
Towards Rewriting in Coq?

Jacek Chrząszcz and Daria Walukiewicz-Chrząszcz

Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warsaw, Poland

{chrzaszcz,daria}@mimuw.edu.pl

This work is dedicated to Jean-Pierre Jouannaud who is unquestionably
a spiritus movens of the research on bringing rewriting to Coq.

Abstract. Equational reasoning in Coq is not straightforward. For a
few years now there has been an ongoing research process towards adding
rewriting to Coq. However, there are many research problems on this way.
In this paper we give a coherent view of rewriting in Coq, we describe
what is already done and what remains to be done.
We discuss such issues as strong normalization, confluence, logical con-
sistency, completeness, modularity and extraction.

1 Introduction

Large part of research in modern theoretical computer science is con-
cerned with formalizing mathematical reasoning. On one hand various
formal calculi are being developed which model mathematical notions and
proofs. On the other hand computer programs are written which imple-
ment these formalisms together with tools which help the users formalize
and solve their mathematical problems.
In this paper we concentrate on Coq [18], a proof assistant based on

type theory and the Curry-Howard correspondence, which relates formu-
las to types and their proofs to terms of these types.

Calculus of constructions. The first version of Coq (which was called CoC
at that time) was designed in the late 80s by Coquand and Huet. It imple-
mented the calculus of constructions, i.e. the lambda calculus, equipped
with a powerful typing discipline containing polymorphism, dependent
types and type constructors. Let us mention one typing rule, conversion,
which will be important to us in the rest of the paper.

E ` a : t E ` t′ : s
E ` a : t′ if t ≈ t′

? This work was partly supported by the Polish government grant 3 T11C 002 27 and
the EU FP6 project IST-15905 Mobius.

This rule says that a proof of t is also a proof of any correct formula
t′ which is convertible to t. In the pure calculus of constructions, the
convertibility relation ≈ is only β-equality, which due to normalization
and confluence of β-reduction can be checked automatically. The latter
property is also crucial for the decidability of type-checking.
In the calculus of constructions it is possible to define natural num-

bers, lists, booleans and other inductive types by using the so-called im-
predicative encoding. For example, natural numbers can be represented
as polymorphic Church numerals with their type Nat ≡ ∀C : ?, C →
(C → C) → C. Nevertheless this coding has some important drawbacks
concerning both logical and computational aspects. It is for example im-
possible to prove that 0 is different from 1, induction principles, for exam-
ple on natural numbers, are not provable, and some trivial functions, like
predecessor on natural numbers, cannot be computed in constant time.

Calculus of inductive constructions. In early 90s Coquand and Paulin
proposed to extend the calculus with new kinds of syntactic objects: in-
ductive definitions introducing a type and its constructors and elimination
schemes for that type [20]. The elimination schemes come together with
their reduction rules called ι-reduction, which extends convertibility. The
real novelty in the calculus of inductive constructions is strong elimina-
tion, which allows one to build types by recursion over inductive types.
Using strong elimination one can show that 0 is different from 1. Other

problems of impredicative encoding of inductive types are now also solved.
The calculus of inductive constructions preserves all essential meta-

theoretical properties of the original system: it is terminating, confluent,
logically consistent and has decidable type-checking [46].
Unfortunately using recursors to write function definitions is not very

easy and the definitions, once written, are not very readable. A solution
to these problems is to replace the elimination schemes by two separate
mechanisms: one for pattern-matching (or case-analysis), and one for con-
structing well-founded recursive functions.
Definitions by pattern-matching were added to Martin-Löf’s type the-

ory by Coquand [19]. Consequently, constants may be defined not only ex-
plicitly, by giving a term, but also implicitly by a set of defining equations
of the form f(u1, . . . un) = e, which must be exhaustive and unambiguous.
An adaptation of the above idea to the context of the calculus of con-

structions is due to Christine Paulin and was implemented in Coq in 1994.
The problem of checking unambiguity and exhaustiveness is eliminated by
choosing a simple format of case analysis using the match operator. The

