Deductive Program Verification with Why3

Jean-Christophe Filliâtre CNRS

Digicosme Spring School
April 22, 2013
http://why3.lri.fr/digicosme-spring-school-2013/

definition

this is not new

A. M. Turing. Checking a large routine. 1949.

this is not new

Tony Hoare.
Proof of a program: FIND.
Commun. ACM, 1971.

proving

a lot of theorem provers

- SMT solvers: CVC3, Z3, Yices, Alt-Ergo, etc.
(the SMT revolution)
- TPTP provers: Vampire, Eprover, SPASS, etc.
- proof assistants: Coq, PVS, Isabelle, etc.
- dedicated provers, e.g. Gappa

which logic?

- too rich: we can't use automated theorem provers
- too poor: we can't model programming languages and we can't specify programs
typically, a compromise
- first-order logic
- a bunch a theories: arithmetic, arrays, bit vectors, etc.

programs

extracting verification conditions for a realistic programming language is a lot of work
as in a compiler, we rather translate to some intermediate language from which we extract VCs
developed since 2001 at ProVal (LRI / INRIA)
rewritten from scratch, started Feb $2010 \Rightarrow$ Why3
authors: F. Bobot, JCF, C. Marché, G. Melquiond, A. Paskevich open source software (LGPL)
http://why3.lri.fr/
a similar tool: Boogie (Microsoft Research)

- Java programs: Krakatoa (Marché Paulin Urbain)
- C programs: Caduceus (Filliâtre Marché) formerly, Jessie plug-in of Frama-C (Marché Moy) today
- Ada programs: Hi-Lite (Adacore)
- algorithms
- probabilistic programs (Barthe et al.)
- cryptographic programs (Vieira)

overview of Why3

Part I

the logic of Why3
logic of Why3 = polymorphic first-order logic, with

- (mutually) recursive algebraic data types
- (mutually) recursive function/predicate symboles
- (mutually) inductive predicates
- let-in, match-with, if-then-else
formal definition in
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)

Demo 1: the logic of Why3

declarations

- types
- abstract: type t
- alias: type $\mathrm{t}=$ list int
- algebraic: type list $\alpha=$ Nil | Cons α (list α)
- function / predicate
- uninterpreted: function f int : int
- defined: predicate non_empty (l: list α) $=1 \neq$ Nil
- inductive predicate
- inductive trans t t $=$...
- axiom / lemma / goal
- goal G: $\forall \mathrm{x}$: int. $\mathrm{x} \geq 0 \rightarrow \mathrm{x} * \mathrm{x} \geq 0$

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}

logic declarations organized in theories
a theory T_{1} can be
- used (use) in a theory T_{2}
- symbols of T_{1} are shared
- axioms of T_{1} remain axioms
- lemmas of T_{1} become axioms
- goals of T_{1} are ignored
- cloned (clone) in another theory T_{2}

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}
- declarations of T_{1} are copied or substituted
- axioms of T_{1} remain axioms or become lemmas/goals
- lemmas of T_{1} become axioms

- goals of T_{1} are ignored
a technology to talk to provers
central concept: task
- a context (a list of declarations)
- a goal (a formula)

Alt-Ergo

Z3

Vampire

Alt-Ergo

Z3

Vampire

transformations

- eliminate algebraic data types and match-with
- eliminate inductive predicates
- eliminate if-then-else, let-in
- encode polymorphism, encode types
- etc.
efficient: results of transformations are memoized
a task journey is driven by a file
- transformations to apply
- prover's input format
- syntax
- predefined symbols / axioms
- prover's diagnostic messages
more details: Why3: Shepherd your herd of provers (Boogie 2011)

example: Z3 driver (excerpt)

```
printer "smtv2"
valid "^unsat"
invalid "`sat"
transformation "inline_trivial"
transformation "eliminate_builtin"
transformation "eliminate_definition"
transformation "eliminate_inductive"
transformation "eliminate_algebraic"
transformation "simplify_formula"
transformation "discriminate"
transformation "encoding_smt"
prelude "(set-logic AUFNIRA)"
theory BuiltIn
    syntax type int "Int"
    syntax type real "Real"
    syntax predicate (=) "(= %1 %2)"
    meta "encoding : kept" type int
end
```

