Computer aided verification

Lecture 4: Model checking for LTL
(i) \(M \mapsto A_M \)

(ii) \(\neg \phi \mapsto A_{\neg \phi} \)

(iii) \(L_\omega(A_M) \cap L_\omega(A_{\neg \phi}) = \emptyset \) ?

\[L_\omega(A_M \times A_{\neg \phi}) = \emptyset ? \]

- yes \(\rightarrow M \models \phi \)
- no \(\rightarrow \neg(M \models \phi) \), counterexample = a path in \(M \)
(i) \[M \mapsto A_M \]
\[
M \mapsto A_M
\]
(iii) $L_\omega(A) \neq \emptyset$?
(1) On the fly verification

for each successor s_i of s do ...
procedure $dfs1(q)$
 local q';
 hash(q);
 for all successors q' of q do
 if q' not in the hash table then
 $dfs1(q')$;
 if accept(q) then $dfs2(q)$;
 end procedure

procedure $dfs2(q)$;
 local q';
 flag(q);
 for all successors q' of q do
 if q' on $dfs1$ stack then
 terminate(True);
 else if q' not flagged then
 $dfs2(q')$;
 end procedure

procedure $emptiness$
 for all $q_0 \in Q^0$ do $dfs1(q_0)$;
 terminate(False);
end procedure
Proof of correctness

Assume an accepting state p with a cycle not detected by $dfs_2(p)$. Let p – the first such state.

Let r – the first flagged state inspected by $dfs_2(p)$ that is on a p-cycle.

Let p' – the accepting state such that r visited by $dfs_2(p')$.

\[\text{Proof Diagram} \]
Partial-order reductions
Motivation
Motivation

\[F \neg p \]

t, u niezależne
Def.: \(M = \langle S, S_{init}, T, L \rangle \)

\(T \) – operations (transitions)

for \(\alpha \in T \): \(\text{en}_\alpha \subseteq S, \ \alpha : \text{en}_\alpha \to S \)
(determinism)

path: \(\Pi = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \ldots \)
\(s_0 = s_{init} \)

\(\alpha_i(s_i) = s_{i+1} \)

\(\text{en}_s := \{ \alpha \mid s \in \text{en}_\alpha \} \)
(\(\alpha \in \text{en}_s \iff s \in \text{en}_\alpha \))

Idea: ample \(s \subseteq \text{en}_s \) instead of \(\text{en}_s \) in double DFS?
Cost-effectivity

Idea: $\text{ample}_s \subseteq \text{en}_s$ instead of en_s in double DFS?

This makes sense, when:

- the result of verification is the same \text{(correctness)}
- significantly less states visited
- time overhead reasonable \text{(effectivity)}
When may we ignore t?

Problem 1: Property may depend on state $\neg p$.

Problem 2: $\neg p$—successors unreachable otherwise.
Def.: $\Pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ i $\Pi' = s'_0 \rightarrow s'_1 \rightarrow s'_2 \rightarrow \ldots$ are stuttering equivalent, $\Pi \equiv \Pi'$, if sequences

$$L(s_0), L(s_1), L(s_2), \ldots \quad L(s'_0), L(s'_1), L(s'_2), \ldots$$

become identical after grouping is done:

```
    p, q
       |            |            |            |
    ¬p, q ──────→ ──────→ ──────→ ──────→ ¬p, ¬q

    p, q ──────→ ──────→ ¬p, q ──────→ ¬p, ¬q
```

Def.: $M \equiv M'$ if and only if

$\forall \Pi \ w \ M \ \exists \Pi' \ w \ M' \ \Pi \equiv \Pi'$

$\forall \Pi' \ w \ M' \ \exists \Pi \ w \ M \ \Pi \equiv \Pi'$
LTL\(_{-X}\) = LTL without X

Thm: If \(\phi \in \text{LTL}_{-X}\) and \(\Pi \equiv \Pi'\), then \(\Pi \models \phi \iff \Pi' \models \phi\)

Thm: If \(\phi \in \text{LTL}_{-X}\) and \(M \equiv M'\), then \(M \models \phi \iff M' \models \phi\)

Thm: \(\text{LTL}_{-X} = \text{FO}_{\equiv}\)
Sufficient condition for correctness

(C0) $\text{ample}_s = \emptyset \iff \text{en}_s = \emptyset$

(C1) . . .

(C2) . . .

(C3) . . .
Def.: \(\alpha \) is invisible if \(L(s) = L(\alpha(s)), \forall s \in \text{en}_\alpha. \)

Przykład: If \(\alpha \) invisible, then

\[ss_1r \equiv ss_2r \]
Sufficient condition for correctness

(C0) ample_s = ∅ ⇐⇒ \text{ens} = ∅

(C1) if ample_s \neq \text{ens} then every \(\alpha \in \text{ample}_s \) is invisible

(C2) ...

(C3) ...

Idea: Instead of doing sth now, do it in future!
Problem 1: Property may depend on state \(\lnot p \).

Solved due to (C1)!

