Typing in Coq

Daria Walukiewicz-Chrzaszcz

26 march 2019

Proving in Coq

Curry-Howard isomorphism

of a given formula

Daria Walukiewicz-Chrzaszez

Proving in Coq

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

Daria Walukiewicz-Chrzaszez

Proving in Coq

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

(A-B—-C)—»(A—B)—»(A—=C)

Daria Walukiewicz-Chrzaszez

Proving in Coq

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

AeATB2ON AP BN A 12(yz) - (A= B—=C)—= (A= B)—= (A—=0)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrzaszez

Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

Fw cc
F
AP2 1 polimorphism
/" type constructors
o APw — dependent types
A— AP

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
o core / kernel (=20KLOC), responsible for:

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
CIC typing

reduction

environment (definitions, axioms etc).

]
(]
(]
o modules

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

e user interface

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

o user interface
o file management

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

e user interface
o file management
e sections

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:
o CIC typing
e reduction
e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:
e user interface
o file management
o sections
@ namespace management

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
o core / kernel (=20KLOC), responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
o core / kernel (=20KLOC), responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
o core / kernel (=20KLOC), responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)
o core / kernel (=20KLOC), responsible for:

CIC typing

reduction

environment (definitions, axioms etc).
modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:

o CIC typing

e reduction

e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:

o CIC typing

e reduction

e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism
auto-generation of inductive principles

Daria Walukiewicz-Chrzaszez

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

o core / kernel (=20KLOC), responsible for:

o CIC typing

e reduction

e environment (definitions, axioms etc).
e modules

o the rest (~230KLOC), responsible for:

user interface

file management

sections

namespace management

proof mode (plus tactics, tactic language)
notations

implicit arguments (type reconstruction)
type classes

coercions and resolving mechanism
auto-generation of inductive principles

Daria Walukiewicz-Chrzaszez

Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)

1991 Coq - calculus of inductive constructions - C. Paulin
(version 5.6)

2000 version 7.0 with new (safer) architecture

2003 version 7.4 with modules

2004 version 8.0 with new syntax

2009 version 8.2 with “type classes”

2012 version 8.4 with eta-reduction, structural proof syntax...

2018 version 8.7.2 — fixes a critical bug in the universes
(present since 8.5)

Daria Walukiewicz-Chrzaszez

Coq — famous formalizations

e Fundamental theorem of algebra, Nijmegen 2000

@ JavaCard Platform formalization, Trusted Logic 2003
September 2007: a big step in program certification in the real
world: The Technology and Innovation group at Gemalto has
successfully completed a Common Criteria (CC) evaluation on a
JavaCard based commercial product. This evaluation is the
world’s first CC certificate of a Java product involving EAL7
components. (the official press release)

@ Four color theorem, Cambridge 2004

@ CompCert certified Clight compiler, 2008-now
The main result of the project is the CompCert C verified
compiler, a high-assurance compiler for almost all of the ISO
C90 / ANSI C language, generating efficient code for the
PowerPC, ARI\/I and x86 processors.

= _mﬂ 'r'*r RS

Prganmeda

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type
@ abstraction and application

Daria Walukiewicz-Chrzaszez

Coq — programming language

@ predicative sorts Set and Type
@ abstraction and application

@ inductive types,

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application

inductive types,

(structural) recursion

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application
inductive types,

(structural) recursion

polimorphism

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application
inductive types,

(structural) recursion

polimorphism
@ dependant types and dependent pattern-matching

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type
abstraction and application

inductive types,

(structural) recursion
@ polimorphism
@ dependant types and dependent pattern-matching

@ modules i functors

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type

abstraction and application

inductive types,

(structural) recursion

polimorphism

dependant types and dependent pattern-matching

modules i functors

type classes

Daria Walukiewicz-Chrzaszez

Coq — programming language

predicative sorts Set and Type

abstraction and application

inductive types,

(structural) recursion

polimorphism

dependant types and dependent pattern-matching
modules i functors

type classes

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic

o impredicative sort Prop

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic
o impredicative sort Prop
o forall and implication built-in