Why3 has an OCaml API

- to build terms, declarations, theories, tasks
- to call provers
defensive API
- well-typed terms
- well-formed declarations, theories, and tasks

Why3 can be extended via three kinds of plug-ins

- parsers (new input formats)
- transformations (to be used in drivers)
- printers (to add support for new provers)

API and plug-ins

Your code

Why3 API

Summary

- numerous theorem provers are supported
- Coq, SMT, TPTP, Gappa
- user-extensible system
- input languages
- transformations
- output syntax
- efficient
- e.g. transformations are memoized
more details:
- Why3: Shepherd your herd of provers. (Boogie 2011)

Part II

program verification

Demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

Demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

$$
\begin{aligned}
& u \leftarrow 1 \\
& \text { for } r=0 \text { to } n-1 \text { do } \\
& \qquad \begin{array}{l}
v \leftarrow u \\
\text { for } s=1 \text { to } r \text { do } \\
\quad u \leftarrow u+v
\end{array}
\end{aligned}
$$

demo (access code)

Demo 3: another historical example

$$
\begin{aligned}
f(n)= \begin{cases}n-10 & \text { si } n>100 \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
\text { demo (access code) }
\end{aligned}
$$

Demo 3: another historical example

$$
\begin{aligned}
& f(n)= \begin{cases}n-10 & \text { si } n>100, \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
& \text { demo (access code) }
\end{aligned}
$$

$$
\begin{aligned}
& e \leftarrow 1 \\
& \text { while } e>0 \text { do } \\
& \text { if } n>100 \text { then } \\
& n \leftarrow n-10 \\
& e \quad \leftarrow e-1 \\
& \text { else } \\
& \quad n \leftarrow n+11 \\
& \quad e<e+1
\end{aligned}
$$

demo (access code)

Recapitulation

- pre/postcondition

$$
\begin{aligned}
& \text { let foo } \mathrm{x} \text { y } \mathrm{z} \\
& \text { requires }\{P\} \text { ensures }\{Q\}
\end{aligned}
$$

$$
=\ldots
$$

- loop invariant

$$
\begin{aligned}
& \text { while ... do invariant }\{I\} \ldots \text { done } \\
& \text { for } i=\ldots \text { do invariant }\{I(i)\} \ldots \text { done }
\end{aligned}
$$

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a variant

$$
\text { variant }\{t\} \text { with } R
$$

- R is a well-founded order relation
- t decreases for R at each step (resp. each recursive call)
by default, t is of type int and R is the relation

$$
y \prec x \stackrel{\text { def }}{=} y<x \wedge 0 \leq x
$$

as show with function 91, proving termination may require to establish behavioral properties as well
another example:

- Floyd's cycle detection (Hare and Tortoise algorithm)

Data structures

up to now, we have only used integers
let us consider more complex data structures

- arrays
- algebraic data types

Why3 standard library provides arrays

```
use import array.Array
```

that is

- a polymorphic type

$$
\text { array } \alpha
$$

- an access operation, written

$$
a[e]
$$

- an assignment operation, written

$$
\mathrm{a}[\mathrm{e} 1] \leftarrow \mathrm{e} 2
$$

- operations create, append, sub, copy, etc.

Demo 4: two-way sort

sort an array of Boolean, using the following algorithm

```
let two_way_sort (a: array bool) =
    let i = ref 0 in
    let j = ref (length a - 1) in
    while !i < !j do
    if not a[!i] then
        incr i
    else if a[!j] then
        decr j
    else begin
        let tmp = a[!i] in
        a[!i] \leftarrow a[!j];
        a[!j]}\leftarrow tmp
        incr i;
        decr j
        end
    done
```


Exercise 1: Dutch national flag

an array contains elements of the following enumerated type
type color = Blue | White | Red
sort it, in such a way we have the following final situation:

$$
\begin{array}{|l|l|l|}
\hline \ldots \text {. Blue ... } & \text {.. White Red . . } \\
\hline
\end{array}
$$