2

simple format was later extended to more complex patterns in [21]. The
recursive definitions are built using the fixpoint operator fix. Normaliza-
tion is guaranteed within the type-checking rule of fix. Every recursive
call must operate on arguments that are structurally smaller than the
original ones, i.e. are deconstructed from the original arguments by a
match.
Although quite natural and general enough to encode many interesting

functions, the fix rule with its guard condition causes problems, both
at the practical and the theoretical levels: complicated meta-theory, non-
incremental proof-checking, etc. For these reasons several versions of type
annotations were proposed to hide the guardedness condition in the type
system [25, 36, 26, 9, 5]. There is a running prototype implemented for the
system [5].
In order to simplify writing definitions of functions, several authors

consider direct translation of functional programs to Coq [35, 39]. Another
possibility is to include in Coq the style of pattern-matching definitions
as proposed by Coquand. But pattern-matching equations are just a re-
stricted form of rewrite rules.

Rewriting in the calculus of constructions. There is an ongoing research
process aiming at adding rewriting into theorem provers based on type
theory and Curry-Howard Isomorphism such as Coq. Jean-Pierre Jouan-
naud, who was supervisor of our PhD theses [16, 42], is one of the people
who actively pushed this research on.
Defining functions by rewriting is as simple and elegant as the defi-

nitions by pattern matching, but the user has a possibility to add more
rules, that would otherwise have to be proved as axioms or lemmas in the
form of Leibniz equalities or heterogeneous equalities. Moreover, rules can
be ambiguous (their left-hand sides may overlap) as long as the rewrit-
ing system is confluent. By transforming equalities into rewrite rules, one
makes the conversion richer and therefore proofs shorter and more au-
tomatic. Moreover more terms are now typable, so the calculus becomes
more expressive.
As long as conversion is decidable, extending the conversion can be

seen as a means to separate reasoning from computing in a similar man-
ner that is used in Deduction Modulo [24]: while the proof term must
record all deduction steps, the computation steps can be hidden away
in conversion and performed automatically. This could be most helpful
when working with axiomatic equational theories, like e.g. group theory,
that can be transformed into confluent and terminating rewriting systems.

3

There exist tools that assist users in performing such transformations (see
e.g. [17]).
In order to maintain conversion and hence type-checking decidable one

must be careful to add only rewrite rules which would not spoil subject
reduction, strong normalization and confluence. The easiest and the most
natural way to preserve subject-reduction is to require that the left- and
right-hand sides of a rule have the same type. More flexible approaches
allow for the left- and right-hand sides that do not need to be well-typed
(see discussion about underscore variables in the next section). Since it is
not possible to check automatically whether a given set of rewrite rules in
strongly normalizing, one has to come up with decidable criteria ensuring
strong normalization and flexible enough to accept most of the known
and useful definitions by rewriting. In [1] it is shown that the calculus of
constructions can be safely extended with any terminating and confluent
first-order rewriting system. For the higher-order case, there are two such
criteria: HORPO [42] by the second author and the General Schema [6]
by Frédéric Blanqui. They are both discussed in detail in Section 3. In
the paper of Blanqui, the second problem, confluence, is also discussed.
But ensuring termination and confluence is of course not enough. To

trust theorems proved with the help of a proof assistant based on a for-
malism one needs logical consistency. Without rewriting, consistency is
guaranteed for all developments without axioms. With rewriting, one can
show it for all developments where rewriting systems are complete [10,
45]. Practical way of checking completeness is also provided in [45] and
discussed in Section 5.
In this paper we give a general vision of rewriting in Coq, how we

think it will look and feel. We particularly care to maintain the important
characteristics of Coq, such as decidable conversion and type-checking, in-
teractive proof development, canonicity of inductive types, logical consis-
tency etc. At the same time we aim to be able to express by rewriting the
elimination schemes for inductive types and definitions by case-analysis
and therefore to drop ι-reduction from the system.

2 Rewriting — Look and Feel

Let us imagine a future version of Coq with rewriting, where definitions
by rewriting will be entered just as all other definitions:1

1 The syntax of the definition by rewriting is inspired by the experimental “recriture”
branch of Coq developed by Frédéric Blanqui.

