Daria Walukiewicz-Chrzaszcz

Advanced Functional Programming

5 march 2019

Advanced functional programming

Plan of my part:

Daria Walukiewicz-Chrzaszez

Advanced functional programming

Plan of my part:

@ theorem proving and programming with dependent types

Daria Walukiewicz-Chrzaszez

Advanced functional programming

Plan of my part:
@ theorem proving and programming with dependent types

o Idris (1 lecture)

Daria Walukiewicz-Chrzaszez

Advanced functional programming

Plan of my part:
@ theorem proving and programming with dependent types
o Idris (1 lecture)
e Coq (6 lectures)

Daria Walukiewicz-Chrzaszez

Advanced functional programming

Plan of my part:
@ theorem proving and programming with dependent types
o Idris (1 lecture)
e Coq (6 lectures)
e Coq project (grades)

Daria Walukiewicz-Chrzaszez

Intro

Motivation for dependent types: specifications

@ types become more precise

Daria Walukiewicz-Chrzaszez

Intro

Motivation for dependent types: specifications

@ types become more precise

o finer types specify better the properties of the function

Daria Walukiewicz-Chrzaszez

Intro

Motivation for dependent types: specifications

@ types become more precise

o finer types specify better the properties of the function

Daria Walukiewicz-Chrzaszez

Intro

Motivation for dependent types: specifications

@ types become more precise

o finer types specify better the properties of the function

Inductive ftree : nat — Set :=
| Leaf : ftree O
| Node : ¥ n: nat, Z — ftree n — ftree n — ftree (S n).

Daria Walukiewicz-Chrzaszez

Intro

Motivation for dependent types: specifications

@ types become more precise

o finer types specify better the properties of the function

Inductive ftree : nat — Set :=
| Leaf : ftree O

| Node : ¥ n: nat, Z — ftree n — ftree n — ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z =
match t with
| Node n k| r =k
end.

Daria Walukiewicz-Chrzaszez

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

Daria Walukiewicz-Chrzaszez

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

Daria Walukiewicz-Chrzaszez

Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element

Daria Walukiewicz-Chrzaszez

Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element
@ type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent types)
type vector A n depends on a type A and value n(dependent types)

Daria Walukiewicz-Chrzaszez

Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element
@ type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent types)
type vector A n depends on a type A and value n(dependent types)

Daria Walukiewicz-Chrzaszez

Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element
@ type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent types)
type vector A n depends on a type A and value n(dependent types)

Notations:
Vn : nat.ftreen

IIn : nat.ftree n
forall n:nat,ftree n

(n:nat) — ftree n

Daria Walukiewicz-Chrzaszez

Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element
@ type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent types)
type vector A n depends on a type A and value n(dependent types)

Notations:
Vn : nat.ftree n
IIn : nat.ftree n
forall n:nat,ftree n
(n:nat) — ftree n
Convention: forall n:nat,bool = nat — bool

Daria Walukiewicz-Chrzaszez

Dependent types - computations in types

ftree (2+2) = ftree (4)

these types are convertible - should be regarded as internally equal

Daria Walukiewicz-Chrzaszez

Dependent types - computations in types

ftree (2+2) = ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

O+y=y
(8 x) +y =28 (xty)

Daria Walukiewicz-Chrzaszez

Dependent types - computations in types

ftree (2+2) = ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

O+y=y
(8 x) +y =28 (xty)

@ 2+2 computes to 4

Daria Walukiewicz-Chrzaszez

Dependent types - computations in types

ftree (2+2) = ftree (4)

these types are convertible - should be regarded as internally equal

Attention:
for + defined by pattern matching on first argument:

O+y=y
(8 x) +y =28 (xty)

@ 2+2 computes to 4

@ O+n computes to n

Daria Walukiewicz-Chrzaszez

Dependent types - computations in types

ftree (2+2) = ftree (4)
these types are convertible - should be regarded as internally equal
Attention:
for + defined by pattern matching on first argument:
O+y=y
(8 x) +y =28 (xty)

@ 2+2 computes to 4
@ O+n computes to n

@ but n+0 does not compute to n
(equality can be proved by induction)

Daria Walukiewicz-Chrzaszez

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

Daria Walukiewicz-Chrzaszez

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even :

: forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

Daria Walukiewicz-Chrzaszez

Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (m:nat) -> Parity n

parity 0 = Even 0O

parity (S 0) = 0dd O

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)

Daria Walukiewicz-Chrzaszez

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

Daria Walukiewicz-Chrzaszez

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity 0 = Even O

parity (S 0) = 0dd 0

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)

Daria Walukiewicz-Chrzaszez

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity 0 = Even O

parity (S 0) = 0dd 0

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)

Type of Even (S j) is Parity((S j) + (8 j)), but expected type is
Parity(S (S k)) where k is j+j.

