P n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Mutually recursive types: odd list and even list

Inductive even list : Set :=
| ENil : even list
| ECons : nat → odd list → even list

with odd list : Set :=
| OCons : nat → even list → odd list.

Check even list ind.

even list ind
: ∀ P : even list → Prop,
P ENil →
(∀ (n : nat) (o : odd list), P (ECons n o)) →
∀ e : even list, P e

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Mutually recursive types: odd list and even list

Inductive even list : Set :=
| ENil : even list
| ECons : nat → odd list → even list

with odd list : Set :=
| OCons : nat → even list → odd list.

Check even list ind.

even list ind
: ∀ P : even list → Prop,
P ENil →
(∀ (n : nat) (o : odd list), P (ECons n o)) →
∀ e : even list, P e

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Scheme — generation of induction principles

Scheme even list mut := Induction for even list Sort Prop
with odd list mut := Induction for odd list Sort Prop.

Check even list mut.

even list mut
: ∀ (P : even list → Prop) (P0 : odd list → Prop),
P ENil →
(∀ (n : nat) (o : odd list), P0 o → P (ECons n o)) →
(∀ (n : nat) (e : even list), P e → P0 (OCons n e)) →
∀ e : even list, P e

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Scheme — generation of induction principles

Scheme even list mut := Induction for even list Sort Prop
with odd list mut := Induction for odd list Sort Prop.

Check even list mut.

even list mut
: ∀ (P : even list → Prop) (P0 : odd list → Prop),
P ENil →
(∀ (n : nat) (o : odd list), P0 o → P (ECons n o)) →
(∀ (n : nat) (e : even list), P e → P0 (OCons n e)) →
∀ e : even list, P e

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Reflexive type: formula

Inductive formula : Set :=
| Eq : nat → nat → formula
| And : formula → formula → formula
| Forall : (nat → formula) → formula.

Check formula ind.

formula ind
: ∀ P : formula → Prop,
(∀ n n0 : nat, P (Eq n n0)) →
(∀ f0 : formula,
P f0 → ∀ f1 : formula, P f1 → P (And f0 f1)) →
(∀ f1 : nat → formula,
(∀ n : nat, P (f1 n)) → P (Forall f1)) →
∀ f2 : formula, P f2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Reflexive type: formula

Inductive formula : Set :=
| Eq : nat → nat → formula
| And : formula → formula → formula
| Forall : (nat → formula) → formula.

Check formula ind.

formula ind
: ∀ P : formula → Prop,
(∀ n n0 : nat, P (Eq n n0)) →
(∀ f0 : formula,
P f0 → ∀ f1 : formula, P f1 → P (And f0 f1)) →
(∀ f1 : nat → formula,
(∀ n : nat, P (f1 n)) → P (Forall f1)) →
∀ f2 : formula, P f2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Restrictions: positivity condition

Inductive term : Set :=
| App : term → term → term
| Abs : (term → term) → term.

Error: Non strictly positive occurrence of "term" in "(term
-> term) -> term"

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Restrictions: positivity condition

Inductive term : Set :=
| App : term → term → term
| Abs : (term → term) → term.

Error: Non strictly positive occurrence of "term" in "(term
-> term) -> term"

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Restrictions: only small inductive types in Set

Correct (definition of ∃ φ P (φ)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.

Correct:

Inductive exType (P:Type->Prop) : Type
:= exT intro : forall X:Type, P X -> exType P.

behind the scene:

exType : (P : Typei → Prop)→ Typej
exT intro : ∀ X : Typek, P X− > exTypeP

where k < j and k ≤ i (universe constraints)
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Restrictions: only small inductive types in Set

Correct (definition of ∃ φ P (φ)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.

Correct:

Inductive exType (P:Type->Prop) : Type
:= exT intro : forall X:Type, P X -> exType P.

behind the scene:

exType : (P : Typei → Prop)→ Typej
exT intro : ∀ X : Typek, P X− > exTypeP

where k < j and k ≤ i (universe constraints)
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Restrictions: only small inductive types in Set

Correct (definition of ∃ φ P (φ)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.

Correct:

Inductive exType (P:Type->Prop) : Type
:= exT intro : forall X:Type, P X -> exType P.

behind the scene:

exType : (P : Typei → Prop)→ Typej
exT intro : ∀ X : Typek, P X− > exTypeP

where k < j and k ≤ i (universe constraints)
Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

Check @eq refl.
@eq refl

: forall (A : Type) (x : A), x = x

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

Check @eq refl.
@eq refl

: forall (A : Type) (x : A), x = x

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

Check @eq refl.
@eq refl

: forall (A : Type) (x : A), x = x

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x

Check @eq refl.
@eq refl

: forall (A : Type) (x : A), x = x

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

reflexivity and rewrite

reflexivity ≡ apply eq refl

rewrite H ≡ apply eq ind

(where H: a=b)

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive types Equality

reflexivity and rewrite

reflexivity ≡ apply eq refl

rewrite H ≡ apply eq ind

(where H: a=b)

eq ind: forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

	Typing
	Inductive types
	Equality

