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Proving in Coq

Curry-Howard isomorphism

of a given formula

! !

of the corresponding type

AeATB2ON AP BN A 12(yz) - (A= B—=C)—= (A= B)—= (A—=0)

Correctness of Coq relies on correctness of type-checking
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Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

Fw cc
F
AP2 1 polimorphism
/" type constructors
o APw — dependent types
A— AP
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Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)

1991 Coq - calculus of inductive constructions - C. Paulin
(version 5.6)

2000 version 7.0 with new (safer) architecture

2003 version 7.4 with modules

2004 version 8.0 with new syntax

2009 version 8.2 with “type classes”

2012 version 8.4 with eta-reduction, structural proof syntax...

2018 version 8.7.2 — fixes a critical bug in the universes
(present since 8.5)
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Coq — famous formalizations

e Fundamental theorem of algebra, Nijmegen 2000

@ JavaCard Platform formalization, Trusted Logic 2003
September 2007: a big step in program certification in the real
world: The Technology and Innovation group at Gemalto has
successfully completed a Common Criteria (CC) evaluation on a
JavaCard based commercial product. This evaluation is the
world’s first CC certificate of a Java product involving EAL7
components. (the official press release)

@ Four color theorem, Cambridge 2004

@ CompCert certified Clight compiler, 2008-now
The main result of the project is the CompCert C verified
compiler, a high-assurance compiler for almost all of the ISO
C90 / ANSI C language, generating efficient code for the
PowerPC, ARI\/I and x86 processors.
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Coq — logic

intuitionistic higher-order logic
impredicative sort Prop

forall and implication built-in

boolean connectives, false, exists (defined)

inductive predicates (including equality)
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Coq proof machinery

interactive proof mode (goal management)

built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.

decision procedures: omega, ring, field, tauto, etc.

tactic language (Ltac mytactic:=...)
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Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term

extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)

target languages: O'Caml, Haskell, Scheme
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Resources

@ https://coq.inria.fr/
o Coq Art, Yves Bertot, Pierre Castéran
o Certified Programming with Dependent Types, Adam Chlipala (MIT)

Certified Programming with
Dependent Types

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/
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Cog — typing judgment

environment - term : type

environment: global and local declarations and definitions

In Coq reference manual there are:
@ 18 typing rules for CC,
@ 4 typing rules for inductive types

Daria Walukiewicz-Chrzaszez



Typing
Coq — sorts

e Sorts in Coq:

Prop ) ]
Set Type(1): Type(2): ...
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Typing
Coq — sorts

e Sorts in Coq:

Prop ) ]
Set Type(1): Type(2): ...

e Cummulativity (or sub-sorting):

Prop < Set < Type(1)< Type(2)< ...
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Coq — sorts Prop and Set

d: A: Prop
A is a formula, d is a proof of A
n: T: Set

T is a type, n is a value of type T
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Coq — abstraction and application
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dependent types abstraction rule: T e AM : VoA B(@)
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Coq — abstraction and application

I,x:AF M : B(x)
Tk Xz:A.M : Vo:A.B(x)

dependent types abstraction rule:

Shorthand: A — B to Va:A.B, where x & FV(B)

application rule:

'FF:Ve:AB(x) THG: A
'+ FG: B|G/x]
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Coq — products

'-A:s sis a sort I'z:AF B : Prop
I'=Vz:A.B : Prop Prod-Prop

'EA:s s € Prop, Set Iz:AF B: Set

TFVzAB: Set T et

T A: Type(i) D,x:AF B : Type(i)
I Va:A.B : Type(i)

Prod-Type
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Coq — products

'-A:s sis a sort I'z:AF B : Prop
I'=Vz:A.B : Prop Prod-Prop

'EA:s s € Prop, Set Iz:AF B: Set

TFVzAB: Set T et

T A: Type(i) D,x:AF B : Type(i)

Prod-T
T F Vz:A.B : Type(d) rod-Type

Prop is impredicative, Set, Type are predicative

Daria Walukiewicz-Chrzaszez



Typing
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@ beta
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Typing
Coq — reductions

@ beta
(Az:A.M)N —3 M[N/x]

@ eta expansion (if M is of a functional type)
M —, Ax:A Mz

o delta

(definition unfolding)

@ zeta

(let x:=N in M) —¢ MIN/x]

@ iota

(reduction of match applied to constructor term)
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Typing
Cog — conversion

conversion rule
I'EM: A FFAZgn(;CLA, A :s
T'-M:A
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Typing
Cog — conversion

conversion rule
I'EM: A FFAZgn(;CLA, A :s
T'-M:A

vector nat 4 —,,;, vector nat (2+2)

includes subtyping on sorts:

THM:s

LT e
TFM:sy @ 2=
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Coq — examples of product types

o functional type nat — nat
I'-nat : Set I',z :nat - nat :