Daria Walukiewicz-Chrzaszez

Coq — logic

@ intuitionistic higher-order logic
o impredicative sort Prop
o forall and implication built-in

@ boolean connectives, false, exists (defined)

Daria Walukiewicz-Chrzaszez

Coq — logic

intuitionistic higher-order logic

impredicative sort Prop

°
°

o forall and implication built-in

@ boolean connectives, false, exists (defined)
°

inductive predicates (including equality)

Daria Walukiewicz-Chrzaszez

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop

forall and implication built-in

boolean connectives, false, exists (defined)

inductive predicates (including equality)

Daria Walukiewicz-Chrzaszez

Coq proof machinery

@ interactive proof mode (goal management)

Daria Walukiewicz-Chrzaszez

Coq proof machinery

@ interactive proof mode (goal management)

@ built-in tactics (constructing a bit of proof-term): intro, apply, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

@ interactive proof mode (goal management)
@ built-in tactics (constructing a bit of proof-term): intro, apply, etc.

@ automatic ad-hoc tactics: auto, intuition, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.

automatic ad-hoc tactics: auto, intuition, etc.

decision procedures: omega, ring, field, tauto, etc.

Daria Walukiewicz-Chrzaszez

Coq proof machinery

interactive proof mode (goal management)

built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.

decision procedures: omega, ring, field, tauto, etc.

tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof

@ extracted program satisfies its specification by definition

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof
@ extracted program satisfies its specification by definition

@ extraction — “elimination” of logical parts from the proof-term

Daria Walukiewicz-Chrzaszez

Program extraction

@ program is extracted from the proof
@ extracted program satisfies its specification by definition
@ extraction — “elimination” of logical parts from the proof-term

@ extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

Daria Walukiewicz-Chrzaszez

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term

extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

target languages: O'Caml, Haskell, Scheme

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
o Coq Art, Yves Bertot, Pierre Castéran

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
o Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
o Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

Daria Walukiewicz-Chrzaszez

Resources

@ https://coq.inria.fr/
o Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrzaszez

Cog — typing judgment

environment - term : type

Daria Walukiewicz-Chrzaszez

Cog — typing judgment

environment - term : type

environment: global and local declarations and definitions

Daria Walukiewicz-Chrzaszez

Cog — typing judgment

environment - term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
@ 18 typing rules for CC,

Daria Walukiewicz-Chrzaszez

Cog — typing judgment

environment - term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
@ 18 typing rules for CC,
@ 4 typing rules for inductive types

Daria Walukiewicz-Chrzaszez

Typing
Coq — sorts

e Sorts in Coq:

Prop)]
Set Type(1): Type(2): ...

Daria Walukiewicz-Chrzaszez

Typing
Coq — sorts

e Sorts in Coq:

Prop)]
Set Type(1): Type(2): ...

e Cummulativity (or sub-sorting):

Prop < Set < Type(1)< Type(2)< ...

Daria Walukiewicz-Chrzaszez

Coq — sorts Prop and Set

d: A: Prop

Daria Walukiewicz-Chrzaszez

Coq — sorts Prop and Set

d: A: Prop

A is a formula, d is a proof of A

Daria Walukiewicz-Chrzaszez

Coq — sorts Prop and Set

d: A: Prop
A is a formula, d is a proof of A

n: T: Set

Daria Walukiewicz-Chrzaszez

Coq — sorts Prop and Set

d: A: Prop
A is a formula, d is a proof of A
n: T: Set

T is a type, n is a value of type T

Daria Walukiewicz-Chrzaszez

Coq — abstraction and application

I,x:AF M : B(x)

dependent types abstraction rule: T e AM : VoA B(@)

Daria Walukiewicz-Chrzaszez

Coq — abstraction and application

I,x:AF M : B(x)
Tk Xz:A.M : Vo:A.B(x)

dependent types abstraction rule:

Shorthand: A — B to Va:A.B, where x & FV(B)

Daria Walukiewicz-Chrzaszez

Coq — abstraction and application

I,x:AF M : B(x)
Tk Xz:A.M : Vo:A.B(x)

dependent types abstraction rule:

Shorthand: A — B to Va:A.B, where x & FV(B)

application rule:

