
Propagation of JML non-null annotations in Java programs

Maciej Cielecki Jędrzej Fulara

Krzysztof Jakubczyk Łukasz Jancewicz

Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland

{m.cielecki,j.fulara,k.jakubczyk,l.jancewicz}@students.mimuw.edu.pl

ABSTRACT
Development of high quality code is extremely di�cult. Tools
that help maintaining the proper quality of code produced
by programmers can be very useful: they may increase the
quality of produced software and help managers to ensure
that the product is ready for the market. One of such tools
is ESC/Java2, a static checker of Java Modeling Language
annotations. These annotations can be used to ensure that
a certain assertion is satis�ed during the execution of the
program, among the others - to ensure that a certain vari-
able never has a null value. Unfortunately, using ESC/Java2
can be very troublesome and time-consuming for program-
mers, as it lacks a friendly user interface and a function that
propagates annotations.
We present CANAPA, a tool that can highly reduce time

and e�ort of eliminating Null Pointer Exceptions in Java
code. This tool can automatically propagate JML non-null
annotations and comes with a handy Eclipse plug-in. We be-
lieve that functionality of CANAPA will minimize the e�ort
required to bene�t from using the JML non-null checking.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering�Software/Program
Veri�cation

General Terms
RELIABILITY, VERIFICATION

1. INTRODUCTION

1.1 Coding errors
Ensuring that a piece of software created within a com-

pany is free of coding bugs has always been a huge problem.
Company managers try to succeed in this area by applying
various coding policies and code-checking strategies. These
policies can include overnight bug checking (people are hired

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to work at night and �nd errors in code that was created
during the day), enforcing coding standards, like consisting
naming convention or limiting length of methods, using au-
tomated tools to verify certain properties of the code either
by static code analysis or dynamic assertion checking. The
e�ciency of the tools of the latter category can usually be
improved by annotating the code with some meta informa-
tion, like pre- and post- condition of methods or invariants
of data structure implementations.
There are many languages created to annotate programs,

but none of them is actually very popular. For the Java pro-
gramming language the de facto standard is JML, the Java
Modeling Language [11, 3]. Recently Microsoft introduced
Spec# [2], the extension of C# targeted at specifying cor-
rectness properties of code. Some work has also been done
for low-level languages. In particular, the Java Bytecode
has its own speci�cation language, called BCSL or BML [4].
The motivation for the latter was ensuring the security of
Java applets on SmartCards.
In general, coding errors can be divided into two cate-

gories: those that result from a programmer's misunder-
standing of the algorithm (for example, adding two vari-
ables instead of multiplying) and those that result from a
programmer's carelessness (like leaving a variable uninitial-
ized).
Although it is very hard to detect the �rst kind of bugs,

there is a way to avoid a large majority of the second ones,
mainly by creating and using automated veri�cation soft-
ware. It is of course impossible to write a tool that auto-
matically checks the correctness of all programs, but there
is a way to check some of its features.

1.2 Avoiding Null Pointer Exceptions in Java
The most common error found in pointer-based object-

oriented programming languages occurs when one tries to
access an object variable that has not been initialized. In
Java, it is the well-known Null Pointer Exception. Null
Pointer Exceptions are a very serious threat to the safety
of programs, because when they occur at run-time, they
cause a total software failure. That is why it is important to
support the programmer in detecting and eliminating these
kinds of problems. But �rst, the programmer has to express
what features he would expect from his or her software. For
this task we use JML, a behavioral interface speci�cation
language. One of the key features of JML is the possibility
to annotate certain variables as non-null, which means that
it was the programmer's intention not to allow to assign a
null value to that variable.

1.3 JML

1.3.1 Overview
JML, the Java Modeling Language, is useful for specify-

ing detailed design properties of Java classes and interfaces.
JML is a behavioral interface speci�cation language for Java.
The behavior of classes and method created by a program-
mer can be precisely documented in JML annotations. They
describe the intended way that programmers should use the
code. JML can, for example, list the preconditions and post-
conditions for methods as well as class invariants.
An important goal for the design of JML is that it should

be easily understandable by Java programmers. It is achieved
by staying as close as possible to Java syntax and semantics.
Several groups worldwide are now building tools that sup-
port the JML notation and are involved with the ongoing de-
sign of JML. The open, cooperative nature of the JML e�ort
is important both for tool developers and users. For poten-
tial users, the fact that there are several tools supporting the
same notation is clearly an advantage. For tool developers,
using a common syntax and semantics can make it much
easier to get users interested, because one of the biggest
problem with starting to use a new speci�cation tool is of-
ten the lack of familiarity with the speci�cation language.

