
Deductive Program Verification with Why3

Jean-Christophe Filliâtre
CNRS

Digicosme Spring School
April 22, 2013

http://why3.lri.fr/digicosme-spring-school-2013/

1 / 101

http://why3.lri.fr/digicosme-spring-school-2013/

definition

program
+

specification

verification
conditions

proof

2 / 101

this is not new

program
+

specification

verification
conditions

proof

A. M. Turing. Checking a large routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

3 / 101

this is not new

program
+

specification

verification
conditions

proof

Tony Hoare.
Proof of a program: FIND.
Commun. ACM, 1971.

4 / 101

proving

program
+

specification

verification
conditions

proof

a lot of theorem provers

• SMT solvers: CVC3, Z3, Yices, Alt-Ergo, etc.
(the SMT revolution)

• TPTP provers: Vampire, Eprover, SPASS, etc.

• proof assistants: Coq, PVS, Isabelle, etc.

• dedicated provers, e.g. Gappa

5 / 101

which logic?

program
+

specification

verification
conditions

proof

• too rich: we can’t use automated theorem provers

• too poor: we can’t model programming languages and we
can’t specify programs

typically, a compromise

• first-order logic

• a bunch a theories: arithmetic, arrays, bit vectors, etc.

6 / 101

programs

program
+

specification

verification
conditions

proof

extracting verification conditions for a realistic programming
language is a lot of work

as in a compiler, we rather translate to some intermediate
language from which we extract VCs

7 / 101

the Why tool

developed since 2001 at ProVal (LRI / INRIA)

rewritten from scratch, started Feb 2010 ⇒ Why3

authors: F. Bobot, JCF, C. Marché, G. Melquiond, A. Paskevich

open source software (LGPL)

http://why3.lri.fr/

a similar tool: Boogie (Microsoft Research)

8 / 101

http://why3.lri.fr/

applications

• Java programs: Krakatoa (Marché Paulin Urbain)

• C programs: Caduceus (Filliâtre Marché) formerly,
Jessie plug-in of Frama-C (Marché Moy) today

• Ada programs: Hi-Lite (Adacore)

• algorithms

• probabilistic programs (Barthe et al.)

• cryptographic programs (Vieira)

9 / 101

overview

KML-annotated
Java program

ACSL-annotated
C program

ALFA-annotated
ADA program

Krakatoa Frama-C Hi-Lite

Jessie

VC generator Theories

verification
conditions Transformations

Encodings Why3

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Automated provers
(Alt-Ergo, CVC3, Z3,
Simplify, Yices, etc.)

More automated provers
(Eprover, SPASS,
Vampire, Gappa, etc.)

10 / 101

overview of Why3

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

11 / 101

Part I

the logic of Why3

12 / 101

in a nutshell

logic of Why3 = polymorphic first-order logic, with

• (mutually) recursive algebraic data types

• (mutually) recursive function/predicate symboles

• (mutually) inductive predicates

• let-in, match-with, if-then-else

formal definition in
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)

13 / 101

Demo 1: the logic of Why3

14 / 101

declarations

• types
• abstract: type t
• alias: type t = list int
• algebraic: type list α = Nil | Cons α (list α)

• function / predicate
• uninterpreted: function f int : int
• defined: predicate non empty (l: list α) = l 6= Nil

• inductive predicate
• inductive trans t t = ...

• axiom / lemma / goal
• goal G: ∀ x: int. x ≥ 0 → x*x ≥ 0

15 / 101

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end

16 / 101

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• symbols of T1 are shared
• axioms of T1 remain axioms
• lemmas of T1 become axioms
• goals of T1 are ignored

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end

17 / 101

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

• declarations of T1 are copied or substituted
• axioms of T1 remain axioms or become

lemmas/goals
• lemmas of T1 become axioms
• goals of T1 are ignored

theory

end

theory

end

theory

end

18 / 101

under the hood

a technology to talk to provers

central concept: task

• a context (a list of declarations)