Set
° Prod-Set
I' - nat — nat : Set
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° Prod-Set
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@ type constructor (ex: List)
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Coq — examples of product types

o functional type nat — nat
I'-nat : Set I',z :nat - nat :
I' - nat — nat : Set

Set Prod-Set

@ type constructor (ex: List)
I'-Set : Type I'z :Set - Set : Type

Prod-Type
I'FSet — Set : Type d I

@ type of a predicate (ex: Even)

I'Fnat : Set I',z :nat - Prop : Type Prod-Type
I' - nat — Prop : Type
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Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type

Prod-T
I' - nat — Set : Type A
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Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type
I' - nat — Set : Type

Prod-Type

@ polimorphic type Vo : Set.a« — a : Type
I' - Set:Type I'Na:Set-a — a: Type
I' Vo :Set.a = « : Type

Prod-Type
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Coq — examples of product types cont.

o dependent type (ex: ftree)

' Fnat : Set 'z :nat - Set : Type

Prod-T
I' - nat — Set : Type A

@ polimorphic type Vo : Set.a« — a : Type
I' - Set:Type I'Na:Set-a — a: Type
I' Vo :Set.a = « : Type

Prod-Type

@ impredicativity (type of Church numerals)
'+ Prop : Type I'Na:PropFa— (e - a) > a : Prop
I'Va: Prop.ao — (¢ — @) = a : Prop
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Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.
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Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.

Fixpoint plus (n m : nat) : nat :=
match n with
|O=m
| Sn" =S (plus n" m)
end.
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Inductive types
Natural numbers

Inductive nat : Set ;=
| O : nat
| S : nat — nat.

Fixpoint plus (n m : nat) : nat :=
match n with
|O=m
| Sn" =S (plus n" m)
end.

Theorem O_plus_n : V n : nat, plus O n = n.
intro; simpl; reflexivity.
Qed.
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Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.
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Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.
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Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.

The first subgoal:
plusO 0O =0
reflexivity.

holds because of conversion (iota reduction). The second is:
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Inductive types
Natural numbers — induction

Theorem n_plus_O : V n : nat, plus n O = n.
induction n.
The first subgoal:
plusO 0O =0
reflexivity.
holds because of conversion (iota reduction). The second is:

n : nat
IHn : plus n O = n

plus (Sn)O=Sn

simpl.
rewrite /Hn.
reflexivity.
Qed.
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Inductive types
Natural numbers — induction principle

Check nat_ind.

nat_ind : V P : nat — Prop,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn
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Inductive types
Natural numbers — induction principle

Check nat_ind.

nat_ind : V P : nat — Prop,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Theorem n_plus_O’ : V n : nat, plus n O = n.

apply (nat-ind (fun n = plus n O = n));
[reflexivity | intros n /Hn; simpl; rewrite /Hn; reflexivity].
Qed.
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Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn
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Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn

Print nat_rec.

nat_rec =
fun P : nat — Set = nat_rect P
:V P : nat — Set,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn
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Inductive types

Natural numbers — induction principle and recursors

Print nat_ind.

nat_ind =
fun P : nat — Prop = nat_rect P
:V P : nat — Prop,
PO—(Vn:nat, Pn— P (Sn))—>Vn:nat, Pn

Print nat_rec.

nat_rec =
fun P : nat — Set = nat_rect P
:V P : nat — Set,
PO—(Yn:nat, Pn— P(Sn))—>Vn:nat, Pn

Check nat_rect.

nat_rect
:V P : nat — Type,
PO—(VYn:nat, Pn— P(Sn))—=Vn:nat, Pn
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Inductive types

Primitives fix and match

Print nat_rect.

nat_rect =
fun (P : nat — Type) (f: PO) (f0: ¥V n:nat, Pn— P (S n)) =
fix F (n:nat): P n:=

match n as n0 return (P n0) with

|O=f
|Sn"= f0n (Fn)
end

:V P : nat — Type,
PO—(VYn:nat, Pn— P(Sn))—>Vn:nat, Pn
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Inductive types
Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons: T — list T — list T.
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Inductive types
Parametric lists

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons: T — list T — list T.

Check list_ind.

list_ind
:V (T :Set) (P :list T — Prop),
P (Nl T) —
(V@E:T)(:list T), Pl — P (Cons Tt /) —
ViI:list T, P/
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Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
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:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.
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Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.

Fixpoint app {T} (/sI Is2 :list T) : list T :=
match /s] with
| Nil = /s2
| Cons x Is1’ = Cons x (app Is1’ Is2)
end.
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Inductive types
Parametric lists cont.

Arguments Nil [T].
Arguments Cons [T].
Fixpoint length {T} (/s : list T) : nat :=
match /s with
| Nil = O
| Cons _ Is" = S (length Is’)
end.

Fixpoint app {T} (/sI Is2 :list T) : list T :=
match /s] with
| Nil = /s2
| Cons x Is1’ = Cons x (app Is1’ Is2)
end.

Theorem length_app : V T (/sI Is2 : list T), length (app /sI Is2)
= plus (length Is1) (length /s2).
induction /sI....