1.3.2 Non_null annotations
In this paper, we focus on annotating properties of meth-

ods, variables etc. which assure that the object under ques-
tion never has a null value.
In JML, there are two ways to make such an assertion. If

we want to make sure that a variable is never null (for exam-
ple, we would call its method in a moment and it could pro-
duce a Null Pointer Exception), we add the /*@ non_null
@*/ annotation (note the @ sign after the beginning and be-
fore the end of the comment):

/*@ non_null @*/ String s = "Hi there!";

A more interesting example is the method de�nition. If we
want a method argument to be non-null, we could write
something like this:

public void checkLength(/*@ non_null @*/String s);

or, we could add something like that:

//requires s != null
public void checkLength(String s);

Notice the subtle di�erence between those examples. In the
�rst one, if the method body would contain the line:

s = null;

we would get an error. In the second example, as long as
at entry point the non-null assertion is ful�lled, the state-
ment won't generate an error. By the way, we �nd it a bad
programming practice to change parameters that way, they
should be copied to another variable instead.

1.3.3 JML checking
An annotation language like JML would be quite useless

without a tool that can extract information from the anno-
tations and use it to verify some, if not all, of its required
features. In general, we divide the checkers into two cate-
gories:

• run-time checking tools, like JMLrac [5] � annotations
are converted into assertions that are veri�ed when the
code they describe is executed

• static checking tools, like ESC/Java and ESC/Java2 [9]
� do not require running the program; instead they
try to prove that annotations are ful�lled by statically
analysing possible execution paths.

Advantages and disadvantages of each method can be
clearly seen. Run-time checkers can check any assertion,
no matter how complicated, but if a method is never run,
its assertions will not be executed and veri�ed. Besides, the
execution time is longer due to additional instructions in
the code. Static checkers, on the other hand, are limited by
their reasoning capabilities. Hence they can sometimes show
nonexistent errors (false positives) or fail to �nd some exist-
ing ones (false negatives). The most popular static checker
for Java is ESC/Java2 [9].

1.4 ESC/Java2
ESC/Java tool, developed at Compaq Research, performs

what is called extended static checking, a compile-time check-
ing that goes well beyond type checking. It can check rel-
atively simple assertions and can check for certain kinds of
common errors in Java code, such as dereferencing null, in-
dexing an array outside its bounds, or casting a reference
to an impermissible type. ESC/Java supports a subset of
JML. ESC/Java2 [9] is an extension to ESC/Java, whose
development has ended.
The user's interaction with ESC/Java2 is quite similar to

the interaction with the compiler's type checker: the user
includes JML annotations in the code and runs the tool,
and the tool responds with a list of possible errors in the
program. The use of JML annotations enables ESC/Java2
to produce warnings not at the source locations where errors
manifest themselves at run-time, but at the source locations
where the errors are committed.
The creators of ESC/Java2 wanted it to be as fast as

possible, even at the cost of soundness and completeness.
ESC/Java2 translates a given JML-annotated Java program
into veri�cation conditions, logical formulas that are valid if
and only if the program is free of the kinds of errors being an-
alyzed. The veri�cation conditions are fed to an automatic
�rst-order theorem prover Simplify [7], which tries to prove
them. Any veri�cation-condition counterexamples found by
Simplify are turned into programmer-sensible warning mes-
sages, including the kind and source location of each poten-
tial error.