• a goal (a formula) goal

19 / 101

workflow

theory

end

theory

end

theory

end

Alt-Ergo

Z3

Vampire

20 / 101

workflow

theory

end

theory

end

theory

end

goal

Alt-Ergo

Z3

Vampire

21 / 101

workflow

theory

end

theory

end

theory

end

goal goal

Alt-Ergo

Z3

Vampire

T1

22 / 101

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2

23 / 101

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2 P

24 / 101

transformations

• eliminate algebraic data types and match-with

• eliminate inductive predicates

• eliminate if-then-else, let-in

• encode polymorphism, encode types

• etc.

efficient: results of transformations are memoized

25 / 101

driver

a task journey is driven by a file

• transformations to apply

• prover’s input format
• syntax
• predefined symbols / axioms

• prover’s diagnostic messages

more details: Why3: Shepherd your herd of provers (Boogie 2011)

26 / 101

example: Z3 driver (excerpt)

printer "smtv2"

valid "^unsat"

invalid "^sat"

transformation "inline trivial"

transformation "eliminate builtin"

transformation "eliminate definition"

transformation "eliminate inductive"

transformation "eliminate algebraic"

transformation "simplify formula"

transformation "discriminate"

transformation "encoding smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

meta "encoding : kept" type int
end

27 / 101

API

Why3 has an OCaml API

• to build terms, declarations, theories, tasks

• to call provers

defensive API

• well-typed terms

• well-formed declarations, theories, and tasks

28 / 101

plug-ins

Why3 can be extended via three kinds of plug-ins

• parsers (new input formats)

• transformations (to be used in drivers)

• printers (to add support for new provers)

29 / 101

API and plug-ins

Your code

Why3 API

WhyML

TPTP

etc.

eliminate
algebraic

encode
polymorphism

etc.

Simplify

Alt-Ergo

SMT-lib

etc.

30 / 101

Summary

• numerous theorem provers are supported
• Coq, SMT, TPTP, Gappa

• user-extensible system

• input languages
• transformations
• output syntax

• efficient
• e.g. transformations are memoized

more details:

• Why3: Shepherd your herd of provers. (Boogie 2011)

31 / 101

Part II

program verification

32 / 101

Demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do
u ← u + v

demo (access code)

33 / 101

http://toccata.lri.fr/gallery/checking_a_large_routine.en.html

Demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do
v ← u
for s = 1 to r do

u ← u + v

demo (access code)

34 / 101

http://toccata.lri.fr/gallery/checking_a_large_routine.en.html

Demo 3: another historical example

f (n) =

{
n − 10 si n > 100,
f (f (n + 11)) sinon.

demo (access code)

e ← 1
while e > 0 do

if n > 100 then
n← n − 10
e ← e − 1

else
n← n + 11
e ← e + 1

return n

demo (access code)

35 / 101

http://toccata.lri.fr/gallery/mccarthy.en.html
http://toccata.lri.fr/gallery/mccarthy.en.html

Demo 3: another historical example

f (n) =

{
n − 10 si n > 100,
f (f (n + 11)) sinon.

demo (access code)

e ← 1
while e > 0 do

if n > 100 then
n← n − 10
e ← e − 1

else
n← n + 11
e ← e + 1

return n

demo (access code)

36 / 101

http://toccata.lri.fr/gallery/mccarthy.en.html
http://toccata.lri.fr/gallery/mccarthy.en.html

Recapitulation

• pre/postcondition

let foo x y z

requires { P } ensures { Q }
= ...

• loop invariant

while ... do invariant { I } ... done

for i = ... do invariant { I(i) } ... done

37 / 101

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a
variant

variant {t} with R

• R is a well-founded order relation

• t decreases for R at each step
(resp. each recursive call)

by default, t is of type int and R is the relation

y ≺ x
def
= y < x ∧ 0 ≤ x

38 / 101

Remark

as show with function 91, proving termination may require to
establish behavioral properties as well

another example:

• Floyd’s cycle detection (Hare and Tortoise algorithm)

39 / 101

Data structures

up to now, we have only used integers

let us consider more complex data structures

• arrays

• algebraic data types

40 / 101

Arrays

Why3 standard library provides arrays

use import array.Array

that is

• a polymorphic type

array α

• an access operation, written

a[e]

• an assignment operation, written

a[e1] ← e2

• operations create, append, sub, copy, etc.