'FF:Ve:AB(x) THG: A
'+ FG: B|G/x]

Daria Walukiewicz-Chrzaszez

Coq — products

'-A:s sis a sort I'z:AF B : Prop
I'=Vz:A.B : Prop Prod-Prop

'EA:s s € Prop, Set Iz:AF B: Set

TFVzAB: Set T et

T A: Type(i) D,x:AF B : Type(i)
I Va:A.B : Type(i)

Prod-Type

Daria Walukiewicz-Chrzaszez

Coq — products

'-A:s sis a sort I'z:AF B : Prop
I'=Vz:A.B : Prop Prod-Prop

'EA:s s € Prop, Set Iz:AF B: Set

TFVzAB: Set T et

T A: Type(i) D,x:AF B : Type(i)

Prod-T
T F Vz:A.B : Type(d) rod-Type

Prop is impredicative, Set, Type are predicative

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)
M —, Ax:A Mz

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)

M —, Ax:A Mz

o delta

(definition unfolding)

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)
M —, Ax:A Mz

o delta

(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

Daria Walukiewicz-Chrzaszez

Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)
M —, Ax:A Mz

o delta

(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

@ iota

(reduction of match applied to constructor term)

Daria Walukiewicz-Chrzaszez

Typing
Cog — conversion

conversion rule
I'EM: A FFAZgn(;CLA, A :s
T'-M:A

Daria Walukiewicz-Chrzaszez

Typing
Cog — conversion

conversion rule
I'EM: A FFAZgn(;CLA, A :s
T'-M:A

vector nat 4 —,,;, vector nat (2+2)

includes subtyping on sorts:

Daria Walukiewicz-Chrzaszez

Typing
Cog — conversion

conversion rule
I'EM: A FFAZgn(;CLA, A :s
T'-M:A

vector nat 4 —,,;, vector nat (2+2)

includes subtyping on sorts:

THM:s

LT e
TFM:sy @ 2=

Daria Walukiewicz-Chrzaszez

Coq — examples of product types

o functional type nat — nat
I'-nat : Set I',z :nat - nat :

Set
° Prod-Set
I' - nat — nat : Set

Daria Walukiewicz-Chrzaszez

Coq — examples of product types

o functional type nat — nat
I'-nat : Set I',z :nat - nat :

Set
° Prod-Set
I' - nat — nat : Set

@ type constructor (ex: List)
I'-Set : Type I'z :Set - Set : Type
I'FSet — Set : Type

Prod-Type

Daria Walukiewicz-Chrzaszez

Coq — examples of product types

o functional type nat — nat
I'-nat : Set I',z :nat - nat :
I' - nat — nat : Set

Set Prod-Set

@ type constructor (ex: List)
I'-Set : Type I'z :Set - Set : Type

Prod-Type
I'FSet — Set : Type d I

@ type of a predicate (ex: Even)

I'Fnat : Set I',z :nat - Prop : Type Prod-Type
I' - nat — Prop : Type

Daria Walukiewicz-Chrzaszez

Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type

Prod-T
I' - nat — Set : Type A

Daria Walukiewicz-Chrzaszez

Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type
I' - nat — Set : Type

Prod-Type

@ polimorphic type Vo : Set.a« — a : Type
I' - Set:Type I'Na:Set-a — a: Type
I' Vo :Set.a = « : Type

Prod-Type

Daria Walukiewicz-Chrzaszez

Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type

Prod-T
I' - nat — Set : Type A

@ polimorphic type Vo : Set.a« — a : Type
I' - Set:Type I'Na:Set-a — a: Type
I' Vo :Set.a = « : Type

Prod-Type

@ impredicativity (type of Church numerals)
'+ Prop : Type I'Na:PropFa— (e - a) > a : Prop
I'Va: Prop.ao — (¢ — @) = a : Prop

Daria Walukiewicz-Chrzaszez

Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.

Fixpoint plus (n m : nat) : nat :=
match n with
|O=m
| Sn" =S (plus n" m)
end.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.

Fixpoint plus (n m : nat) : nat :=
match n with
|O=m
| Sn" =S (plus n" m)
end.