4

Welcome to Coq 10.1

Coq < Symbol + : nat → nat → nat
Rules
| O + y −→ y
| x + O −→ x
| (S x) + y −→ S (x + y)
| x + (S y) −→ S (x + y)
| x + (y + z) −→ (x + y) + z.

The above fragment defines addition on unary natural numbers. This
function is defined by induction on both arguments simultaneously and
the last rule expresses associativity.
Introducing a new definition by rewriting to an environment can be

done just like for inductive definitions.

E ` ok E ` Rew(Γ ;R) : correct
E;Rew(Γ ;R) ` ok

(1)

If the environment E is correct and if the new definition by rewriting is
correct, then we can add it to the environment. The right premise stands
for all tests that have to be performed before environment extension.
First, the definition must be well-formed, e.g. the local environment Γ
must contain function symbols only, their types must be correct etc. Sec-
ond, the rewriting system must verify the chosen acceptance condition,
which should guarantee subject reduction, strong normalization and con-
fluence of the system after adding the given definition by rewriting.
Note that at this point we only require properties that are needed to

keep type-checking decidable. The user is free to add a rewriting system
which causes inconsistency, just as he is free to add an inconsistent axiom
but not a non-terminating fixpoint definition in the current version of
Coq. Consistency of environments containing definitions by rewriting is
a separate issue which is discussed in Section 5.
Rewrite rules are to be used in the conversion rule, and since the set

of available rules depends on the environment, so does the conversion
relation. The correct version of conversion rule is:

E ` a : t E ` t′ : s E ` t ≈ t′

E ` a : t′

Going back to our example, the definition of + is well-typed, confluent
and terminating, so we can assume that it is correct and safely add it to
the environment. Our definition is also complete in the sense that for all

5

pairs of canonical natural numbers (i.e. made of constructors), their sum
computes into a canonical natural number.
With this definition, + becomes much more useful than the one usually

defined using match and fix. Both lemmas ∀x : nat. 0 + x = x and
∀x :nat. x + 0 = x can be proved by λx :nat. refl nat x, where refl is the
only constructor of the Leibniz equality inductive predicate. Since the
definition of addition is now symmetric we do not have to use induction
for any of the two lemmas.
By enriching conversion, we also make more terms typable. Hence the

logical language becomes more expressive, especially when dependently
typed programs and their properties are considered.
The most prominent example of this kind is the append function on

lists with length. For the sake of simplicity, let us assume that we have a
list of boolean values.

Inductive nlist : nat → Set :=
| nnil : nlist O
| ncons : bool → forall n:nat, nlist n → nlist (S n).

Symbol append : forall n m:nat, nlist n → nlist m → nlist (n+m).
Rules
| append O m nnil lm −→ lm
| append (S n) m (ncons b1 n ln) lm −→ ncons b1 (n+m) (append n m ln lm)
| append n O ln nnil −→ ln.

Note that without the symmetric + in the conversion, either the first two
rules or the last rule would not be well-typed. Indeed, in the first rule,
the type of the left hand side is nlist (0+m) and the type of the right
hand side is nlist m and in the third rule the corresponding types are
respectively nlist (n+0) and nlist n.
Thanks to the fact that associativity of + is in conversion, one could

write and prove the following equational property of append.

append k (n+m) lk (append n m ln lm) = append (k+n) m (append k n lk ln) lm

The types of the two sides are listn ((n+m)+k) and listn (n+(m+k))
respectively, and since standard Leibniz equality requires terms to com-
pare to have convertible types, associativity of + must be in conversion.
Rewrite rules can also be used to define higher-order and polymorphic

functions, like the map function on polymorphic lists.

Inductive list (A : Set) : Set :=
nil : list A | cons : A → list A → list A.

6

Symbol map : forall A B:Set, (A → B) → list A → list B
Rules
map A B f (nil A) −→ nil B
map A B f (cons A a l) −→ cons B (f a) (map A B f l).