Exercise: Dutch national flag

```
let dutch_flag (a:array color) (n:int) =
    let b = ref 0 in
    let i = ref O in
    let r = ref n in
    while !i < !r do
    match a[!i] with
        | Blue }
            swap a !b !i;
            incr b;
            incr i
        | White }
            incr i
        | Red }
            decr r;
            swap a !r !i
        end
    done
```

 exercise: exo_flag.mlw

Remark

as for termination, proving safety (such as absence of array access our of bounds) may be arbitrarily difficult
an example:

- Knuth's algorithm for N first primes (TAOCP vol. 1)

Demo 5: Boyer-Moore's majority

given a multiset of N votes

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
\hline
\end{array}
$$

determine the majority, if any

an elegant solution

due to Boyer \& Moore (1980)
linear time
uses only three variables

MJRTY-A Fast Majority Vote Algorithm'

Robert S. Boyer and J Strother Moore
Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc. 1717 West Sixth Street, Suite 290

Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary number of candidates has received a majority of the votes cast in an election.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
\hline \uparrow & \\
\hline \uparrow & & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & \uparrow & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & & \uparrow & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\mathrm{cand} & =\mathrm{A} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{B} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{B} \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

then we check if C indeed has majority, with a second pass (in that case, it has: $7>13 / 2$)

Fortran

```
SUBROUTINE MJRTY(A, N, BOOLE, CAND)
INTEGER N
INTEGER A
LOGICAL BOOLE
INTEGER CAND
INTEGER I
INTEGER K
DIMENSION A(N)
K = 0
THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS
THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
UNPAIRED VOTES FOR CAND.
DO 100 I = 1, N
IF ((K .EQ. O)) GOTO 50
IF ((CAND .EQ. A(I))) COTO 75
K = (K - 1)
GOTO 100
CAND = A (I)
K=1
GOTO 100
75 K = (K + 1)
100 CONTINUE
IF ((K .EQ. O)) GOTO 300
BOOLE = .TRUE.
IF ((K .GT. (IN/2))) RETURN
WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
AS K EXCEEDS N/2.
K = O
DO 200 I = 1, N
IF ((CAMD .NE. A(I))) GOTO 200
K = (K + 1)
IF ((K .GT. (N/2))) RETURN
CONTINUE
BOOLE = .FALSE
RETURN
END
```

```
let mjrty (a: array candidate) =
    let n = length a in
    let cand = ref a[0] in let k = ref 0 in
    for i = 0 to n-1 do
    if !k = 0 then begin cand := a[i]; k := 1 end
    else if !cand = a[i] then incr k else decr k
    done;
    if !k = O then raise Not_found;
    try
        if 2 * !k > n then raise Found; k := 0;
        for i = 0 to n-1 do
            if a[i] = !cand then begin
            incr k; if 2 * !k > n then raise Found
        end
        done;
        raise Not_found
    with Found }
        !cand
    end
```

- precondition

$$
\begin{aligned}
& \text { let mjrty (a: array candidate) } \\
& \text { requires }\{1 \leq \text { length a }\}
\end{aligned}
$$

- postcondition in case of success
ensures

$$
\{2 * \text { numof a result } 0 \text { (length a) }>\text { length a }\}
$$

- postcondition in case of failure

$$
\begin{aligned}
& \text { raises \{ Not_found } \rightarrow \\
& \forall c: \text { candidate. }
\end{aligned}
$$

$$
2 * \text { numof a c } 0 \text { (length a) } \leq \text { length a }\}
$$

annotations

each loop is given a loop invariant

```
for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) do
    invariant \(\{0 \leq!k \leq i \wedge\)
        numof a !cand 0 i \(\geq!k \wedge\)
        2 * (numof a !cand 0 i - !k) \(\leq i-!k \wedge\)
        \(\forall c:\) candidate.
            \(c \neq\) !cand \(\rightarrow 2 *\) numof a c 0 i \(\leq i-!k\)
    \}
    -••
for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) do
    invariant \(\{!\mathrm{k}=\) numof a !cand 0 i \(\wedge 2 *!\mathrm{k} \leq \mathrm{n}\}\)
```

 ...
 the verification condition expresses

- safety
- array access within bounds
- termination
- validity of annotations
- invariants are initialized and preserved
- postconditions are established
automatically discharged by SMT solvers