Theorem O_plus_n : V n : nat, plus O n = n.
intro; simpl; reflexivity.
Qed.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.

The first subgoal:

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.

The first subgoal:
plusO 0O =0

reflexivity.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.

The first subgoal:
plusO 0O =0
reflexivity.

holds because of conversion (iota reduction). The second is:

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.
The first subgoal:
plusO 0O =0
reflexivity.
holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n

plus (Sn)O=Sn

simpl.
rewrite /Hn.
reflexivity.
Qed.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction principle

Check nat_ind.

nat_ind : V P : nat — Prop,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Natural numbers — induction principle

Check nat_ind.

nat_ind : V P : nat — Prop,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Theorem n_plus_O’ : V n : nat, plus n O = n.

apply (nat-ind (fun n = plus n O = n));
[reflexivity | intros n /Hn; simpl; rewrite /Hn; reflexivity].
Qed.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn

Daria Walukiewicz-Chrzaszez

Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn

Print nat_rec.

nat_rec =
fun P : nat — Set = nat_rect P
:V P : nat — Set,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Daria Walukiewicz-Chrzaszez

Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn

Print nat_rec.

nat_rec =
fun P : nat — Set = nat_rect P
:V P : nat — Set,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Check nat_rect.

nat_rect
:V P : nat — Type,
PO—(VYn:nat, Pn— P(Sn))—=Vn:nat, Pn

Daria Walukiewicz-Chrzaszez

Inductive types

Primitives fix and match

Print nat_rect.

nat_rect =
fun (P : nat — Type) (f: PO) (f0: ¥V n:nat, Pn— P (S n)) =
fix F (n:nat): P n:=

match n as n0 return (P n0) with

|O=f
|Sn"= f0n (Fn)
end

:V P : nat — Type,
PO—(VYn:nat, Pn— P(Sn))—>Vn:nat, Pn

Daria Walukiewicz-Chrzaszez

Inductive types
Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons: T — list T — list T.

Daria Walukiewicz-Chrzaszez

Inductive types
Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons: T — list T — list T.

Check list_ind.

list_ind
:V (T :Set) (P :list T — Prop),
P (Nl T) —
(V@E:T)(:list T), Pl — P (Cons Tt /) —
ViI:list T, P/

Daria Walukiewicz-Chrzaszez

Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.

Fixpoint app {T} (/sI Is2 :list T) : list T :=
match /s] with
| Nil = /s2
| Cons x Is1’ = Cons x (app Is1’ Is2)
end.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.

Fixpoint app {T} (/sI Is2 :list T) : list T :=
match /s] with
| Nil = /s2
| Cons x Is1’ = Cons x (app Is1’ Is2)
end.

Theorem length_app : V T (/sI Is2 : list T), length (app /sI Is2)
= plus (length Is1) (length /s2).
induction /sI....

Qed.

Daria Walukiewicz-Chrzaszez

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Daria Walukiewicz-Chrzaszez

Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=

| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista_ind.

Daria Walukiewicz-Chrzaszez

Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista_ind.

lista_ind:
forall P : (forall A : Set, lista A -> Prop),
(forall A : Set, P A (Nila A)) ->
(forall (A : Set) (a : A) (1 : lista A),
PA1l ->P A (Consa A al)) ->
forall (PO : Set) (1 : lista PO), P PO 1

Daria Walukiewicz-Chrzaszez

Inductive types
Trees

Inductive nat_btree : Set :=
| NLeaf : nat_btree
| NNode : nat_btree — nat — nat_btree — nat_btree.

Daria Walukiewicz-Chrzaszez

Inductive types
Trees

Inductive nat_btree : Set :=
| NLeaf : nat_btree
| NNode : nat_btree — nat — nat_btree — nat_btree.

Check nat_btree_ind.

nat_btree_ind
:V P : nat_btree — Prop,
P NLeaf —

(V n : nat_btree, P n — V (n0 : nat) (nl : nat_btree),
P n1 — P (NNode n n0 nl)) —
V n : nat_btree, P n

Daria Walukiewicz-Chrzaszez

Inductive types

Mutually recursive types: odd_1ist and even_list

Inductive even_list : Set :=
| ENil : even_list
| ECons : nat — odd_list — even_list

with odd_list : Set :=
| OCons : nat — even_list — odd_list.