(C1) if \(\text{ample}_s \neq \text{en}_s \), then every \(\alpha \in \text{ample}_s \) is invisible
Def.: Relation of independence $I \subseteq T \times T$:

- irreflexive and antisymmetric
- if $\alpha I \beta$, $\alpha \in \text{en}_s$, $\beta \in \text{en}_s$, then
 - $\beta(s) \in \text{en}_\alpha$, $\alpha(s) \in \text{en}_b$
 - $\beta(\alpha(s)) = \alpha(\beta(s))$

$D = T \times T \setminus I$ (dependency)

$(s \in \text{en}_\alpha \cap \text{en}_\beta)$
Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers
Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers
- 2 instructions of the same process
Question: Let $\alpha \parallel \beta$. Is it possible that

$$s \in \text{en}_\alpha \setminus \text{en}_\beta \quad \alpha(s) \in \text{en}_\beta ?$$
Question: Let $\alpha I \beta$. Is it possible that

$$s \in \text{en}_\alpha \setminus \text{en}_\beta \quad \alpha(s) \in \text{en}_\beta ?$$

Yes! E.g. asynchronous reading and writing from/to the same buffer by two different processes.
Sufficient condition for correctness

(C0) \(\text{ample}_s = \emptyset \iff \text{en}_s = \emptyset \)

(C1) if \(\text{ample}_s \neq \text{en}_s \) then every \(\alpha \in \text{ample}_s \) is invisible

(C2) ? \((\text{en}_s \setminus \text{ample}_s) \) \(I \) \(\text{ample}_s \)

(C3) . . .

Idea: Instead of doing sth now, do it in future!
(C2) a transition dependent on some transition from \(\text{ample}_s \)
can not be executed
before some transition from \(\text{ample}_s \) is executed
(C2) a transition dependent on some transition from ample_s
can not be executed
before some transition from ample_s is executed

(C2) for every path Π starting in s:

if $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$, $\alpha D \beta$
then β can not be executed in Π
before some transition from ample_s is executed
Lemma: (C2) implies \((\text{ens} \setminus \text{ample}_s) \cup \text{ample}_s\).

Proof: Let \(\beta \in \text{ens} \setminus \text{ample}_s\), \(\alpha \in \text{ample}_s\), \(\alpha D \beta\).

\[s \xrightarrow{\beta} \beta(s) \rightarrow \ldots \quad \text{contradiction with (C2).} \]
Problem 2: \(s_2\)—successors unreachable otherwise.

\[\text{e.g., let } \alpha \in \text{ample}_s, \beta \notin \text{ample}_s\]
Problem 2: s_2—successors unreachable otherwise.

E.g., let $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$

By (C2) applied to $\beta \gamma \ldots$, we deduce $\gamma I \alpha$
Problem 2: s_2—successors unreachable otherwise.

α invisible, thus $ss_1rr' \equiv ss_2s'_2$
Problem 2\(\infty \): \(s_2 \)–path unreachable otherwise.

By (C2) we deduce \(\gamma I \alpha, \gamma' I \alpha, \ldots \)

\(\alpha \) invisible, thus \(s s_1 r r' \ldots \equiv s s_2 s_2' \ldots \)
Are (C0) – (C2) sufficient?
Are (C0) – (C2) sufficient?

No!

(C3) we forbid cycles C such that $\exists \beta \ \forall s \in C \ \beta \in \text{en}_s \setminus \text{ample}_s$
Sufficient condition for correctness

(C0) \(\text{ample}_s = \emptyset \iff \text{en}_s = \emptyset \)

(C1) if \(\text{ample}_s \neq \text{en}_s \) then every \(\alpha \in \text{ample}_s \) is invisible

(C2) for every path \(\Pi \) starting in \(s \):

- if \(\alpha \in \text{ample}_s, \beta \notin \text{ample}_s, \alpha D \beta \)

 then \(\beta \) can not be executed in \(\Pi \)

 before some transition from \(\text{ample}_s \) is executed

(C3) we forbid cycles \(C \) such that \(\exists \beta \forall s \in C \beta \in \text{en}_s \setminus \text{ample}_s \)
How to implement this?
Sufficient condition for correctness

(C1) easy

(C2) hard, implemented in an approximate manner
 – an over-approximation of D is computed
 – condition (C2) is monotonic
 – static analysis only

(C3) replaced by an easier but stronger:

(C3') if $\text{ample}_s \neq \text{en}_s$ then $\forall \alpha \in \text{ample}_s \quad \alpha(s) \notin \text{stack}$
Implementation
decision:

\[\text{ample}_s = \text{all transitions of some process } i \text{ enabled in } s \]
Implementation decision:

\[\text{ample}_s = \text{all transitions of some process } i \text{ enabled in } s \]

whenever

- they are independent from all operations of all other processes
- no operation of any other process may enable any other operation of process \(i \)
\(\beta \) enabling \(\alpha \) (over-approximation)

- if \(\beta \) modifies pc so that \(\alpha \) may be executed

- if Promela enabling condition for \(\alpha \) depends on global variables, then any \(\beta \) that modifies these variables

- if \(\alpha \) is reading from/writing to a buffer then any \(\beta \) that reads from/writes to this buffer
\(\alpha \Delta \beta \) (over-approximation)

- \(\alpha \) and \(\beta \) refer to the same global variable and at least one of them modifies the variable (over-appr.)

- \(\alpha \) and \(\beta \) belong to the same process; synchronous communication is understood as belonging to both processes

- \(\alpha \) and \(\beta \) write to/read from the same buffer

However reading from and writing to the same buffer is independent!
Example:

Operations independent from all operations of other processes:

- operating on local variables
- reading from a buffer with \texttt{xr} flag set
- writing to a buffer with \texttt{xs} flag set
- \texttt{test nempty(q)} if \texttt{xr} flag is set for \texttt{q}
- \texttt{test nfull(q)} if \texttt{xs} flag is set for \texttt{q}
P.-o. reductions and on the fly verification

- in both DFS’s the set ample_s should be the same

- condition ($C3’$) is applied to $M \times A_{\neg \phi}$ instead of M.

Is it correct?