Even though we consider higher-order rewriting, we think that it is
enough to choose the simple matching modulo α-conversion. Higher-order
matching is useful for example to encode logical languages by higher-order
abstract syntax, but it is not really used in Coq where modeling relies
rather on inductive types.
Instead of higher-order matching, one rather needs the possibility

to underspecify some arguments. Consider for example transforming the
equation for associativity of append into a rewrite rule:

append k (n+m) lk (append n m ln lm)
−→ append (k+n) m (append k n lk ln) lm

The (n+m) argument of append is needed there just for the sake of correct
type-checking of the left-hand side, because the type of append n m ln
lm is list (n+m). It has no meaning for actual matching of this rewrite
rule against terms, because in all well-typed terms, the second argument
of append is the length of the fourth argument anyway.
Besides, putting (n+m) in the rewrite rule creates many critical pairs

with +, which cannot be resolved without adding many new rules (either
by hand or through an automatic completion procedure) to make the
rewriting system confluent.
Instead, we could replace (n+m) by a fresh variable (or by an under-

score standing for a “don’t care” variable) and write this rule as:

append k _ lk (append n m ln lm)
−→ append (k+n) m (append k n lk ln) lm

This new rule matches all well-typed terms matched by the old rule, and
more. Moreover, there is no critical pairs between this rule and the rules
for + and the rule becomes left-linear, which is both easier to match and
may help with confluence proof. The downside is that the left-hand side of
the rule is not well-typed anymore which might make the proof of subject
reduction harder.
This way of writing left-hand sides of rules was already used byWerner

in [46] to define elimination rules for inductive types, making them or-
thogonal (the left-hand sides are of the form Ielim P ~f ~w (c ~x), where
P , ~f , ~w, ~x are distinct variables and c is a constructor of I). In [10],
Blanqui gives a precise account of these omissions using them to make

7

more rewriting rules left-linear. Later, the authors of [14] show that these
redundant subterms can be completely removed from terms (in a calcu-
lus without rewriting however). In [4], a new optimized convertibility test
algorithm is presented for Coq, which ignores testing equality of these
redundant arguments.
It is also interesting to note that when the second argument of append

is a fresh variable then we may say that this argument is matched modulo
conversion and not syntactically.

3 Strong Normalization

In this section we concentrate on the part of acceptance criterion for
rewrite rules which is supposed to guarantee strong normalization.
The first article about higher-order rewriting in the calculus of con-

structions is [2, 3], where the authors extend the termination criterion
called the General Schema, originally defined in [28]. This result is fur-
ther extended in [11] by adding a powerful mechanism, called the com-
putable closure and further on in [6, 10, 8, 7, 9] where rewriting on types,
rewriting modulo AC, extended recursors and type-based termination are
considered.
Another method for proving strong normalization of higher-order rewrit-

ing is the Higher Order Recursive Path Ordering (HORPO). HORPO was
originally presented in [29], in the context of the simply typed lambda
calculus. A version of HORPO for the calculus of constructions was first
presented in [41] and its journal version [43]. An extended and elaborated
version of the results can be found in [42].
The works on HORPO and the General Schema share the approach

to rewriting in the calculus of constructions presented in the previous
section. Rewriting is introduced by rewrite rules on function symbols that
are constants added to the system. Function symbols can have dependent
and polymorphic types. In [42] (HORPO approach) both sides of every
rewrite rules must have the same type, in [6] (General Schema) they are
meant to have the same type for any typable instance of the left-hand
side.
In order to have strong normalization, the form of the rules is further

restricted: it is required that all meaningful type parameters of the head
function symbol of left-hand sides must be different variables.
Both termination criteria, the General Schema and HORPO, are based

on a well-founded ordering on function symbols, called precedence. In-
ductive types are built from type constructors and constructors satisfy-

8

ing some positivity conditions, and elimination schemes are just function
symbols with associated rewrite rules. It is shown that most elimination
schemes can be accepted by the General Schema and HORPO.

In order to deal with elimination schemes, the structural ordering
associated with inductive definitions is incorporated in both HORPO and
General Schema. They share also the use of computable closure (first used
in the context of the simply-typed λ-calculus [12]), which is a set of terms
derived from the left-hand side by some syntactic reducibility-preserving
operations.