Daria Walukiewicz-Chrzaszez

Inductive types

Mutually recursive types: odd_1ist and even_list

Inductive even_list : Set :=
| ENil : even_list
| ECons : nat — odd_list — even_list

with odd_list : Set :=
| OCons : nat — even_list — odd_list.

Check even_list_ind.

even_list_ind
:V P : even_list — Prop,
P ENil —
(V (n : nat) (o : odd_list), P (ECons n 0)) —
V e : even_list, P e

Daria Walukiewicz-Chrzaszez

Inductive types

Scheme — generation of induction principles

Scheme even_list_mut := Induction for even_list Sort Prop
with odd_list_mut := Induction for odd_list Sort Prop.

Daria Walukiewicz-Chrzaszez

Inductive types

Scheme — generation of induction principles

Scheme even_list_mut := Induction for even_list Sort Prop
with odd_list_mut := Induction for odd_list Sort Prop.

Check even_list_mut.

even_list_mut
:V (P : even_list — Prop) (PO : odd_list — Prop),
P ENil —
(V (n : nat) (o : odd_list), PO o — P (ECons n 0)) —
(V (n : nat) (e : even_list), P e — PO (OCons n e)) —
V e :even_list, P e

Daria Walukiewicz-Chrzaszez

Inductive types
Reflexive type: formula

Inductive formula : Set :=
| Eq : nat — nat — formula
| And : formula — formula — formula
| Forall : (nat — formula) — formula.

Daria Walukiewicz-Chrzaszez

Inductive types
Reflexive type: formula

Inductive formula : Set :=
| Eq : nat — nat — formula
| And : formula — formula — formula
| Forall : (nat — formula) — formula.

Check formula_ind.

formula_ind
:V P : formula — Prop,
(¥ n nO : nat, P (Eq n n0)) —
(V 70 : formula,
P f0 — V f1 : formula, P fI — P (And f0 1)) —
(V f1 : nat — formula,

(¥ n:nat, P (f1 n)) — P (Forall 1)) —
YV 2 : formula, P 2

Daria Walukiewicz-Chrzaszez

Inductive types

Restrictions: positivity condition

Inductive term : Set :=
| App : term — term — term
| Abs : (term — term) — term.

Daria Walukiewicz-Chrzaszez

Inductive types

Restrictions: positivity condition

Inductive term : Set :=
| App : term — term — term
| Abs : (term — term) — term.

Error: Non strictly positive occurrence of "term" in "(term
-> term) -> term"

Daria Walukiewicz-Chrzaszez

Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.

Daria Walukiewicz-Chrzaszez

Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS_intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.

Daria Walukiewicz-Chrzaszez

Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS_intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.
Correct:

Inductive exType (P:Type->Prop) : Type
:= exT_intro : forall X:Type, P X -> exType P.

behind the scene:

exType : (P : Type; — Prop) — Type,

Daria Walukiewicz-Chrzaszez

Equality
Definitional equality

Print "=".

Daria Walukiewicz-Chrzaszez

Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x

Daria Walukiewicz-Chrzaszez

Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x

Check Qeqg_refl.
Qeq_refl
: forall (A : Type) (x : A), x = x

Daria Walukiewicz-Chrzaszez

Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x

Check Qeqg_refl.
Qeq_refl
: forall (A : Type) (x : A), x = x

eq-ind: forall (A : Type) (x : A) (P : A -> Prop),
Px ->forally : A, x=y ->Py

Daria Walukiewicz-Chrzaszez

Equality
reflexivity and rewrite

reflexivity = apply eq-refl

Daria Walukiewicz-Chrzaszez

Equality
reflexivity and rewrite

reflexivity = apply eq-refl

rewrite H = apply eq_ind

(where H: a=b)

eq-ind: forall (A : Type) (x : A) (P : A -> Prop),
Px ->forally : A, x=y ->Py

Daria Walukiewicz-Chrzaszez

	Typing
	Inductive types
	Equality