2. ANNOTATING THE PROGRAM
The combined usage of JML non-null annotations and

ESC/Java2 allows software developers to eliminate all Null
Pointer Exceptions from their programs. However, bene�ts
of doing so do not always compensate additional time spent
on manually adding the necessary assertions. Several add-on
tools were developed to make the process faster, such as the
ESCJava2 Eclipse plug-in that highlights places of possible
errors. Unfortunately, that is still not enough to convince
programmers to use JML.
Using ESC/Java2 to check Null Pointer Exceptions is some-

what cumbersome, because the checker shows us the place
in the code where the error might occur, but it does not tell

us where to put the /*@ non_null @*/ annotation. Very
often the need of inserting another annotation is so obvious,
that we would expect it to be done for us.
Let's consider the following example:

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "eLLo";
}
void set(String param) {
attribute = param;

//ESCJava2 will point to this line
}
}

ESC/Java2 will signal an error in the assignment inside the
method set(), so the programmer should add a non-null
annotation to the parameter param. Then one can discover
that, for example, one of set() method calls take a param-
eter which is not annotated non-null. The programmer is
forced to correct his or her code and run ESC/Java2 each
time he or she does it until all the errors are eliminated.
Other examples of cases when the annotation should and

should not be propagated can be found in Section5.
An obvious solution is to create a tool that supports the

programmer in annotating his or her code. We would expect
the following features from such a tool:

• it should propagate annotations inserted by the user
to avoid pointless ESC/Java2 warnings

• it should be fairly easy to use

• it should not require additional annotations in the code
to make it work

• it should propagate only those annotations for which
it is obvious that they should be propagated

• it should integrate into a popular Java development
platform

• its e�ects should be easily reversible

3. RELATED TOOLS
Our solution, CANAPA, is based on the Java Modeling

Language and ESC/Java2. There exist several other lan-
guages and systems that aim at statical enforcement of pro-
gram correctness.
In Visual Studio 2005, Microsoft introduced Code Analy-

sis tools [6]. Among other features, these tools can check the
program for potential null-pointer dereference errors. There
is no support for Java, but one can annotate C++ code or
write full speci�cations of C# programs in Spec#.
There are many static checkers for C language that can

check the NULL values to some extent. Many of those
are commercial, closed source software, therefore are not
broadly available. Nevertheless some of those checkers are
very powerful, designed for large codebases, support user de-
�ned properties, with very small number of false positives.
They are also usually bundled with an entire package of tools
that enforce code quality, see eg. [14].
There were many research about the subject of annota-

tions [4], [13]. There is considerable interest in automated

annotation propagation, but the approaches considered were
di�erent from ours.
There are various tools that were build around ESC/Java.

Two most interesting from our point of view are: The Daikon
Invariant Detector and The Houdini Tool.

3.1 Daikon Invariant Detector
Daikon [8] is an implementation of dynamic detection of

likely invariants; that is, the Daikon invariant detector re-
ports properties that hold at a certain point or points in
a program. Daikon runs a program, observes the values
that the program computes, and then reports properties that
were true over the observed executions. It can be used to
automatically generate JML annotations in Java Code.

3.2 Houdini
This tool was under development as a research project

at Compaq SRC. Houdini infers ESC/Java annotations for
a given program and then runs ESC/Java to obtain a set
of warnings. This set is considerably smaller, and more
interesting, than the set of mostly spurious warnings that
ESC/Java would have produced on the unannotated pro-
gram. Although this process does not provide the same
bene�t of documented programmer design decisions (it de-
tects the de facto design rather than enforcing de juro design
decisions), Houdini greatly reduces the cost of �nding com-
mon errors in a given program. Non-null annotations are
among the annotations generated by Houdini, but the ap-
proach taken by the creators of this software is di�erent from
ours and does not guarantee that full set of annotations will
be generated.

4. OUR SOLUTION
We present CANAPA, �Completely Automated Non-null

Annotation Propagating Application�, a tool to automat-
ically propagate JML annotations that concern being or
not being null by variables, method result etc. CANAPA
is a program that propagates the /*@ non_null @*/ anno-
tations inside the source code �bottom-up�. This greatly
reduces time and e�ort to correctly insert non-null annota-
tions into the code.