41 / 101

Demo 4: two-way sort

sort an array of Boolean, using the following algorithm

let two way sort (a: array bool) =
let i = ref 0 in

let j = ref (length a - 1) in

while !i < !j do

if not a[!i] then

incr i

else if a[!j] then

decr j

else begin

let tmp = a[!i] in

a[!i] ← a[!j];

a[!j] ← tmp;

incr i;

decr j

end

done

False ? . . . ? True

↑ ↑
i j

demo (access code)

42 / 101

http://toccata.lri.fr/gallery/vstte12_two_way_sort.en.html

Exercise 1: Dutch national flag

an array contains elements of the following enumerated type

type color = Blue | White | Red

sort it, in such a way we have the following final situation:

. . . Blue White Red . . .

43 / 101

Exercise: Dutch national flag

let dutch flag (a:array color) (n:int) =
let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

match a[!i] with

| Blue →
swap a !b !i;

incr b;

incr i

| White →
incr i

| Red →
decr r;

swap a !r !i

end

done

exercise: exo_flag.mlw
44 / 101

http://why3.lri.fr/digicosme-spring-school-2013/exo_flag.mlw

Remark

as for termination, proving safety (such as absence of array access
our of bounds) may be arbitrarily difficult

an example:

• Knuth’s algorithm for N first primes (TAOCP vol. 1)

45 / 101

Demo 5: Boyer-Moore’s majority

given a multiset of N votes

A A A C C B B C C C B C C

determine the majority, if any

46 / 101

an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables

47 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 1

48 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 2

49 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 3

50 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 2

51 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 1

52 / 101

principle

A A A C C B B C C C B C C

cand = A

k = 0

53 / 101

principle

A A A C C B B C C C B C C

cand = B

k = 1

54 / 101

principle

A A A C C B B C C C B C C

cand = B

k = 0

55 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 1

56 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 2

57 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 1

58 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 2

59 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 3

60 / 101

principle

A A A C C B B C C C B C C

cand = C

k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)

61 / 101

Fortran

62 / 101

Why3
let mjrty (a: array candidate) =
let n = length a in

let cand = ref a[0] in let k = ref 0 in

for i = 0 to n-1 do

if !k = 0 then begin cand := a[i]; k := 1 end

else if !cand = a[i] then incr k else decr k

done;

if !k = 0 then raise Not found;

try

if 2 * !k > n then raise Found; k := 0;

for i = 0 to n-1 do

if a[i] = !cand then begin

incr k; if 2 * !k > n then raise Found

end

done;

raise Not found

with Found →
!cand

end

demo (access code) 63 / 101

http://toccata.lri.fr/gallery/mjrty.en.html

specification

• precondition

let mjrty (a: array candidate)

requires { 1 ≤ length a }

• postcondition in case of success

ensures

{ 2 * numof a result 0 (length a) > length a }

• postcondition in case of failure

raises { Not found →
∀ c: candidate.

2 * numof a c 0 (length a) ≤ length a }

64 / 101

annotations

each loop is given a loop invariant

for i = 0 to n-1 do

invariant { 0 ≤ !k ≤ i ∧
numof a !cand 0 i ≥ !k ∧
2 * (numof a !cand 0 i - !k) ≤ i - !k ∧
∀ c: candidate.

c 6= !cand → 2 * numof a c 0 i ≤ i - !k

}
...

for i = 0 to n-1 do

invariant { !k = numof a !cand 0 i ∧ 2 * !k ≤ n }
...

65 / 101

proof

the verification condition expresses

• safety
• array access within bounds
• termination

• validity of annotations
• invariants are initialized and preserved
• postconditions are established

automatically discharged by SMT solvers

66 / 101

Ghost code

may be inserted for the purpose of specification and/or proof

rules are:

• ghost code may read regular data (but can’t modify it)

• ghost code cannot modify the control flow of regular code

• regular code does not see ghost data

in particular, ghost code may be removed without observable
modification

67 / 101

Demo 7: ring buffer

a circular buffer is implemented within an array

type buffer α = {
mutable first: int;

mutable len : int;

data : array α;
}

len elements are stored, starting at index first

x1 x2 . . . xlen
↑
first

they may wrap around the array bounds

. . . xlen x1 x2

↑
first

68 / 101

Demo 7: ring buffer

we add an extra ghost field to model the buffer contents

type buffer α = {
mutable first: int;

mutable len : int;

data : array α;
ghost mutable sequence: list α;

