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Solutions of exercises from Labl

e Zadl.idr
e Zad2.idr
e Zad3.idr
e Zad4.idr
e Zadb5.idr
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Type classes

@ similar to type classes in Haskell

@ there can be many implementations for one type

(see Eq.idr Tree.idr)
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Equality in Idris

@ == is not adequate

@ equality defined at the level of types

(see EqNat.idr, ExactLength.idr)
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@ types depend on values
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Dependent types and dependent pattern-matching

@ types depend on values
@ no syntactical differences between type and value
@ types are values

@ type of the result of a function can depend on values of arguments
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Totality checking

Function is total if it
@ covers all possible inputs
o is well-founded (in recursive calls arguments are decreasing)
@ does not use any data types which are not strictly positive
@ does not call any non-total functions
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