Qed.
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Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.
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Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=

| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista_ind.
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Inductive types
Nonparametric lists

Inductive lista : Set -> Type :=
| Nila : forall (A:Set), lista A
| Consa : forall (A:Set), A -> lista A -> lista A.

Check lista_ind.

lista_ind:
forall P : (forall A : Set, lista A -> Prop),
(forall A : Set, P A (Nila A)) ->
(forall (A : Set) (a : A) (1 : lista A),
PA1l ->P A (Consa A al)) ->
forall (PO : Set) (1 : lista PO), P PO 1
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Inductive types
Trees

Inductive nat_btree : Set :=
| NLeaf : nat_btree
| NNode : nat_btree — nat — nat_btree — nat_btree.
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Inductive types
Trees

Inductive nat_btree : Set :=
| NLeaf : nat_btree
| NNode : nat_btree — nat — nat_btree — nat_btree.

Check nat_btree_ind.

nat_btree_ind
:V P : nat_btree — Prop,
P NLeaf —

(V n : nat_btree, P n — V (n0 : nat) (nl : nat_btree),
P n1 — P (NNode n n0 nl)) —
V n : nat_btree, P n
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Inductive types

Mutually recursive types: odd_1ist and even_list

Inductive even_list : Set :=
| ENil : even_list
| ECons : nat — odd_list — even_list

with odd_list : Set :=
| OCons : nat — even_list — odd_list.
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Inductive types

Mutually recursive types: odd_1ist and even_list

Inductive even_list : Set :=
| ENil : even_list
| ECons : nat — odd_list — even_list

with odd_list : Set :=
| OCons : nat — even_list — odd_list.

Check even_list_ind.

even_list_ind
:V P : even_list — Prop,
P ENil —
(V (n : nat) (o : odd_list), P (ECons n 0)) —
V e : even_list, P e
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Inductive types

Scheme — generation of induction principles

Scheme even_list_mut := Induction for even_list Sort Prop
with odd_list_mut := Induction for odd_list Sort Prop.
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Inductive types

Scheme — generation of induction principles

Scheme even_list_mut := Induction for even_list Sort Prop
with odd_list_mut := Induction for odd_list Sort Prop.

Check even_list_mut.

even_list_mut
:V (P : even_list — Prop) (PO : odd_list — Prop),
P ENil —
(V (n : nat) (o : odd_list), PO o — P (ECons n 0)) —
(V (n : nat) (e : even_list), P e — PO (OCons n e)) —
V e :even_list, P e
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Inductive types
Reflexive type: formula

Inductive formula : Set :=
| Eq : nat — nat — formula
| And : formula — formula — formula
| Forall : (nat — formula) — formula.
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Inductive types
Reflexive type: formula

Inductive formula : Set :=
| Eq : nat — nat — formula
| And : formula — formula — formula
| Forall : (nat — formula) — formula.

Check formula_ind.

formula_ind
:V P : formula — Prop,
(¥ n nO : nat, P (Eq n n0)) —
(V 70 : formula,
P f0 — V f1 : formula, P fI — P (And f0 1)) —
(V f1 : nat — formula,

(¥ n:nat, P (f1 n)) — P (Forall 1)) —
YV 2 : formula, P 2
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Inductive types

Restrictions: positivity condition

Inductive term : Set :=
| App : term — term — term
| Abs : (term — term) — term.
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Inductive types

Restrictions: positivity condition

Inductive term : Set :=
| App : term — term — term
| Abs : (term — term) — term.

Error: Non strictly positive occurrence of "term" in "(term
-> term) -> term"
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Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.
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Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS_intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.
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Inductive types

Restrictions: only small inductive types in Set

Correct (definition of 3 ¢ P(9)):

Inductive exProp (P:Prop->Prop) : Prop
:= exP_intro : forall X:Prop, P X -> exProp P.

Incorrect:

Inductive exSet (P:Set->Prop) : Set
:= exS_intro : forall X:Set, P X -> exSet P.

Error: Large non-propositional inductive types must be in Type.
Correct:

Inductive exType (P:Type->Prop) : Type
:= exT_intro : forall X:Type, P X -> exType P.

behind the scene:

exType : (P : Type; — Prop) — Type,
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Equality
Definitional equality

Print "=".
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Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x
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Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x

Check Qeqg_refl.
Qeq_refl
: forall (A : Type) (x : A), x = x
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Equality
Definitional equality

Print "=".

Inductive eq (A : Type) (x : A) : A — Prop := eq_refl : x = x

Check Qeqg_refl.
Qeq_refl
: forall (A : Type) (x : A), x = x

eq-ind: forall (A : Type) (x : A) (P : A -> Prop),
Px ->forally : A, x=y ->Py
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Equality
reflexivity and rewrite

reflexivity = apply eq-refl
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Equality
reflexivity and rewrite

reflexivity = apply eq-refl

rewrite H = apply eq_ind

(where H: a=b)

eq-ind: forall (A : Type) (x : A) (P : A -> Prop),
Px ->forally : A, x=y ->Py
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