Daria Walukiewicz-Chrzaszez

Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity 0 = Even O

parity (S 0) = 0dd 0

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)

Type of Even (S j) is Parity((S j) + (8 j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j) equals S (S (j+j))

Daria Walukiewicz-Chrzaszez

Idris

@ started in 2008

Daria Walukiewicz-Chrzaszez

Idris

o started in 2008
o http://www.idris-lang.org/

Daria Walukiewicz-Chrzaszez

Idris

@ started in 2008
@ http://www.idris-lang.org/
o development led by Edwin Brady at the University of St Andrews

Daria Walukiewicz-Chrzaszez

Idris

@ started in 2008

@ http://www.idris-lang.org/

o development led by Edwin Brady at the University of St Andrews
@ https://edwinb.wordpress.com/

Daria Walukiewicz-Chrzaszez

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/

“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017

Daria Walukiewicz-Chrzaszez

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/

“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017

o Idris based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)

Daria Walukiewicz-Chrzaszez

Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/

“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017

o Idris based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)

@ some of its metatheoretic properties are conjectured (not yet proved)

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

@ type declarations required

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

@ type declarations required

@ eager evaluation, lazy computations are possible

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

@ type declarations required

@ eager evaluation, lazy computations are possible

@ dependent types

Daria Walukiewicz-Chrzaszez

Idris

general purpose pure functional programming language with
dependent types

syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required

eager evaluation, lazy computations are possible

dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

Daria Walukiewicz-Chrzaszez

Idris

general purpose pure functional programming language with
dependent types

syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

dependent types provide better specifications of functions

Daria Walukiewicz-Chrzaszez

Idris

general purpose pure functional programming language with
dependent types

syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are

interchanged

type declarations required

eager evaluation, lazy computations are possible

dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

o type-driven development treats programming as “solving a puzzle™:
the program is the solution to the puzzle, the type the goal of the
puzzle

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

o type-driven development treats programming as “solving a puzzle™:
the program is the solution to the puzzle, the type the goal of the
puzzle

@ because of dependent types, evaluation is needed at type-checking

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

o type-driven development treats programming as “solving a puzzle™:
the program is the solution to the puzzle, the type the goal of the
puzzle

@ because of dependent types, evaluation is needed at type-checking

@ functions used in evaluation must be total and terminating

Daria Walukiewicz-Chrzaszez

Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

o type-driven development treats programming as “solving a puzzle™:
the program is the solution to the puzzle, the type the goal of the
puzzle

@ because of dependent types, evaluation is needed at type-checking
@ functions used in evaluation must be total and terminating
e compiler gets rid of the parts needed only for type checking

Daria Walukiewicz-Chrzaszez

Idris
|dris - getting started

@ installation: cabal update; cabal install idris

Daria Walukiewicz-Chrzaszez

Idris
|dris - getting started

@ installation: cabal update; cabal install idris

@ idris foo.idr enters the interactive environment, similar to ghci

Daria Walukiewicz-Chrzaszez

Idris
|dris - getting started

@ installation: cabal update; cabal install idris
@ idris foo.idr enters the interactive environment, similar to ghci

@ commands, :t, :q (type :? for full list of commands)

Daria Walukiewicz-Chrzaszez

Idris
|dris - getting started

installation: cabal update; cabal install idris
idris foo.idr enters the interactive environment, similar to ghci

commands, :t, :q (type :? for full list of commands)

compilation: idris -o foo foo.idr

Daria Walukiewicz-Chrzaszez

Idris
|dris - getting started

installation: cabal update; cabal install idris
idris foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)

compilation: idris -o foo foo.idr

or using :c foo and :exec commands

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

e Hello.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

e Hello.idr
o HelloHole.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

e Hello.idr
o HelloHole.idr

o Generic.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

@ Hello.idr

@ HelloHole.idr
o Generic.idr
e HOF.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

@ Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

@ Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr

HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

@ Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr

removeElem.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr

removeElem.idr

parity.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr
removeElem.idr

parity.idr

binary.idr

Daria Walukiewicz-Chrzaszez

Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr
removeElem.idr
parity.idr
binary.idr

AppendVecRew.idr

Idris
Interfaces

@ similar to type classes in Haskell

@ there can be many implementations for one type

(see Eq.idr Tree.idr)

Daria Walukiewicz-Chrzaszez

Equality in Idris

@ == is not adequate

@ equality defined at the level of types

(see EqNat.idr, ExactLength.idr)

Daria Walukiewicz-Chrzaszez

Totality checking

Function is total if it

Daria Walukiewicz-Chrzaszez

Totality checking

Function is total if it

@ covers all possible inputs

Daria Walukiewicz-Chrzaszez

Totality checking

Function is total if it
@ covers all possible inputs

o is well-founded (in recursive calls arguments are decreasing)

Daria Walukiewicz-Chrzaszez

Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)

@ does not use any data types which are not strictly positive

Daria Walukiewicz-Chrzaszez

Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)
@ does not use any data types which are not strictly positive
@ does not call any non-total functions

Daria Walukiewicz-Chrzaszez

	Intro
	Idris