Ghost code

may be inserted for the purpose of specification and/or proof
rules are:

- ghost code may read regular data (but can't modify it)
- ghost code cannot modify the control flow of regular code
- regular code does not see ghost data
in particular, ghost code may be removed without observable modification

Demo 7: ring buffer

a circular buffer is implemented within an array

```
type buffer \alpha={
    mutable first: int;
    mutable len : int;
        data : array \alpha;
```

\}
len elements are stored, starting at index first

first
they may wrap around the array bounds

first

Demo 7: ring buffer

we add an extra ghost field to model the buffer contents

```
type buffer \alpha={
    mutable first: int;
    mutable len : int;
        data : array \alpha;
    ghost mutable sequence: list \alpha;
}
```


Demo 7: ring buffer

ghost code is added to set this ghost field accordingly
example:

```
let push (b: buffer \(\alpha\) ) (x: \(\alpha\) ) : unit
    ghost b.sequence \(\leftarrow \mathrm{b}\). sequence ++ Cons x Nil;
    let i = b.first + b.len in
    let \(\mathrm{n}=\) Array.length b.data in
    b.data[if \(\mathrm{i} \geq \mathrm{n}\) then \(\mathrm{i}-\mathrm{n}\) else i\(] \leftarrow \mathrm{x}\);
    b.len \(\leftarrow \mathrm{b} .1 \mathrm{en}+1\)
```


Demo 7: ring buffer

we link the array contents and the ghost field with a type invariant

```
type buffer \alpha =
    ...
invariant {
    let size = Array.length self.data in
    0 s self.first < size ^
    0}\leq\mathrm{ self.len }\leq\mathrm{ size ^
    self.len = L.length self.sequence ^
    i: int. 0 \leq i < self.len }
        (self.first + i < size }
            nth i self.sequence =
            Some self.data[self.first + i]) ^
            (0 \leq self.first + i - size }
            nth i self.sequence =
            Some self.data[self.first + i - size])
}
```


Demo 7: ring buffer

such a type invariant

- is assumed at function entry
- must be ensured for values returned or modified

Demo 7: ring buffer

alternatively, we could have introduced a logical function mapping the buffer to a list

```
function buffermodel (b: buffer \alpha) : list \alpha
(* + suitable axioms *)
```

but ghost code

- is more compact
- results in simpler proof (it provides explicit witnesses)

Other data structures

a key idea of Hoare logic:

> any types and symbols from the logic can be used in programs
note: we already used type int this way

Algebraic data types

we can do so with algebraic data types
in the library, we find
type bool $=$ True | False
type option $\alpha=$ None | Some α
type list $\alpha=$ Nil | Cons α (list α)
(in bool.Bool)
(in option.Option)
(in list.List)

Demo 7: same fringe

given two binary trees, do they contain the same elements when traversed in order?

Demo 7: same fringe

```
type elt
type tree \(=\)
    | Empty
    | Node tree elt tree
function elements (t: tree) : list elt \(=\) match t with
    \(\mid\) Empty \(\rightarrow \mathrm{Nil}\)
    | Node 1 x r \(\rightarrow\) elements 1 ++ Cons x (elements r)
end
let same_fringe (t1 t2: tree) : bool
    ensures \{result=True \(\leftrightarrow\) elements t1 \(=\) elements t2 \}
    =
```

 . .

Demo 7: same fringe

one solution: look at the left branch as
a list, from bottom up

Demo 7: same fringe

one solution: look at the left branch as a list, from bottom up

demo (access code)

Exercise 2: inorder traversal

```
type elt
type tree = Null | Node tree elt tree
```

inorder traversal of t, storing its elements in array a

```
let rec fill (t: tree) (a: array elt) (start: int) : int =
    match t with
    | Null }
        start
    | Node l x r }
        let res = fill l a start in
    if res }=\mathrm{ length a then begin
        a[res] \leftarrow x;
        fill r a (res + 1)
        end else
        res
    end
```


Part III

Modeling

Back on arrays

in the library, we find
type array α model $\{$ length: int; mutable elts: map int α \}
two meanings

