|dris — type classes and equality

Daria Walukiewicz-Chrzaszcz

7 marca 2017



Solutions of exercises from Labl

e Zadl.idr
e Zad2.idr
e Zad3.idr
e Zad4.idr
e Zadb5.idr

Daria Walukiewicz-Chrzaszez



Type classes

@ similar to type classes in Haskell

@ there can be many implementations for one type

(see Eq.idr Tree.idr)

Daria Walukiewicz-Chrzaszez



Equality in Idris

@ == is not adequate

@ equality defined at the level of types

(see EqNat.idr, ExactLength.idr)

Daria Walukiewicz-Chrzaszez



Dependent types and dependent pattern-matching

@ types depend on values

Daria Walukiewicz-Chrzaszez



Dependent types and dependent pattern-matching

@ types depend on values

@ no syntactical differences between type and value

Daria Walukiewicz-Chrzaszez



Dependent types and dependent pattern-matching

@ types depend on values
@ no syntactical differences between type and value

@ types are values

Daria Walukiewicz-Chrzaszez



Dependent types and dependent pattern-matching

@ types depend on values
@ no syntactical differences between type and value
@ types are values

@ type of the result of a function can depend on values of arguments

Daria Walukiewicz-Chrzaszez



Totality checking

Function is total if it

Daria Walukiewicz-Chrzaszez



Totality checking

Function is total if it

@ covers all possible inputs

Daria Walukiewicz-Chrzaszez



Totality checking

Function is total if it
@ covers all possible inputs

o is well-founded (in recursive calls arguments are decreasing)

Daria Walukiewicz-Chrzaszez



Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)

@ does not use any data types which are not strictly positive

Daria Walukiewicz-Chrzaszez



Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)
@ does not use any data types which are not strictly positive
@ does not call any non-total functions

Daria Walukiewicz-Chrzaszez