While the General Schema consists essentially of the computable clo-
sure, its use in HORPO is just one of the possibilities. Nevertheless, it is
not the case that all object level rules accepted by the General Schema are
accepted by HORPO. Apart from some technical conditions, the reason
is mainly hidden in the different approaches to inductive types and con-
structors; in [6], where the General Schema is used, every function symbol
whose output type is an instance of an inductive type I is considered as
a constructor of I, in [42], where HORPO is used, the standard vision of
constructors as symbols that do not rewrite is adopted.

In both works, strong normalization is shown using the method of re-
ducibility candidates. In [42] the proof is done not for a particular rewrite
system accepted by HORPO, but for the whole HORPO itself. In other
words, the calculus of constructions is extended with the rewrite relation
generated by all valid HORPO judgments and it is shown that the result-
ing calculus is strongly normalizing. This implies strong normalization of
any set of rewrite rules accepted by HORPO. In [6] the proof is done for
any set of rules accepted by the General Schema.

An important characteristic of the General Schema is the possibility
to define rewriting rules at the level of types and not only at the level
of objects. This kind of rewriting enables to write, for example large
elimination rules for inductive types.

To deal with type-level rewriting, confluence is needed. For that rea-
son, all rules in [6] have to be left-linear (see Section 4). Extension to
type-level rewriting for HORPO cannot be shown this way, since HORPO
is obviously non confluent.

Practical issues. In order to be suitable for implementation, the termina-
tion criteria must have two important properties: decidability and com-
patibility with further extensions of environments.

9

Both, HORPO and General Schema, are decidable criteria for accept-
ing rewrite rules. Putting aside the convertibility tests, checking a rewrite
rule has a polynomial complexity.
Environment extension corresponds to rule 1 in Section 2 and accounts

for building one rewriting system on the top of another. Originally proofs
of strong normalizations for both criteria were done for the static setting:
signature, precedence on function symbols, and set of rewrite rules were
given in advance. But this can be adapted to the situation where a new
set of rewrite rules is defined for symbols from the new signature, and
type-checked with the calculus of construction extended with rewriting
coming from all previous rewrite systems.

Examples. Let us end this section with some examples explaining the
condition about different variables as type parameters of head function
symbols of the left-hand sides and illustrating what more can be done
concerning strong normalization.
The following identity rule for polymorphic map : forall A B:Set,

(A → B) → list A → list B can be accepted neither by HORPO nor
by the General Schema:

map C C λx.x l −→ l

In the General Schema approach rules have to be left-algebraic (cannot
contain abstractions) and this one is not. In HORPO, the condition on
type parameters is not satisfied, as map has the same variable as the first
and the second argument. Nevertheless, it is believed that it cannot break
strong normalization.
The following rule for the function symbol J is not accepted either:

Symbol J : forall A B:Set, A → B → A
Rules
J C C a b −→ b

But this time it can be shown that this innocent-looking rule leads to
nontermination. This example derives from the one presented by J.-Y.
Girard in [27] and was shown to authors by Christine Paulin (see Chapter
6 in [42] for details concerning nontermination).
An evident difference between the two rules presented above is that

there exists a well-typed instance of J C a b the type of which is dif-
ferent from the type of the corresponding instance of b and that it is not
possible for map. Nevertheless HORPO from [42] cannot deal with the rule
map C λx.x l −→ l either since it requires both sides of the rules to
have the same type.

10

On the other hand the identity rule for monomorphic mmap : forall
A:Set, (A → A) → list A → list A:

mmap C λx.x l −→ l

satisfies the condition about different type variables. It is accepted by
HORPO and rejected by the General Schema, because it is not left-
algebraic.
The next example concerns the heterogeneous equality JMeq.

Inductive JMeq (A:Set)(a:A) : forall B:Set, B → Set :=
JMeq refl : JMeq A a A a.

The standard elimination scheme for this rule (JMeq std) does not satisfy
the condition about different type parameters and hence is rejected by
HORPO. But it is known to be terminating already from the works on
CIC (see [46] and also [7]).

