Computer aided verification

Lecture 4: Model checking for
LTL

Q) M — Ay
(i) —¢ — A, (not¢ — Ay, — Ay)
(iii) Lo,(Ap) N Ly(Ag) =07 (not L,(Ay) € Lu(Ag))
Lo(Ay x Ay) =07
yes — M FE ¢

no — —(M E ¢), counterexample = a path in M

) M — Ay

.} &/ﬂ {r}

{a}

(i) Ly(A) # 07

(1) On the fly verification

for each successsor s; of sdo...

—n. 6/,

procedure dfs1(q)

local ¢

hash(q);

for all successors ¢’ of ¢ do

if ¢’ not in the hash table then
dfs1(q');

if accept(q) then dfs2(q);

end procedure

procedure emptiness

forall ¢, € Q° do dfs1(qo);
terminate(False);

end procedure

procedure dfs2(q);
local ¢;
flag(q);
for all successors ¢’ of ¢ do
if ¢' on dfsl stack then
terminate(Irue)
else if ¢’ not flagged then
dfs2(q');

end procedure

—n. 7/

Assume an acceping state p with a cycle not detected by dfs2(p).
Let p — the first such state.

Let r — the first flagged state inspected by dfs2(p) that is on a
p-cycle.

Let p’ — the accepting state such that r visited by dfs2(p’).

—p. 8/¢

Partial-order reductions

S "

NS

N b;
v

t
é / t, u Independent

Def.. M = (S, S, 1T, L) T — operations (transitions)

foraeT. en, € S5, a:en, — S5 (determinism)

path: I = 55281 =5 89 =2 ... So = Sinit
@;i(si) = Sit1

en, := {a | s €en,} (0 € eny, <= s € en,)

ldea: ample, C en, instead of en, In double DFS ?

—pn. 13/<

ldea: ample, C en, instead of en, in double DFS ?

This makes sense, when:
— the result of verification is the same (correctness)

— significantly less states visited

— time overhead reasonable (effectivity)

—pn. 14/

When may we ignore ¢t ?

Problem 1. Property may depend on state .

Problem 2: @ —successors unreachable otherwise.

—pn. 15/¢

Def. Il=sy—85 =85 —...11I'=5,—5] —s,—...are
stuttering equivalent, II = I, if sequences

L(so), L(s1), L(s2),... L(sh), L(s}), L(sh),. ..
become identical after grouping is done:

Def.. M = M’ ifand only if — Vil in M dIl"in M 11 =11

— VII'in M" Allin M II=1I

—pn. 16/<

LTL_x = LTL without X

Thm: IfgelTL_xand II=1II', then IIF¢ «— II'F o

Thm: IfgelTL_xand M =M', then ME¢ <— M E®

—pn. 17/

partial-order reduction

M M’

<
I
<

Sufficient condition for correctness

(Co) ample, =0 <= en, = ()
1) ...
(C2) ...

(C3) ...

—pn. 19//

Def.:

a is invisible if L(s) = L(a(s)), ¥ s € en,.

Przyktad: If « invisible, then

SS1T = SSoTr

—n. 20/<

Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ...

(C3) ...

ldea: Instead of doing sth now, do it in future!

—pn. 21/¢

Problem 1. Property may depend on state .

Solved due to (C1) !

(C1) If ample, # eng, then every a € ample, IS invisible

—p. 22/

Def.. Relation of independence I C 1" x T

— Irreflexive and symmetric
— IfalfB, a € eng, O € eng, then (s € en, Neng)

_ 6(8) € €l,, CV(S) c eny

— Bla(s)) = a(fb(s))

D=TxT \ I (dependency)

—p. 23/¢

Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

—pn. 24/

Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

— 2 instructions of the same process ?

—pn. 24/

Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng ?

—p. 25/¢

Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng ?

Yes! [E.g. asynchronous reading and writing
from/to the same buffer by two different processes.