}

69 / 101

Demo 7: ring buffer

ghost code is added to set this ghost field accordingly

example:

let push (b: buffer α) (x: α) : unit

=
ghost b.sequence ← b.sequence ++ Cons x Nil;

let i = b.first + b.len in

let n = Array.length b.data in

b.data[if i ≥ n then i - n else i] ← x;

b.len ← b.len + 1

70 / 101

Demo 7: ring buffer

we link the array contents and the ghost field with a type invariant

type buffer α =
...

invariant {
let size = Array.length self.data in

0 ≤ self.first < size ∧
0 ≤ self.len ≤ size ∧
self.len = L.length self.sequence ∧
∀ i: int. 0 ≤ i < self.len →
(self.first + i < size →

nth i self.sequence =
Some self.data[self.first + i]) ∧

(0 ≤ self.first + i - size →
nth i self.sequence =
Some self.data[self.first + i - size])

}

71 / 101

Demo 7: ring buffer

such a type invariant

• is assumed at function entry

• must be ensured for values returned or modified

72 / 101

Demo 7: ring buffer

alternatively, we could have introduced a logical function mapping
the buffer to a list

function buffer model (b: buffer α) : list α
(* + suitable axioms *)

but ghost code

• is more compact

• results in simpler proof (it provides explicit witnesses)

73 / 101

Other data structures

a key idea of Hoare logic:

any types and symbols from the logic
can be used in programs

note: we already used type int this way

74 / 101

Algebraic data types

we can do so with algebraic data types

in the library, we find

type bool = True | False (in bool.Bool)
type option α = None | Some α (in option.Option)
type list α = Nil | Cons α (list α) (in list.List)

75 / 101

Demo 7: same fringe

given two binary trees,
do they contain the same elements when traversed in order?

8

3

1 5

4

4

1

3

8

5

76 / 101

Demo 7: same fringe

type elt

type tree =
| Empty

| Node tree elt tree

function elements (t: tree) : list elt = match t with

| Empty → Nil

| Node l x r → elements l ++ Cons x (elements r)

end

let same fringe (t1 t2: tree) : bool

ensures { result=True ↔ elements t1 = elements t2 }
=
...

77 / 101

Demo 7: same fringe

one solution: look at the left branch as
a list, from bottom up

x1

x2

...

xn

t1

t2

tn

1

3

8

5

4

1

4

3

8

5

demo (access code)

78 / 101

http://toccata.lri.fr/gallery/same_fringe.en.html

Demo 7: same fringe

one solution: look at the left branch as
a list, from bottom up

x1

x2

...

xn

t1

t2

tn

1

3

8

5

4

1

4

3

8

5

demo (access code) 79 / 101

http://toccata.lri.fr/gallery/same_fringe.en.html

Exercise 2: inorder traversal

type elt

type tree = Null | Node tree elt tree

inorder traversal of t, storing its elements in array a

let rec fill (t: tree) (a: array elt) (start: int) : int =
match t with

| Null →
start

| Node l x r →
let res = fill l a start in

if res 6= length a then begin

a[res] ← x;

fill r a (res + 1)

end else

res

end

exercise: exo_fill.mlw
80 / 101

http://why3.lri.fr/digicosme-spring-school-2013/exo_fill.mlw

Part III

Modeling

81 / 101

Back on arrays

in the library, we find

type array α model { length: int; mutable elts: map int α }

two meanings

• in programs, an abstract data type:

type array α

• in the logic, an immutable record type:

type array α = { length: int; elts: map int α }

82 / 101

Back on arrays

one cannot define operations over type array α
(it is abstract) but one may declare them

examples:

val ([]) (a: array α) (i: int) : α reads {a}
requires { 0 ≤ i < length a }
ensures { result = a[i] }

val ([]←) (a: array α) (i: int) (v: α) : unit writes {a}
requires { 0 ≤ i < length a }
ensures { a.elts = M.set (old a.elts) i v }

83 / 101

Modeling

one can model this way many data structures (be they
implemented or not)

examples: stacks, queues, priority queues, graphs, etc.