- in programs, an abstract data type:
type array α
- in the logic, an immutable record type:
type array $\alpha=\{$ length: int; elts: map int $\alpha\}$

Back on arrays

one cannot define operations over type array α
(it is abstract) but one may declare them
examples:

```
val ([]) (a: array \alpha) (i: int) : \alpha reads {a}
    requires {0\leqi< length a }
    ensures { result = a[i] }
val ([]\leftarrow) (a: array \alpha) (i: int) (v: \alpha) : unit writes {a}
    requires {0\leqi< length a }
    ensures { a.elts = M.set (old a.elts) i v }
```

one can model this way many data structures (be they implemented or not)
examples: stacks, queues, priority queues, graphs, etc.

Example: hash tables

type key
type t 'a
val create: int -> t 'a
val clear: t 'a -> unit
val add: t 'a -> key -> 'a -> unit
exception Not_found
val find: t 'a -> key -> 'a

Example: hash tables

type key

```
type t \alpha model {mutable contents: map key (list \alpha) }
val add (h: t \alpha) (k: key) (v: \alpha) : unit writes {h}
    ensures {h[k] = Cons v (old h)[k] }
    ensures { \forallk': key. k' }=\textrm{k}|\textrm{k}->\textrm{h}[\mp@subsup{\textrm{k}}{}{\prime}]=(old h)[\mp@subsup{k}{}{\prime}]
```

it is also possible to implement hash tables

```
type t \alpha = { mutable size: int;
        mutable data: array (list (key, \alpha)); }
    invariant ...
```

but it is (currently) not possible to prove that it implements the model from the previous slide

Another example: 32-bit arithmetic

let us model signed 32-bit arithmetic
two possibilities:

- ensure absence of arithmetic overflow
- model machine arithmetic faithfully (i.e. with overflows)

a constraint:

we do not want to loose arithmetic capabilities of SMT solvers

32-bit arithmetic

we introduce a new type for 32-bit integers
type int32
the integer value is given by
function toint int32 : int
within annotations, we only use type int
an expression x : int32 appears, in annotations, as toint x

32-bit arithmetic

we define the range of 32 -bit integers

$$
\begin{aligned}
& \text { function min_int: int }=-2147483648 \\
& \text { function max_int: int }=2147483647
\end{aligned}
$$

when we use them...

```
axiom int32_domain:
    |}\mathrm{ : int32. min_int }\leq\mathrm{ toint }\textrm{x}\leq\mathrm{ max_int
```

... and when we build them

```
val ofint (x:int) : int32
    requires { min_int \leq x \leq max_int }
    ensures { toint result = x }
```


32-bit arithmetic

then each program expression such as

$$
x+y
$$

is translated into

$$
\text { ofint (toint } x) \text { (toint } y \text {) }
$$

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)

Demo 8: Binary Search

let us consider searching for a value in a sorted array using binary search
let us show the absence of arithmetic overflow
demo (access code)

Binary Search

we found a bug
the computation

$$
\text { let } m=(!1+!u) / 2 \text { in }
$$

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)
a possible fix is

$$
\text { let } m=!1+(!u-!1) / 2 \text { in }
$$

modeling the heap

Principle

the second key idea of Hoare logic is
one can statically identify the various memory locations (absence of aliasing)
in particular, memory locations are not first-class values
to handle programs with pointers, one has to model the memory heap

Memory model

consider for instance C programs with pointers of type int*
a possible model is
type pointer
val memory: ref (map pointer int)
the C expression
*p
is translated into the Why3 expression
!memory [p]

Memory model

there are more subtle models
such as the component-as-array model (Burstall / Bornat)
each structure field is modeled as a separate map
the C type
struct List \{
int head;
struct List *next;
\};
is modeled as
type pointer
val head: ref (map pointer int)
val next: ref (map pointer pointer)
such models are used in aforementioned tools for C, Java, and Ada

conclusion

Things not covered in this lecture

- how aliases are excluded
- how verification conditions are computed
- how formulas are sent to provers
- how floating-point arithmetic is modeled
- etc.

Conclusion

we saw three different ways of using Why3

- as a logical language
(a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (currently 78 examples in our gallery)
- as an intermediate language (for the verification of C, Java, Ada, etc.)

