
Program Verification using JML
and ESC/Java2

Erik Poll

Radboud University Nijmegen

– p.1/36

Outline of this tutorial

• formal specifcation language JML

• program verification using ESC/Java2

– p.2/36

The Java Modeling Language
JML

www.jmlspecs.org

– p.3/36

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

– p.4/36

JML
To make JML easy to use:

• JML assertions are added as comments in .java file,
between /*@ . . .@*/, or after //@,

• Properties are specified as Java boolean expressions,
extended with a few operators (\old, \forall, \result,
. . .).

• using a few keywords (requires, ensures,
signals, assignable, pure, invariant,
non null, . . .)

– p.5/36

requires, ensures

Pre- and post-conditions for method can be specified.

/*@ requires amount >= 0;

ensures balance == \old(balance-amount) &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.

– p.6/36

requires, ensures

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ensures true” can be
omitted.

– p.7/36

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debit, it is the obligation of
the client to ensure that amount is positive. The requires
clause makes this explicit.

– p.8/36

signals

Exceptional postconditions can also be specified.

/*@ requires amount >= 0;

ensures true;

signals (BankException e)

amount > balance &&

balance == \old(balance) &&

e.getReason().equals("Amount too big");

@*/

public int debit(int amount) throws BankException {

...

}

– p.9/36

signals

Exceptions mentioned in throws clause are allowed by
default, i.e. the default signals clause is

signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/

– p.10/36

(class) invariant

Invariants (aka class invariants) are properties that must be
maintained by all methods, e.g.,

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance &&

balance <= MAX_BAL;

@*/
...

Invariants are implicitly included in all pre- and
postconditions.

Invariants must also be preserved if exception is thrown!

– p.11/36

(class) invariant

Invariants document design decisions, e.g.,

public class Directory {

private File[] files;

/*@ invariant

files != null

&&

(\forall int i; 0 <= i && i < files.length;

; files[i] != null &&

files[i].getParent() == this);
@*/

Making them explicit helps in understanding the code.

– p.12/36

loop invariant

There are also loop invariants and variant functions:

...

//@ loop invariant 0 <= i && i<= n;

//@ decreasing n-i;

for(int i=0; i<0; i++) {

...
}

– p.13/36

non_null

Many invariants, pre- and postconditions are about
references not being null. non_null is a convenient
short-hand for these.

public class Directory {

private /*@ non null @*/ File[] files;

void createSubdir(/*@ non null @*/ String name){

...

Directory /*@ non null @*/ getParent(){

...

– p.14/36

assert
An assert clause specifies a property that should hold at
some point in the code, e.g.,

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...
}

– p.15/36

assert
JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

...

for (n = 0; n < a.length; n++)

if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;

a[i] != null);
@*/

– p.16/36

assignable

Frame properties limit possible side-effects of methods.

/*@ requires amount >= 0;

assignable balance;

ensures balance == \old(balance)-amount;

@*/

public int debit(int amount) { }

...

E.g., debit can only assign to the field balance.
NB this does not follow from the post-condition.

Default assignable clause: assignable \everything.

– p.17/36

pure

A method without side-effects is called pure.

public /*@ pure @*/ int getBalance(){...

Directory /*@ pure non null @*/ getParent(){...}

Pure method are implicitly assignable \nothing.

Pure methods, and only pure methods, can be used in
specifications, eg.

//@ invariant 0<=getBalance() && getBalance()<=MAX_BALANCE;

– p.18/36

JML recap

The JML keywords discussed so far:

• requires

• ensures

• signals

• assignable

• normal behavior

• invariant

• non null

• pure

• \old, \forall, \exists, \result

This is all you need to know to get started!

– p.19/36

Tools for JML

– p.20/36

tools for JML

• parsing and typechecking

• runtime assertion checking:
test for violations of assertions during execution
jmlrac

• extended static checking ie. automated program
verification:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.

– p.21/36

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks:
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback, because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification.

The jmlunit tool combines jmlrac and unit testing.
– p.22/36

runtime assertion checking

jmlrac can generate complicated test-code for free. E.g., for

/*@ ...

signals (Exception)

balance == \old(balance);

@*/

public int debit(int amount) { ... }

it will test that if debit throws an exception, the balance
hasn’t changed, and all invariants still hold.

jmlrac even checks \forall if the domain of quantification is
finite.