84 / 101

Example: hash tables

type key

type t ’a

val create: int -> t ’a

val clear: t ’a -> unit

val add: t ’a -> key -> ’a -> unit

exception Not found

val find: t ’a -> key -> ’a

85 / 101

Example: hash tables

type key

type t α model { mutable contents: map key (list α) }

val add (h: t α) (k: key) (v: α) : unit writes {h}
ensures { h[k] = Cons v (old h)[k] }
ensures { ∀ k’: key. k’ 6= k → h[k’] = (old h)[k’] }

...

86 / 101

Limitation

it is also possible to implement hash tables

type t α = { mutable size: int;

mutable data: array (list (key, α)); }
invariant ...

but it is (currently) not possible to prove that it implements the
model from the previous slide

87 / 101

Another example: 32-bit arithmetic

let us model signed 32-bit arithmetic

two possibilities:

• ensure absence of arithmetic overflow

• model machine arithmetic faithfully (i.e. with overflows)

a constraint:
we do not want to loose arithmetic capabilities of SMT solvers

88 / 101

32-bit arithmetic

we introduce a new type for 32-bit integers

type int32

the integer value is given by

function toint int32 : int

within annotations, we only use type int

an expression x : int32 appears, in annotations, as toint x

89 / 101

32-bit arithmetic

we define the range of 32-bit integers

function min int: int = -2147483648

function max int: int = 2147483647

when we use them...

axiom int32 domain:

∀ x: int32. min int ≤ toint x ≤ max int

... and when we build them

val ofint (x:int) : int32

requires { min int ≤ x ≤ max int }
ensures { toint result = x }

90 / 101

32-bit arithmetic

then each program expression such as

x + y

is translated into

ofint (toint x) (toint y)

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)

91 / 101

Demo 8: Binary Search

let us consider searching for a value in a sorted array using binary
search

let us show the absence of arithmetic overflow

demo (access code)

92 / 101

http://toccata.lri.fr/gallery/binary_search.en.html

Binary Search

we found a bug

the computation

let m = (!l + !u) / 2 in

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)

a possible fix is

let m = !l + (!u - !l) / 2 in

93 / 101

modeling the heap

94 / 101

Principle

the second key idea of Hoare logic is

one can statically identify the various memory locations
(absence of aliasing)

in particular, memory locations are not first-class values

to handle programs with pointers,
one has to model the memory heap

95 / 101

Memory model

consider for instance C programs with pointers of type int*

a possible model is

type pointer

val memory: ref (map pointer int)

the C expression

*p

is translated into the Why3 expression

!memory[p]

96 / 101

Memory model

there are more subtle models
such as the component-as-array model (Burstall / Bornat)

each structure field is modeled as a separate map

the C type

struct List {

int head;

struct List *next;

};

is modeled as

type pointer

val head: ref (map pointer int)

val next: ref (map pointer pointer)

97 / 101

Memory models

such models are used in aforementioned tools for C, Java, and Ada

KML-annotated
Java program

ACSL-annotated
C program

ALFA-annotated
ADA program

Krakatoa Frama-C Hi-Lite

Jessie

VC generator Theories

verification
conditions Transformations

Encodings Why3

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Automated provers
(Alt-Ergo, CVC3, Z3,
Simplify, Yices, etc.)

More automated provers
(Eprover, SPASS,
Vampire, Gappa, etc.)

98 / 101

conclusion

99 / 101

Things not covered in this lecture

• how aliases are excluded

• how verification conditions are computed

• how formulas are sent to provers

• how floating-point arithmetic is modeled

• etc.

100 / 101

Conclusion

we saw three different ways of using Why3

• as a logical language
(a convenient front-end to many theorem provers)

• as a programming language to prove algorithms
(currently 78 examples in our gallery)

• as an intermediate language
(for the verification of C, Java, Ada, etc.)

101 / 101

http://toccata.lri.fr/gallery/why3.en.html

	the logic of Why3
	program verification
	Modeling

