Computer aided verification

Lecture 4: Model checking for LTL

Algorithm

(i)
$$M \mapsto \mathcal{A}_M$$

(ii)
$$\neg \phi \mapsto \mathcal{A}_{\neg \phi}$$
 (not $\phi \mapsto \mathcal{A}_{\phi} \mapsto \bar{\mathcal{A}}_{\phi}$)

(iii)
$$L_{\omega}(\mathcal{A}_M) \cap L_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset$$
? (not $L_{\omega}(\mathcal{A}_M) \subseteq L_{\omega}(\mathcal{A}_{\phi})$)

$$L_{\omega}(\mathcal{A}_{M} \times \mathcal{A}_{\neg \phi}) = \emptyset$$
?

yes
$$\rightarrow M \models \phi$$

no $\rightarrow \neg (M \models \phi)$, counterexample = a path in M

(i) $M \mapsto \mathcal{A}_M$

$M \mapsto \mathcal{A}_M$

(iii)
$$L_{\omega}(\mathcal{A}) \neq \emptyset$$
?

Restrictions

(1) On the fly verification

for each successsor s_i of s do ...

. . .

Double DFS

```
procedure dfs1(q)
local q';
hash(q);
for all successors q' of q do
if q' not in the hash table then
dfs1(q');
if accept(q) then dfs2(q);
end procedure
```

```
procedure emptiness for all q_o \in Q^0 do dfs1(q_0); terminate(False); end procedure
```

```
procedure dfs2(q);
local q';
flag(q);
for all successors q' of q do
if q' on dfs1 stack then
terminate(True)
else if q' not flagged then
dfs2(q');
end procedure
```

Proof of correctness

Assume an acceping state p with a cycle not detected by dfs2(p). Let p – the first such state.

Let r – the first flagged state inspected by dfs2(p) that is on a p-cycle.

Let p' – the accepting state such that r visited by dfs2(p').

Partial-order reductions

Motivation

Motivation

Motivation

t, u independent

Model

Def.:
$$M = \langle S, S_{\text{init}}, T, L \rangle$$

T – operations (transitions)

for
$$\alpha \in T$$
:

for
$$\alpha \in T$$
: $\operatorname{en}_{\alpha} \subseteq S$, $\alpha : \operatorname{en}_{\alpha} \to S$

(determinism)

$$\Pi = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$$

 $s_0 = s_{\mathsf{init}}$

$$\alpha_i(s_i) = s_{i+1}$$

$$\operatorname{en}_s := \{ \alpha \mid s \in \operatorname{en}_{\alpha} \}$$

$$(\alpha \in en_s \iff s \in en_\alpha)$$

 $\underline{\operatorname{ample}}_s \subseteq \operatorname{en}_s$ instead of en_s in double DFS ?

Cost-effectivity

Idea: ample \subseteq en \subseteq instead of en \cong in double DFS ?

This makes sense, when:

the result of verification is the same (correctness)

significantly less states visited

time overhead reasonable

(effectivity)

When may we ignore t?

Problem 1: Property may depend on state (

Problem 2: $(\neg p)$ –successors unreachable otherwise.

Stuttering

Def.: $\Pi = s_0 \to s_1 \to s_2 \to \dots$ i $\Pi' = s_0' \to s_1' \to s_2' \to \dots$ are stuttering equivalent, $\Pi \equiv \Pi'$, if sequences

$$L(s_0), L(s_1), L(s_2), \dots \qquad L(s'_0), L(s'_1), L(s'_2), \dots$$

become identical after grouping is done:

Def.: $M \equiv M'$ if and only if $- \forall \Pi \ in \ M \ \exists \Pi' \ in \ M' \ \Pi \equiv \Pi'$

 $- \forall \Pi' \ in \ M' \ \exists \Pi \ in \ M \ \Pi \equiv \Pi'$

$$LTL_{-X} = LTL$$
 without X

Thm: If $\phi \in \mathsf{LTL}_{-X}$ and $\Pi \equiv \Pi'$, then $\Pi \models \phi \iff \Pi' \models \phi$

Thm: If $\phi \in \mathsf{LTL}_{-X}$ and $M \equiv M'$, then $M \vDash \phi \iff M' \vDash \phi$

Correctness

$$M \vdash \text{partial-order reduction} M'$$

$$M \equiv M'$$

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) ...

(C2) ...

(C3) ...

Invisibility

Def.: α is invisible if $L(s) = L(\alpha(s))$, $\forall s \in en_{\alpha}$.

Przykład: If α invisible, then

$$ss_1r \equiv ss_2r$$

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible

(C2) ...

(C3) ...

Idea: Instead of doing sth now, do it in future!

Problem 1: Property may depend on state $(\neg p)$.

Solved due to (C1)!

