
Coq - introduction

Daria Walukiewicz-Chrząszcz

19 march 2019

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — interactive proof assistant

http://coq.inria.fr/

(***********)
(* v *)
(* <O___,, *)
(* \VV/ *)
(* // *)
(* *)
(***********)

rich (pure) functional programming language
rich logical language
user writes proofs
Coq makes sure every step is correct
and solves subgoals for which automated proving algorithms have
been implemented
(proved to be correct) program can be extracted to
Ocaml, Haskell, Scheme...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Proving in Coq

Curry-Howard isomorphism

proof of a given formula
l l

term of the corresponding type

λxA→B→CλyA→BλzA xz(yz) : (A→ B → C) → (A→ B) → (A→ C)

Correctness of Coq relies on correctness of type-checking

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism

Coq — calculus of constructions (CC) + inductive definitions

λ→ λP

λω λPω

F

Fω

λP2

CC

↑ polimorphism
↗ type constructors
→ dependent types

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Big picture of Coq architecture

The De Bruijn principle (“small” core, externally checkable terms)

core / kernel (≈20KLOC), responsible for:
CIC typing
reduction
environment (definitions, axioms etc).
modules

the rest (≈230KLOC), responsible for:
user interface
file management
sections
namespace management
proof mode (plus tactics, tactic language)
notations
implicit arguments (type reconstruction)
type classes
coercions and resolving mechanism
auto-generation of inductive principles
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — a bit of history

1984 CoC - calculus of constructions - G. Huet, T. Coquand
1989 first public release (version 4.10)
1991 Coq - calculus of inductive constructions - C. Paulin

(version 5.6)
...

2000 version 7.0 with new (safer) architecture
2003 version 7.4 with modules
2004 version 8.0 with new syntax
2009 version 8.2 with “type classes”
2012 version 8.4 with eta-reduction, structural proof syntax...
2018 version 8.7.2 — fixes a critical bug in the universes

(present since 8.5)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — famous formalizations

Fundamental theorem of algebra, Nijmegen 2000
JavaCard Platform formalization, Trusted Logic 2003

September 2007: a big step in program certification in the real
world: The Technology and Innovation group at Gemalto has
successfully completed a Common Criteria (CC) evaluation on a
JavaCard based commercial product. This evaluation is the
world’s first CC certificate of a Java product involving EAL7
components. (the official press release)

Four color theorem, Cambridge 2004
CompCert certified Clight compiler, 2008-now

The main result of the project is the CompCert C verified
compiler, a high-assurance compiler for almost all of the ISO
C90 / ANSI C language, generating efficient code for the
PowerPC, ARM and x86 processors.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — programming language

predicative sorts Set and Type

abstraction and application
inductive types,
(structural) recursion
polimorphism
dependant types and dependent pattern-matching
modules i functors
type classes
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — logic

intuitionistic higher-order logic
impredicative sort Prop
forall and implication built-in
boolean connectives, false, exists (defined)
inductive predicates (including equality)
...

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq proof machinery

interactive proof mode (goal management)
built-in tactics (constructing a bit of proof-term): intro, apply, etc.
automatic ad-hoc tactics: auto, intuition, etc.
decision procedures: omega, ring, field, tauto, etc.
tactic language (Ltac mytactic:=...)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Program extraction

program is extracted from the proof
extracted program satisfies its specification by definition
extraction — “elimination” of logical parts from the proof-term
extraction possible because proofs are done in constructive logic
(excluded-middle and double negation laws do not hold)
target languages: O’Caml, Haskell, Scheme

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Resources

https://coq.inria.fr/

Coq Art, Yves Bertot, Pierre Castéran
Certified Programming with Dependent Types, Adam Chlipala (MIT)

editor: MIT Press 2013
accessible: http://adam.chlipala.net/cpdt/

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Typing

environment ` term : type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type1

but there are terms that are not types, ex. fun n:nat => n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Typing

environment ` term : type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type1

but there are terms that are not types, ex. fun n:nat => n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Typing

environment ` term : type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type1

but there are terms that are not types, ex. fun n:nat => n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Typing

environment ` term : type

environment: global and local declarations and definitions

types are terms and have types, ex. nat:Set, Set:Type1

but there are terms that are not types, ex. fun n:nat => n

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : Πx:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — formalism: fun for all

simple types abstraction rule:
Γ, x:A `M : B

Γ ` λx:A.M : A→ B

dependent types abstraction rule:
Γ, x:A `M : B(x)

