Program Verification using JML
and ESC/Java2

Erik Poll

Radboud University Nijmegen

—p.1/3¢

Outline of this tutorial

e formal specifcation language JML
e program verification using ESC/JavaZ2

— p.2/3¢

The Java Modeling Language
JML

WWW. | M specs. org

JML by Gary Leavens et al.
Formal specification language for Java

e to specify behaviour of Java classes
e to record design &implementation decisions

by adding assertions to Java source code, eg

e preconditions
e postconditions
e Invariants

as in Eiffel (Design by Contract), but more expressive.

‘ Goal: JML should be easy to use for any Java programmer. I

— p.4/3¢

JML

To make JML easy to use:

e JML assertions are added as comments in .java file,
between/*@... @/ , or after/ | @

e Properties are specified as Java boolean expressions,
extended with a few operators (\old, \forall, \result,

).

e using a few keywords (r equi r es, ensur es,

si gnal s, assi gnabl e, pure, i nvari ant,
non_nul | ,...)

— p.5/3¢

requires, ensures

Pre- and post-conditions for method can be specified.

[*@requires anmpunt >= 0;
ensures bal ance == \ol d(bal ance-anount) &&
\result == bal ance;

@/
public int debit(int anount) {

}

Here \ol d(bal ance) refers to the value of bal ance
before execution of the method.

— p.6/3¢

requires, ensures

JML specs can be as strong or as weak as you want.

[*@requires anmpunt >= 0;
ensures true;

@/
public int debit(int amount) {

}

This default postcondition “ensures true” can be
omitted.

—p.7/3¢

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

e Client must ensure precondition and may assume
postcondition

e Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debi t , it is the obligation of
the client to ensure that anount is positive. Ther equi r es
clause makes this explicit.

— p.8/3¢

signals

Exceptional postconditions can also be specified.

/[*@requires anount >= O0;

ensures true;

si gnal s (BankException e)
amount > bal ance &&
bal ance == \ol d(bal ance) &&
e. get Reason() . equal s("Amount too b

@/
public int debit(int amount) throws BankExcepti

— p.9/3¢

signals

Exceptions mentioned in throws clause are allowed by
default, i.e. the default signals clause is

signal s (Exception) true;
To rule them out, add an explicit

signal s (Exception) false;

or use the keyword normal _behavior

/| * @ nor mal _behavi or
requires
ensur es

@/

— p.10/3¢

(class) invariant

Invariants (aka class invariants) are properties that must be
maintained by all methods, e.g.,

public class Vallet {
public static final short MAX BAL = 1000;
private short bal ance;
/[*@1 nvariant 0 <= bal ance &&
bal ance <= MAX BAL;

@/

Invariants are implicitly included in all pre- and
postconditions.

Invariants must also be preserved if exception is thrown!

—p.11/3¢

(class) invariant

Invariants document design decisions, e.qg.,
public class Directory {
private File[] files;

[*@1 nvari ant

files !'= null
&&
(\forall int i; 0 <=1 & i < files.|ength;
, files[i] = null &&
files[i].getParent() == this
@/

Making them explicit helps in understanding the code.

— p.12/3¢

loop Invariant

There are also loop invariants and variant functions:

[/ @l oop.nvariant 0 <=1 && I<= n;
/| @decreasing n-i;
for(int i=0; i<0; i++) {

}

— p.13/3¢

non_null

Many invariants, pre- and postconditions are about
references not being nul | . non_null is a convenient
short-hand for these.

public class Directory {
private /*@non_null @/ File[] files;
void createSubdir(/*@non_null @/ String name) -

Directory /*@nonnull @/ getParent(){

— p.14/3¢

assert

An assert clause specifies a property that should hold at
some point in the code, e.g.,

if (i <=01]j <0) {

} else if (j <5) {
[/ @assert 1 >0 && 0 <] &&] < 5

} else {
/|l @assert 1 >0 && | > 5;

— p.15/3¢

assert

JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

for (n =0; n < a.length; n++)
1 f (a[n]==null) break;
[*@assert (\forall int i; 0 <=1 &% i < n;
a[t] '= null);

@/

—p.16/3¢

assignable

Frame properties limit possible side-effects of methods.

/*@ requires anount >= O;
assi gnabl e bal ance;
ensures bal ance == \ol d(bal ance) - anount ;

@/
public int debit(int amount) { }

E.g., debi t can only assign to the field bal ance.
NB this does not follow from the post-condition.

Default assignable clause: assi gnabl e \ever yt hi ng.

—p.17/3¢

pure

A method without side-effects is called pure.

public /*@pure @/ int getBal ance(){...

Directory /*@pure nonnull @/ getParent(){...]

Pure method are implicitly assi gnabl e \not hi ng.

Pure methods, and only pure methods, can be used in
specifications, eg.

[l @1 nvariant 0<=get Bal ance() && get Bal ance() <=MAX BALANCE

— p.18/3¢

JML recap

The JML keywords discussed so far:
e requires
e ensures

si gnal s

assi gnabl e

nor mal _behavi or

| nvar i ant

non_nul |

pure

e \old, \forall, \exists, \result

This is all you need to know to get started!

— p.19/3¢

Tools for IML

tools for JML

e parsing and typechecking

e runtime assertion checking:
test for violations of assertions during execution
jmlrac

e extended static checking ie. automated program

verification:
prove that contracts are never violated at compile-time

ESC/Java2
This Is program verification, not just testing.