(C1) if $ample_s \neq en_s$, then every $\alpha \in ample_s$ is invisible

Def.: Relation of independence $I \subseteq T \times T$:

- irreflexive and symmetric
- if $\alpha I\beta$, $\alpha \in en_s$, $\beta \in en_s$, then

$$-\beta(s) \in \mathrm{en}_{\alpha}, \, \alpha(s) \in \mathrm{en}_{b}$$

$$-\beta(\alpha(s)) = \alpha(\beta(s))$$

$$D = T \times T \setminus I$$
 (dependency)

$$(s \in \mathrm{en}_{\alpha} \cap \mathrm{en}_{\beta})$$

Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers

Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers

– 2 instructions of the same process ?

Question: Let $\alpha I\beta$. Is it possible that

$$s \in \mathrm{en}_{\alpha} \setminus \mathrm{en}_{\beta} \qquad \alpha(s) \in \mathrm{en}_{\beta} ?$$

$$\alpha(s) \in \mathrm{en}_{\beta}$$
?

Question: Let $\alpha I\beta$. Is it possible that

$$s \in \operatorname{en}_{\alpha} \setminus \operatorname{en}_{\beta}$$
 $\alpha(s) \in \operatorname{en}_{\beta}$?
$$\alpha I \beta$$

Yes! E.g. asynchronous reading and writing from/to the same buffer by two different processes.

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible

(C2) ? $(en_s \setminus ample_s) I ample_s$

(C3) ...

Idea: Instead of doing sth now, do it in future!

(C2)

(C2) a transition dependent on some transition from ample_s can not be executed

before some transition from ample, is executed

(C2) a transition dependent on some transition from ample_s can not be executed

before some transition from $ample_s$ is executed

(C2) for every path Π starting in s:

if $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$, $\alpha D\beta$

then β can not be executed in Π

before some transition from $ample_s$ is executed

Lemma: (C2) implies $(en_s \setminus ample_s)$ I $ample_s$.

Proof: Let $\beta \in \text{en}_s \setminus \text{ample}_s$, $\alpha \in \text{ample}_s$, $\alpha D\beta$.

$$s \xrightarrow{\beta} \beta(s) \to \dots$$
 contradiction with (C2).

Problem 2: (s₂)—successors unreachable otherwise.

e.g., let $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$

Problem 2: (s₂)-successors unreachable otherwise.

e.g., let $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$

by (C2) applied to $\beta \gamma \dots$, we deduce $\gamma I \alpha$

Problem 2: (s₂)-successors unreachable otherwise.

 α invisible, thus $ss_1rr' \equiv ss_2s_2'$

Problemy?

Problem 2^{∞} : s_2 —path unreachable otherwise.

by (C2) we deduce $\gamma I \alpha$, $\gamma' I \alpha$, ...

 α invisible, thus $ss_1rr' \ldots \equiv ss_2s_2' \ldots$

Enough?

Are (C0) - (C2) sufficient?

Enough?

Are (C0) - (C2) sufficient?

No!

(C3) we forbid cycles C such that $\exists \beta \ \forall s \in C \ \beta \in en_s \setminus ample_s$

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible

(C2) for every path Π starting in s:

if $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$, $\alpha D\beta$

then β can not be executed in Π

before some transition from ample_s is executed

(C3) we forbid cycles C such that $\exists \beta \ \forall s \in C \ \beta \in en_s \setminus ample_s$

How to implement this?

Sufficient condition for correctness

(C1) easy

- (C2) hard, implemented in an approximate manner
 - an over-approximation of D is computed
 - condition (C2) is monotonic
 - static analysis only

(C3) replaced by an easier but stronger:

(C3') if $ample_s \neq en_s$ then $\forall \alpha \in ample_s \ \alpha(s) \notin stack$

Implementation

Implementation decision:

 $\mathrm{ample}_s = \mathsf{all}$ transitions of some process i enabled in s

Implementation

Implementation decision:

 $ample_s = all transitions of some process i enabled in s$

whenever

- they are independent from all operations of all other processes
- no operation of any other process may enable
 any other operation of process i

β enabling α (over-approximation)

– if β modifies pc so that α may be executed

– if Promela enabling condition for α depends on global variables, then any β that modifies these variables

– if α is reading from/writing to a buffer then any β that reads from/writes to this buffer

$\alpha D\beta$ (over-approximation)

 $-\alpha$ and β refer to the same global variable and at least one of them modifies the variable (over-appr.)

- α and β belong to the same process; synchronous communi-

-cation is understood as belonging to both processes

 $-\alpha$ and β write to/read from the same buffer

However reading from and writing to the same buffer is independent!

What remains independent?

Example:

Operations independent from all operations of other processes:

- operating on local variables
- reading from a buffer with xr flag set
- writing to a buffer with xs flag set
- test nempty(q) if xr flag is set for q
- test nfull(q) if xs flag is set for q

P.-o. reductions and on the fly verification

in both DFS's the set ample, should be the same

- condition (C3') is applied to $M \times \mathcal{A}_{\neg \phi}$ instead of M.