Γ ` λx:A.M : ∀x:A.B(x)

Shorthand: A→ B is ∀x:A.B, where x 6∈ FV (B)

concrete Coq syntax:
fun n:nat => M : forall n:nat, vector n

application rule:

Γ ` F : A→ B Γ ` G : A

Γ ` F G : B

Γ ` F : ∀x:A.B(x) Γ ` G : A

Γ ` F G : B[G/x]

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — typing rules: sorts

• Sorts in Coq:

Prop
Set : Type1 : Type2 : . . .

• Cummulativity (or sub-sorting):

Prop ≤ Set ≤ Type1 ≤ Type2 ≤ . . .

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — typing rules: sorts

• Sorts in Coq:

Prop
Set : Type1 : Type2 : . . .

• Cummulativity (or sub-sorting):

Prop ≤ Set ≤ Type1 ≤ Type2 ≤ . . .

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — products

product rule

Γ ` A : s1 Γ, x:A ` B : s2
Γ ` ∀x:A.B : s2

if s1 and s2 satisfy . . .

s1 ≤ s2, or
s2 = Prop

cummulativity rule

Γ `M : s1
Γ `M : s2

jeśli s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — products

product rule

Γ ` A : s1 Γ, x:A ` B : s2
Γ ` ∀x:A.B : s2

if s1 and s2 satisfy . . .

s1 ≤ s2, or
s2 = Prop

cummulativity rule

Γ `M : s1
Γ `M : s2

jeśli s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — products

product rule

Γ ` A : s1 Γ, x:A ` B : s2
Γ ` ∀x:A.B : s2

if s1 and s2 satisfy . . .

s1 ≤ s2, or
s2 = Prop

cummulativity rule

Γ `M : s1
Γ `M : s2

jeśli s1 ≤ s2

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — reductions

beta

(λx:A.M)N −→β M [N/x]

eta expansion (if M is of a functional type)

M −→η λx:A.Mx

delta

(definition unfolding)

zeta

(let x:=N in M) −→ζ M[N/x]

iota

(inductive types reductions — soon :)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — conversion

conversion rule
Γ `M : A Γ ` A =βηδζι A

′ Γ ` A′ : s

Γ `M : A′

vector nat 4 =iota vector nat (2+2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq — conversion

conversion rule
Γ `M : A Γ ` A =βηδζι A

′ Γ ` A′ : s

Γ `M : A′

vector nat 4 =iota vector nat (2+2)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Coq implements intuitionistic logic

forall and implication are built-in
False, conjunction, disjunction cannot be defined from →
they are defined as inductive types
negation is defined ¬φ ≡ φ→ False

existential quantifier cannot be defined from universal one
existential quantifier is defined as an inductive type
one can use classical logic - axioms needed (ex: excluded middle)
proof-checking is decidable (not provability)

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

Inductive True : Prop :=
I : True.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

True and False

Inductive False : Prop :=.

Inductive True : Prop :=
I : True.

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> and A B

∧ is an infix notation for and

Inductive or (A B : Prop) : Prop :=
or introl : A -> or A B

| or intror : B -> or A B.

∨ is an infix notation for or

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> and A B

∧ is an infix notation for and

Inductive or (A B : Prop) : Prop :=
or introl : A -> or A B

| or intror : B -> or A B.

∨ is an infix notation for or

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> and A B

∧ is an infix notation for and

Inductive or (A B : Prop) : Prop :=
or introl : A -> or A B

| or intror : B -> or A B.

∨ is an infix notation for or

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Conjunction and disjunction

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> and A B

∧ is an infix notation for and

Inductive or (A B : Prop) : Prop :=
or introl : A -> or A B

| or intror : B -> or A B.

∨ is an infix notation for or

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex intro : forall x : A, P x -> ex A P.

exists y, P y is a notation for ex

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

Typing Inductive definitions of logic connectives

Existential quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex intro : forall x : A, P x -> ex A P.

exists y, P y is a notation for ex

Daria Walukiewicz-Chrząszcz Zaawansowane programowanie funkcyjne

	Typing
	Inductive definitions of logic connectives