—p.21/3¢

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
lowa State Univ.

e translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

e cheap & easy to do as part of existing testing practice

e Dbetter testing and better feedback, because more

properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of

“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmilrac and unit testing.

— p.22/3¢€

runtime assertion checking

jmlrac can generate complicated test-code for free. E.g., for

[*@. ..
signal s (Exception)
bal ance == \ol d(bal ance);
@/
public int debit(int amount) { ... }

it will test that if debi t throws an exception, the balance
hasn’t changed, and all invariants still hold.

jmlrac even checks \f or al | if the domain of quantifi cation is
fi nite.

— P.23/3¢

extended static checking

ESC/Java(2)

e extended static checking = fully automated program
verification, with some compromises to achieve full
automation

— P.24/3¢

static checking vs runtime checking

One of the assertions below is wrong:
if (i <=0 jJ <0) H{

}elseif (j <5) {
[/ @assert I >0 & 0 <] &&] < 5;

} else {
[/ @assert 1 >0 && | > 5;

}

Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.

— p.25/3¢

static checking vs runtime checking

Important differences:

e ESC/Java2 checks specs at compile-time,
jmlrac checks specs at run-time

e ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence
e ESC/JavaZ2 independent of any test suite,
results of runtime testing only as good as the test
suite,

e ESC/JavaZ2 provides higher degree of confidence.

The price for this: you have to specify all pre- and
postconditions of methods (incl. APl methods) and
Invariants needed for modular verification

— p.26/3¢€

The ESC/Java2 tool

Running ESC/JavaZ2

Download the binary distribution from
http://secure.ucd.ie/products/opensource/ESCJava2

Untar the distribution and follow the instructions in
README.release about setting environment variables.

Run the tool by doing one of the following:
® Run a script in the release: escjava2 or escj.bat, or

® Run a GUI version of the tool by double-clicking
the release version of esctools2.jar

— p.28/3¢

Command-line options

The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

e -classpath - sets the path to find referenced classes [best if it contains ‘]
@ -nocheck - parse and typecheck but no verifi cation

@ -routine - restricts checking to a single routine

® -suggest - gives suggestion on how to fix problem

e -loopsafe - do verifi cation of loops ; requires loop-invariants to be provided

— P.29/3¢

modular reasoning

ESC/Java2 reasons about every method individually. So in

class A{
byte[] b;
public void n() { b = new byte[20]; }

public void m() { n();
b[0] = 2;

}

ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won’t be.

— p.30/3¢€

modular reasoning

To stop ESC/Java2 complaining: add a postcondition

class A{
byte[] b;
[/ @ensures b I'=null && b.length = 20;
public void n() { b = new byte[20]; }
public void n() { n();
b[0] = 2;
h

So: property of method that is relied on has to be made
explicit.

Also: subclasses that override methods have to preserve
these.

— p.31/3¢€

modular reasoning

Similarly, ESC/Java will complain about b[0] = 2iIn

class A{
byte[] b;
public void A() { b = new byte[20]; }
public void m) { b[0] = 2
h

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you’ll have
to inspect all constructors and all methods.

—p.32/3¢

modular reasoning

To stop ESC/Java2 complaining here: add an invariant

class A{
byte[] b;
[/@invariant b !'= null && b.length == 20;
/[l or weaker property for b.length ?
public void A() { b = new byte[20]; }
public void n() { b[0] = 2;
}

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.

— P.33/3¢

assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

[/ @assunme b !'= null && b.length > O;
b[0] = 2;

Especially useful during development, when you’re still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(r equi r es can be understood as a form of assune.)

— p.34/3¢€

ESC/Java is not complete

ESC/Java may produce warnings about correct programs.

[*@requires 0 < n:
@ensures \result ==

@ (\exists int Xx,vy, z;
@ pow(X, n) +pow(y, n) == pow(z,n));
@/

public static bool ean fernat(double n) {
return (n==2);

}

Warning: postcondition possibly not satisfied
(Typically, the theorem prover times out in complicated cases.)

— p.35/3¢

ESC/Javais not sound

ESC/Java may fail to produce warning about incorrect
program.

public class Positive{
private int n =1; //@invariant n > O;

public void increase(){ n++; }

}

ESC/Java(2) produces no warning, but | ncr ease may
break the invariant, namely if n is 232 — 1.

This can be fixed by improved model of Java arithmetic, but
this does come at a price (both in specs and in code).

— p.36/3¢€

	Outline of this tutorial
	{Large
ed The Java Modeling Language \ JML \ [2ex] {large �lack 	exttt {www.jmlspecs.org}}}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	requires, ensures
	requires, ensures
	Design-by-Contract
	signals
	signals
	(class)
invariant
	(class)
invariant
	loop invariant
	non_null
	assert
	assert
	assignable
	pure
	JML recap
	{Large
ed Tools for JML}
	tools for JML
	runtime assertion checking
	runtime assertion checking
	extended static checking
	static checking vs runtime checking
	static checking vs runtime checking
	
	Running ESC/Java2
	Command-line options
	modular reasoning
	modular reasoning
	modular reasoning
	modular reasoning
	assume
	ESC/Java is not complete
	ESC/Java is not sound