4.1 Overview
The main idea is that the programmer inserts a JML non-

null annotation inside the code, and CANAPA checks what
are the obvious implications of such an insertion and inserts
additional non-null annotations where ESC/Java2 would ex-
pect them. This way, the programmer sees the error in his
logic (if any) at its source, and does not have to manually
add each assertion to get to the mistake.
CANAPA has the following features:

• the program (CANAPA) is idempotent - the result of
running it once on a Java code should be the same as
running it twice

• from the preceding, it cannot add non-null annotations
to class attributes - this would lead to undesirable re-
sults - see Use cases

• it changes the code only when it's sure it was the pro-
grammer's intention

• it adds its own comment tag to the JML tag in case the
programmer wanted to remove the e�ects of its work

The Usage of CANAPA is fairly straightforward. You simply
put /*@ non_null @*/ annotations in the code where you
want them and then run our tool, which propagates those
assertions anywhere it is necessary.
CANAPA can be invoked from the command line with a

directory parameter, or executed from Eclipse development
platform via a plugin. During its work, CANAPA adds an-
notations to selected �les and creates their backups, notify-
ing the user which �les were modi�ed in the process.
Each annotation added by CANAPA is marked with a

/*CANAPA*/ pre�x. Annotations existing before running the
tool will not have this marker. This way, you can easily �nd
and, if necessary, remove the automatically added annota-
tions.
CANAPA comes with a handy Eclipse plug-in that allows

to run it within the Eclipse programming environment. The
tool simply adds annotations to the �le looked at by the
programmer and the text output can be seen in the Console
window.

4.2 Implementation Details
The tool consists of a number of elements: the interface

to ESC/Java2 (to �nd errors), a Java code parser to insert
needed annotations, a simple text user interface and the
Eclipse plug-in.
ESC/Java2 is invoked directly via its main method from

the JAR, that's why our software requires Java 1.4 to work.
The parser used in the tool is a slightly modi�ed free

JParse [12] tool, which itself is based on ANTLR [1], a free
parser generator.
The algorithm invoked by the tool is as follows: ESC/Java2

is run on the code provided by the user. The errors returned
by ESC/Java2 are parsed, their solutions (if any) found and
appropriate annotations placed to remove ESC/Java2 er-
rors. Then ESC/Java2 is run again (this time it won't de-
tect errors where they were before). If any new errors are
detected, the procedure is repeated.
The number of iterations of the algorithm is limited by the

depth of the deepest variable and method call dependency
in the user's code. It must be noted that, with a "clean"
(unannotated) large piece of code running CANAPA for the
�rst time may take some time. However, the more anno-
tations are in the code, the faster our tool is. In the ideal
working example, when the programmer starts annotating
his or her code from the very beginning and runs the tool
each time he or she makes a signi�cant addition, CANAPA
will work very fast, with few iterations.
CANAPA tries to correct the following ESC/Java2 errors:

• assignment of a possibly null item to a non-null anno-
tated variable:

� assignment of a method parameter

� assignment of a local variable

� assignment of a function result

• dereferencing a possibly null item:

� invoking variable.someMethod()

� invoking oneMethod().anotherMethod()

The action taken by CANAPA di�ers depending on the type
of item in question:

• if the item is a local variable, annotate its declaration
with /*@ non_null @*/

• if the item is a formal method parameter, annotate it
in the method header with
/*@ non_null @*/

• if the item is a result of a method, annotate the re-
turn type of the method in the method header with
/*@ non_null @*/

• if the item is a class attribute, do not annotate it - this
probably would not be what the programmer wants,
as it could cause "top-down" propagation into other
methods

It is signi�cant that the tool does not modify the code
itself, but only the comments. So the compiler would still
work if something went wrong.
The tool does its best to propagate the annotations just

as the programmer would. There is, however, one situation
in which CANAPA fails to predict the right annotation. Let
us imagine that the programmer writes a method without
annotating its parameter and dereferences it in the method
body. It is impossible to know whether the intention of the
programmer was to never call this method with the null
argument or he simply forgot to put the if clause. Since
CANAPA cannot guess what to write in the else branch,
anyway, it annotates the parameter with non-null.
Fortunately, there is a way to deal with the situation.

