Computer aided verification

Lecture 4: Model checking for
LTL



Q) M — Ay
(i) —¢ — A, (not¢ — Ay, — Ay)
(iii) Lo,(Ap) N Ly(Ag) =07 (not L,(Ay) € Lu(Ag) )
Lo(Ay x Ay) =07
yes — M FE ¢

no — —(M E ¢), counterexample = a path in M




) M — Ay



.} &/ﬂ {r}

{a}




(i) Ly(A) # 07




(1) On the fly verification

for each successsor s; of sdo...
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procedure dfs1(q)

local ¢

hash(q);

for all successors ¢’ of ¢ do

if ¢’ not in the hash table then
dfs1(q');

if accept(q) then dfs2(q);

end procedure

procedure emptiness

forall ¢, € Q° do dfs1(qo);
terminate( False);

end procedure

procedure dfs2(q);
local ¢;
flag(q);
for all successors ¢’ of ¢ do
if ¢' on dfsl stack then
terminate( Irue)
else if ¢’ not flagged then
dfs2(q');

end procedure
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Assume an acceping state p with a cycle not detected by dfs2(p).
Let p — the first such state.

Let r — the first flagged state inspected by dfs2(p) that is on a
p-cycle.

Let p’ — the accepting state such that r visited by dfs2(p’).
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Partial-order reductions
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Def.. M = (S, S, 1T, L) T — operations (transitions)

foraeT. en, € S5, a:en, — S5 (determinism)

path: I = 55281 =5 89 =2 ... So = Sinit
@;i(si) = Sit1

en, := {a | s €en,} (0 € eny, <= s € en,)

ldea: ample, C en, instead of en, In double DFS ?
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ldea: ample, C en, instead of en, in double DFS ?

This makes sense, when:
— the result of verification is the same (correctness)

— significantly less states visited

— time overhead reasonable (effectivity)

—pn. 14/



When may we ignore ¢t ?

Problem 1. Property may depend on state .

Problem 2: @ —successors unreachable otherwise.
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Def. Il=sy—85 =85 —...11I'=5,—5] —s,—...are
stuttering equivalent, II = I, if sequences

L(so), L(s1), L(s2),...  L(sh), L(s}), L(sh),. ..
become identical after grouping is done:

Def.. M = M’ ifand only if — Vil in M dIl"in M 11 =11

— VII'in M" Allin M II=1I
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LTL_x = LTL without X

Thm: IfgelTL_xand II=1II', then IIF¢ «— II'F o

Thm: IfgelTL_xand M =M', then ME¢ <— M E®
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partial-order reduction
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Sufficient condition for correctness

(Co) ample, =0 <= en, = ()
1) ...
(C2) ...

(C3) ...
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Def.:

a is invisible if L(s) = L(a(s)), ¥ s € en,.

Przyktad: If « invisible, then

SS1T = SSoTr
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Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ...

(C3) ...

ldea: Instead of doing sth now, do it in future!
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Problem 1. Property may depend on state .

Solved due to (C1) !

(C1) If ample, # eng, then every a € ample, IS invisible
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Def.. Relation of independence I C 1" x T

— Irreflexive and symmetric
— IfalfB, a € eng, O € eng, then (s € en, Neng)

_ 6(8) € €l,, CV(S) c eny

— Bla(s)) = a(fb(s))

D=TxT \ I (dependency)
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Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers
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Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

— 2 instructions of the same process ?
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Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng ?
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Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng ?

Yes! [E.g. asynchronous reading and writing
from/to the same buffer by two different processes.
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Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ? (en, \ ample,) I ample,

(C3) ...

ldea: Instead of doing sth now, do it in future!
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(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed
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(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

(c2) for every path II starting in s:
If o« € ample,, § ¢ ample,, aDf
then 5 can not be executed in II

before some transition from ample, is executed
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(C2)

Lemma: (C2) implies (en, \ ample,) I ample,.

Proof: Let( € en, \ ample,, o € ample,, aDg.

s 2 B(s) — ... contradiction with (C2) .
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Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,
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Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

by (C2) appliedto 5~v..., we deduce v/«
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Problem 2: @—successors unreachable otherwise.

« invisible, thus ssirr’ = ssy55
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Problem 2 °°: @—path unreachable otherwise.

by (C2) we deduce vIa, ~'Ia, ...

o invisible, thus ssyrr' ... = ssos, ...

—pn. 31/¢



Are (Co) — (c2) sufficient?
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Are (Co) — (c2) sufficient?

No!

(¥ Q
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%
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a3

(c3) we forbid cycles C' such that 35 Vs € C 3 € en, \ ample,
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(Co) ample, =) < en, =1

(C1) If ample, # en, then every a € ample, IS invisible

(c2) for every path II starting in s:

If o« € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed

(c3) we forbid cycles C' such that 35 Vs € C 3 € en, \ ample,
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How to implement this?



(C1) easy

(C2) hard, implemented in an approximate manner
— an over-approximation of D Is computed
— condition (C2) IS monotonic

— static analysis only

(C3) replaced by an easier but stronger:

(C3) if ample, # en, then Vo € ample, a(s) ¢ stack
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Implementation

Implementation decision:

ample, = all transitions of some process : enabled in s

—pn. 36/,



Implementation decision:

ample, = all transitions of some process : enabled in s

whenever
— they are independent from all operations of all other
processes
— no operation of any other process may enable

any other operation of process :
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— 1If 8 modifies pc so that « may be executed

— 1If Promela enabling condition for o« depends on global

variables, then any 3 that modifies these variables

— If o Is reading from/writing to a buffer then any 3 that

reads from/writes to this buffer
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— « and [ refer to the same global variable

and at least one of them modifies the variable (over-appr.)

— « and 5 belong to the same process; synchronous
communi-

-cation is understood as belonging to both processes

— « and S write to/read from the same buffer

However reading from and writing to the same buffer is
Independent!
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Example:
Operations independent from all operations of other processes:

— operating on local variables

— reading from a buffer with xr flag set
— writing to a buffer with xs flag set

— test nenpt y(q) if xr flag is set for g

— testnful | (q) If xs flag is set for g
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— In both DFS’s the set ample, should be the same

— condition (C3) is applied to M x A_, instead of M.

—n. 40/
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