—p. 25/¢

Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ? (en, \ ample,) I ample,

(C3) ...

ldea: Instead of doing sth now, do it in future!

—Dn. 26/<

(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

—pn. 27/

(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

(c2) for every path II starting in s:
If o« € ample,, § ¢ ample,, aDf
then 5 can not be executed in II

before some transition from ample, is executed

—pn. 27/¢

(C2)

Lemma: (C2) implies (en, \ ample,) I ample,.

Proof: Let(€ en, \ ample,, o € ample,, aDg.

s 2 B(s) — ... contradiction with (C2) .

—p. 28/¢

Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

—p. 29//

Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

by (C2) appliedto 5~v..., we deduce v/«

—p. 29//

Problem 2: @—successors unreachable otherwise.

« invisible, thus ssirr’ = ssy55

—pn. 30/<

Problem 2 °°: @—path unreachable otherwise.

by (C2) we deduce vIa, ~'Ia, ...

o invisible, thus ssyrr' ... = ssos, ...

—pn. 31/¢

Are (Co) — (c2) sufficient?

—p. 32/

Are (Co) — (c2) sufficient?

No!

(¥ Q

8]

a1
%
O O—=

a3

(c3) we forbid cycles C' such that 35 Vs € C 3 € en, \ ample,

—p. 32/

(Co) ample, =) < en, =1

(C1) If ample, # en, then every a € ample, IS invisible

(c2) for every path II starting in s:

If o« € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed

(c3) we forbid cycles C' such that 35 Vs € C 3 € en, \ ample,

—p. 33/¢

How to implement this?

(C1) easy

(C2) hard, implemented in an approximate manner
— an over-approximation of D Is computed
— condition (C2) IS monotonic

— static analysis only

(C3) replaced by an easier but stronger:

(C3) if ample, # en, then Vo € ample, a(s) ¢ stack

—p. 35/¢

Implementation

Implementation decision:

ample, = all transitions of some process : enabled in s

—pn. 36/,

Implementation decision:

ample, = all transitions of some process : enabled in s

whenever
— they are independent from all operations of all other
processes
— no operation of any other process may enable

any other operation of process :

—pn. 36/,

— 1If 8 modifies pc so that « may be executed

— 1If Promela enabling condition for o« depends on global

variables, then any 3 that modifies these variables

— If o Is reading from/writing to a buffer then any 3 that

reads from/writes to this buffer

—p. 37/¢

— « and [refer to the same global variable

and at least one of them modifies the variable (over-appr.)

— « and 5 belong to the same process; synchronous
communi-

-cation is understood as belonging to both processes

— « and S write to/read from the same buffer

However reading from and writing to the same buffer is
Independent!

—p. 38/¢

Example:
Operations independent from all operations of other processes:

— operating on local variables

— reading from a buffer with xr flag set
— writing to a buffer with xs flag set

— test nenpt y(q) if xr flag is set for g

— testnful | (q) If xs flag is set for g

—p. 39//

— In both DFS’s the set ample, should be the same

— condition (C3) is applied to M x A_, instead of M.

—n. 40/

	Algorithm
	$M mapsto aut _M$
	Restrictions
	Double DFS
	Proof of correctness
	Motivation
	Motivation
	Motivation
	Model
	Cost-effectivity
	Problems?
	Stuttering
	LTLmX
	Correctness
	Sufficient condition for correctness
	Invisibility
	Sufficient condition for correctness
	Problems?
	Independence
	Independence
	Independence

	Independence
	Independence

	Sufficient condition for correctness
	Cj
	Cj

	Cj
	Problems?
	Problems?

	Problems?
	Problemy?
	Enough?
	Enough?

	Sufficient condition for correctness
	Sufficient condition for correctness
	Implementation
	Implementation

	$� $ enabling $a $ (over-approximation)
	$a D � $ (over-approximation)
	What remains independent?
	P.-o. reductions and on the fly verification

