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Intro

Motivation for dependent types: specifications

@ types become more precise

o finer types specify better the properties of the function

Inductive ftree : nat — Set :=
| Leaf : ftree O

| Node : ¥ n: nat, Z — ftree n — ftree n — ftree (S n).

Definition root (n : nat)(t : ftree(S n)) : Z =
match t with
| Node n k| r =k
end.
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Intro

Dependent types - introduction

Functional dependent type - type of a function whose codomain depends
on an argument

@ mapping n +— I, , that assigns an identity matrix of size n to a
natural number n has type

Vn : nat. My, ,

@ in monoid (A4,e,-), operation - is a function that has type
A — A — A, and such that e is its identity element
@ type List A depends on a type A (polimorphism)
type ftree n depends on a value n (dependent types)
type vector A n depends on a type A and value n(dependent types)

Notations:
Vn : nat.ftree n
IIn : nat.ftree n
forall n:nat,ftree n
(n:nat) — ftree n
Convention: forall n:nat,bool = nat — bool
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Dependent types - computations in types

ftree (2+2) = ftree (4)
these types are convertible - should be regarded as internally equal
Attention:
for + defined by pattern matching on first argument:
O+y=y
(8 x) +y =28 (xty)

@ 2+2 computes to 4
@ O+n computes to n

@ but n+0 does not compute to n
(equality can be proved by induction)
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| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

Daria Walukiewicz-Chrzaszez



Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even :

: forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

Daria Walukiewicz-Chrzaszez



Dependent types - in simplified Idris

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

hence Even i : Parity (i+i) for a given i : nat

parity : (m:nat) -> Parity n

parity 0 = Even 0O

parity (S 0) = 0dd O

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)
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Dependent types naturally need proofs

data Parity : nat -> Type where
| Even : forall n:nat, Parity (n + n)
| 0dd : forall n:nat, Parity (S (n + n))

parity : (n:nat) -> Parity n

parity 0 = Even O

parity (S 0) = 0dd 0

parity (S (S k)) = match (parity k) with
| Even j => Even (S j)

| 0dd j => 0dd (S j)

Type of Even (S j) is Parity((S j) + (8 j)), but expected type is
Parity(S (S k)) where k is j+j.
Conclusion: we need a proof that S (j+(S j) equals S (S (j+j))
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Idris

started in 2008

http://www.idris-lang.org/

development led by Edwin Brady at the University of St Andrews
https://edwinb.wordpress.com/

“Type-driven development with Idris” Edwin Brady, published by
Manning, March 2017

o Idris based on core Type Theory (“Idris, a General Purpose
Dependently Typed Programming Language: Design and
Implementation”, Journal of Functional Programming 2013)

@ some of its metatheoretic properties are conjectured (not yet proved)
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Idris

@ general purpose pure functional programming language with
dependent types

@ syntax similar to Haskell, but the meanings of : and :: are
interchanged

type declarations required
eager evaluation, lazy computations are possible
dependent types

types are first class language constructs (can be arguments to
functions, returned from functions)

@ dependent types provide better specifications of functions

@ but writing a function that satisfies its specification may need proofs

o type-driven development treats programming as “solving a puzzle™:
the program is the solution to the puzzle, the type the goal of the
puzzle

@ because of dependent types, evaluation is needed at type-checking
@ functions used in evaluation must be total and terminating
e compiler gets rid of the parts needed only for type checking
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Idris
|dris - getting started

installation: cabal update; cabal install idris
idris foo.idr enters the interactive environment, similar to ghci
commands, :t, :q (type :? for full list of commands)

compilation: idris -o foo foo.idr

or using :c foo and :exec commands
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Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
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Idris and dependent types - examples

Hello.idr
HelloHole.idr
Generic.idr
HOF.idr
Let_Where.idr
FCTypes.idr
Vectors.idr
TCVects.idr
ApplyVec.idr
WordLength_vec.idr
Adder.idr
removeElem.idr
parity.idr
binary.idr

AppendVecRew.idr



Idris
Interfaces

@ similar to type classes in Haskell

@ there can be many implementations for one type

(see Eq.idr Tree.idr)
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Equality in Idris

@ == is not adequate

@ equality defined at the level of types

(see EqNat.idr, ExactLength.idr)
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Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)
@ does not use any data types which are not strictly positive
@ does not call any non-total functions
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