The Eclipse plug-in provides an option to revert the e�ects
of the last CANAPA corrections within a few keystrokes.
To avoid programmer confusion about which changes were
added in the last CANAPA execution, a �commit� option is
added that eliminates the /*CANAPA*/ comments before /*@
non_null @*/ annotations.

5. USE CASES
In this chapter we will show several basic examples of

using CANAPA. Each example contains of a short piece of
incorrect code and the description how CANAPA deals with
it.

5.1 Example 1
This example shows how a /*@ non_null @*/ annotation

can be propagated to a method parameter.

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "Attribute";
}
void set(String param) {
attribute = param;
}
}

The code presented above is not correct: ESC/Java2 will
point to the line attribute = param. Attribute is declared
as non-null, and we try to assign param to it, so param must
be declared as /*@ non_null @*/ too. The easiest way to
correct it is to add a /*@ non_null @*/ annotation to param
in the method header. Launching CANAPA will modify the
code as follows:

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "Attribute";
}
void set(/*CANAPA*//*@non_null@*/ String param) {
attribute = param;
}
}

And that is exactly what our application does. There is
another possible way to correct this error - it involves en-
closing the assignment in if-else statement. However, it is
impossible for the tool to guess what to do if param is null.

5.2 Example 2
This example shows the inference of a /*@ non_null @*/

annotation to a variable or parameter, of which a program-
mer invokes a method. Let's consider the following piece of
code:

class ClassA {
public A(){}
public void methodA(){}
}
class ClassB {
public B(){}
public void methodB(ClassA a){
a.methodA();
}
}

This code is invalid, as the parameter a of methodB could be
null. So the method call a.methodA() may cause a null
pointer exception. To correct the error, one should add
a /*@ non_null @*/ annotation to the parameter in the
methodB header. After launching our application, the code
will be modi�ed as follows:

class ClassA {
public A(){}
public void methodA(){}
}
class ClassB {
public B(){}
public void

methodB(/*CANAPA*//*@non_null@*/ClassA a){
a.methodA();
}
}

Of course the problem concerns not only parameters, but
also variables:

class Class{
public Class(){}
public void method(){
String str;
str.substring(1);
}
}

The local variable str cannot be null, otherwise the method
call str.substring(1) would cause a null pointer excep-
tion. The solution is to declare str as /*@ non_null @*/.
CANAPA will add the appropriate annotation. Of course,

the problem persists (str is uninitialized), but this time,
ESC/Java2 error points the user exactly to the source of
the problem.

5.3 Example 3
This example shows how a /*@ non_null @*/ annotation

can be propagated to the method's result.

class Class{
/*@ non_null @*/ String attribute;
public Class(){
attribute = "Attribute";
}
private String getString(){
return "This is a string";
}
public void set(){
attribute = getString();
}
}

a
b
We assign the result of getString() to attribute, which

is declared as /*@ non_null @*/. Until we are not sure that
the method getString() cannot return a null, this code will
be incorrect. The easiest way to solve this problem is to add
/*@ non_null @*/ annotation to the result of getString().
The code modi�ed by CANAPA will be as follows:

class Class{
/*@ non_null @*/ String attribute;
public Class(){
attribute = "Attribute";
}
private /*@ non_null @*/ String getString(){
return "This is a string";
}
public void set(){
attribute = getString();
}
}

5.4 Example 4
This example shows that there are situations, when a

propagation should not be done, although one could think
that an annotation should be added. Consider following
piece of code:

class Class{
String attribute;
void doSomething(){
...
/*@non_null@*/String str = attribute;
}
void setNull(){
attribute = null;
}
}

One might expect that CANAPA will add an annotation to
the attribute, modifying the code as follows:

class Class{
/*@non_null@*/ String attribute;
void doSomething(){
...

/*@non_null@*/ String str = attribute;
}
void setNull(){
attribute = null;
}
}

After careful consideration of this code, we can see that
the added annotation causes an error in an other method.
Namely in the setNull() method (we will try to assign null
to an attribute that was declared as non-null). This def-
initely would not be acceptable for most of programmers.
Moreover, we claim that in such a situation it is impossible
to modify the code automatically in a reasonable way. So
we have decided not to add anything to class attributes.