– p.23/36

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

– p.24/36

static checking vs runtime checking

One of the assertions below is wrong:

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...

}

Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.

– p.25/36

static checking vs runtime checking

Important differences:

• ESC/Java2 checks specs at compile-time,
jmlrac checks specs at run-time

• ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence

• ESC/Java2 independent of any test suite,
results of runtime testing only as good as the test
suite,

• ESC/Java2 provides higher degree of confidence.

The price for this: you have to specify all pre- and
postconditions of methods (incl. API methods) and
invariants needed for modular verification

– p.26/36

The ESC/Java2 tool

– p.27/36

Running ESC/Java2

• Download the binary distribution from
http://secure.ucd.ie/products/opensource/ESCJava2

• Untar the distribution and follow the instructions in
README.release about setting environment variables.

• Run the tool by doing one of the following:
• Run a script in the release: escjava2 or escj.bat, or
• Run a GUI version of the tool by double-clicking

the release version of esctools2.jar

– p.28/36

Command-line options

The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

• -classpath - sets the path to find referenced classes [best if it contains ‘.’]

• -nocheck - parse and typecheck but no verification

• -routine - restricts checking to a single routine

• -suggest - gives suggestion on how to fix problem

• -loopsafe - do verification of loops ; requires loop-invariants to be provided

– p.29/36

modular reasoning

ESC/Java2 reasons about every method individually. So in

class A{

byte[] b;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

ESC/Java2 warns that b[0] may be a null dereference here,

even though you can see that it won’t be.

– p.30/36

modular reasoning

To stop ESC/Java2 complaining: add a postcondition

class A{

byte[] b;

//@ ensures b != null && b.length = 20;

public void n() { b = new byte[20]; }

public void m() { n();

b[0] = 2;

... }

So: property of method that is relied on has to be made
explicit.
Also: subclasses that override methods have to preserve
these.

– p.31/36

modular reasoning

Similarly, ESC/Java will complain about b[0] = 2 in

class A{

byte[] b;

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

Maybe you can see that this is a spurious warning, though
this will be harder than in the previous example: you’ll have
to inspect all constructors and all methods.

– p.32/36

modular reasoning

To stop ESC/Java2 complaining here: add an invariant

class A{

byte[] b;

//@ invariant b != null && b.length == 20;

// or weaker property for b.length ?

public void A() { b = new byte[20]; }

public void m() { b[0] = 2;

... }

So again: properties you rely on have to be made explicit.

And again: subclasses have to preserve these properties.

– p.33/36

assume

Alternative to stop ESC/Java2 complaining: add an
assumption:

...

//@ assume b != null && b.length > 0;

b[0] = 2;

...
Especially useful during development, when you’re still
trying to discover hidden assumptions, or when
ESC/Java2’s reasoning power is too weak.

(requires can be understood as a form of assume.)

– p.34/36

ESC/Java is not complete

ESC/Java may produce warnings about correct programs.

/*@ requires 0 < n;

@ ensures \result ==

@ (\exists int x,y,z;

@ pow(x,n)+pow(y,n) == pow(z,n));

@*/

public static boolean fermat(double n) {

return (n==2);

}

Warning: postcondition possibly not satisfied
(Typically, the theorem prover times out in complicated cases.)

– p.35/36

ESC/Java is not sound

ESC/Java may fail to produce warning about incorrect
program.

public class Positive{

private int n = 1; //@ invariant n > 0;

public void increase(){ n++; }

}

ESC/Java(2) produces no warning, but increase may
break the invariant, namely if n is 2

32 − 1.

This can be fixed by improved model of Java arithmetic, but
this does come at a price (both in specs and in code).

– p.36/36

	Outline of this tutorial
	{Large
ed The Java Modeling Language \ JML \ [2ex] {large �lack 	exttt {www.jmlspecs.org}}}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	requires, ensures
	requires, ensures
	Design-by-Contract
	signals
	signals
	(class)
invariant
	(class)
invariant
	loop invariant
	non_null
	assert
	assert
	assignable
	pure
	JML recap
	{Large
ed Tools for JML}
	tools for JML
	runtime assertion checking
	runtime assertion checking
	extended static checking
	static checking vs runtime checking
	static checking vs runtime checking
	
	Running ESC/Java2
	Command-line options
	modular reasoning
	modular reasoning
	modular reasoning
	modular reasoning
	assume
	ESC/Java is not complete
	ESC/Java is not sound