6. SUMMARY
We created CANAPA, the tool that highly reduces time

and e�ort of eliminating Null Pointer Exceptions in Java
code. This tool automatically propagates JML non-null an-
notations, whenever this results from the programmer's in-
tension. It also comes with a handy Eclipse plug-in to in-
crease productivity. CANAPA is distributed under the GNU
LESSER GENERAL PUBLIC LICENSE [10]. It is available
from http://www.mimuw.edu.pl/~chrzaszcz/Canapa/. It
requires a Java Runtime Environment (version 1.4) and the
ESC/Java2 checker. To run the CANAPA Eclipse plug-in,
version 3.1 or higher of the Eclipse environment is needed.

7. ACKNOWLEDGEMENT
This work was partly supported by the Information Soci-

ety Technologies programme of the European Commission,
under the IST-2005-015905 MOBIUS project. This paper
re�ects only the authors' views and the Community is not
liable for any use that may be made of the information con-
tained therein.

8. ADDITIONAL AUTHORS
Jacek Chrz¡szcz, Institute of Informatics, Warsaw Uni-

versity, email: chrzaszcz@mimuw.edu.pl.
Aleksy Schubert, Institute of Informatics, Warsaw Univer-

sity, Poland and SoS Group, Faculty of Science, University
of Nijmegen, email: alx@mimuw.edu.pl.
�ukasz Kami«ski, Comarch Research and Development

Center, email: Lukasz.Kaminski@comarch.pl.

9. REFERENCES
[1] Antlr parser generator. http://www.antlr.org/.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The spec# programming system: An
overview. In CASSIS 2004, volume 3362 of LNCS.
Springer, 2004.

[3] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of jml tools and applications. In T. Arts and
W. Fokkink, editors, FMICS: Eighth International
Workshop on Formal Methods for Industrial Critical
Systems, volume 80 of Electronic Notes in Theoretical
Computer Science. Elsevier Publishing, June 5-7 2003.

[4] Lilian Burdy and Mariela Pavlova. Java bytecode
speci�cation and veri�cation. In 21st Annual ACM
Symposium on Applied Computing (SAC'06), Dijon,
Apr 2006. ACM Press.

[5] Yoonsik Cheon and Gary T. Leavens. A runtime
assertion checker for the Java Modeling Language
(JML). In Hamid R. Arabnia and Youngsong Mun,
editors, Proceedings of the International Conference
on Software Engineering Research and Practice
(SERP '02), Las Vegas, Nevada, USA, June 24-27,
2002, pages 322�328. CSREA Press, June 2002.

[6] Code analysis for C/C++ � overview.
http://msdn2.microsoft.com/en-
us/library/d3bbz7tz.aspx.

[7] David L. Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, 2003.

[8] Michael D. Ernst, Je� H. Perkins, Philip J. Guo,
Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The Daikon system for
dynamic detection of likely invariants. Science of
Computer Programming, 2006.

[9] Extended Static Checker for Java version 2.
http://secure.ucd.ie/products/opensource/ESCJava2/.

[10] GNU LESSER GENERAL PUBLIC LICENSE.
http://www.gnu.org/copyleft/lesser.html.

[11] The Java Modeling Language (JML).
http://www.cs.iastate.edu/ leav-
ens/JML//index.shtml.

[12] JParse: a Java parser.
http://www.ittc.ku.edu/JParse/.

[13] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and
J.-L. Lanet. Enforcing high-level security properties
for applets. In P. Paradinas and J.-J. Quisquater,
editors, Proceedings of CARDIS'04, Toulouse, France,
August 2004. Kluwer Academic Publishers.

[14] Static source code analysis tools for C.
http://www.spinroot.com/static/.

http://www.mimuw.edu.pl/~chrzaszcz/Canapa/

	Introduction
	Coding errors
	Avoiding Null Pointer Exceptions in Java
	JML
	Overview
	Non_null annotations
	JML checking

	ESC/Java2

	Annotating the program
	Related tools
	Daikon Invariant Detector
	Houdini

	Our solution
	Overview
	Implementation Details

	Use cases
	Example 1
	Example 2
	Example 3
	Example 4

	Summary
	Acknowledgement
	Additional Authors
	References