Symbol JMeq_std : forall (A:Set)(a:A)(P : forall B:Set, B → Set),
P A a → forall (B:Set)(b:B), JMeq A a B b → P B b
Rules
JMeq_std A a P h A a (JMeq refl A a) −→ h

However, its nonstandard (and more useful) elimination scheme JMeq nstd
satisfies the condition on type parameters and can be shown terminating
by both HORPO and the General Schema.

Symbol JMeq_nstd : forall (A:Set)(a:A)(P:A → Set),
P a → forall (b:A), JMeq A a A b → P b
Rules
JMeq_nstd A a P h a (JMeq refl A a) −→ h

4 Confluence

Confluence of the calculus of constructions with rewriting is less studied
than strong normalization and it is known for two kinds of situations.
First, if strong normalization can be established without confluence (it is
the case for the object-level rewriting, see [6, 42]), then confluence is a con-
sequence of the strong normalization and local confluence, i.e. joinability
of critical pairs. If confluence is needed before the strong normalization
proof then the result of [33] can be used. It states that the sum of beta
reduction with confluent left-linear and left-algebraic rewrite system R
is confluent. Confluence of R (without beta reduction) is usually simpler

11

to achieve; in [6] it is shown for every R being a combination of a first-
order system that is strongly normalizing and nonduplicating with a set
of first- and higher-order rules satisfying the General Schema and such
that critical pairs of R are joinable.
Left-linearity may seem an important restriction when using depen-

dent types, but it is not really the case. In fact, nonlinearities due to typ-
ing can be avoided using underscore variables, like described in Section 2.
Nevertheless, if one aims to deal with type-level rewriting, both type-
and object-level rules have to be left-linear and left-algebraic. In order to
lift this restriction one should probably consider a simultaneous proof of
strong normalization and confluence.

5 Logical Consistency, Completeness of Definitions and
Inductive Consequences

Adding arbitrary rewrite rules to the calculus of constructions may easily
lead to logical inconsistency, just like adding arbitrary axioms. It is of
course possible to put the responsibility on the user, but it is contrary
to the current Coq policy to guarantee consistency of a large class of
developments, namely those which do not contain axioms. Since we plan
on using rewriting as a principal means of defining functions, we have
to come up with a large decidable class of rewriting systems that are
guaranteed not to violate consistency.
Logical consistency for the calculus of constructions with rewriting

was first studied in [10]. It was shown under an assumption that for every
symbol f defined by rewriting, f(t1, . . . , tn) is reducible if t1 . . . tn are
terms in normal form in the environment consisting of one type variable.
But there were no details how to satisfy the assumption of the consistency
lemma.
In [45] it is shown that logical consistency is an easy consequence

of canonicity, which can be proved from completeness of definitions by
rewriting (discussed below), provided that termination and confluence
are proved first. More precisely, it can be shown that in every environ-
ment consisting only of inductive definitions and complete definitions by
rewriting, every term of an inductive type can be reduced to a canonical
form. This, by an easy analysis of normal forms, implies that there is no
proof of Πx :∗.x.

Completeness of definitions by rewriting. Informally, a definition by rewrit-
ing of a function symbol f is complete if the goal f(x1, . . . , xn) is covered,

12

which means that all its canonical instances are head-reducible. In [45]
the definition of completeness is precised in such a way that it guarantees
logical consistency and there exist a sound and terminating algorithm for
checking completeness of definitions.
If we adopt the view that properties of a rewriting system should

be checked when it is being introduced to an environment (see typing
rule 1 in Section 2), then completeness of the function symbol f has to
be checked much earlier than it is used: one uses it in an environment
E = E1;Rew(f,R);E2 but it has to be checked when f is added to the
environment, i.e. in the environment E1. It follows that completeness
checking has to account for environment extension and can be performed
only with respect to arguments of such types which guarantee that their
set of normal inhabitants would not change in the future. This is the case
for inductive types whose normal inhabitants are always terms built from
constructors.
In [45] there is also an algorithm for checking completeness. It checks

that a goal is covered using successive splitting, i.e. replacement of vari-
ables of inductive types by constructor patterns. In presence of dependent
types not all constructors can be put in every place. The head function
below is completely defined since nnil is not of type nlist (S n).

Symbol head : forall n:nat, nlist (S n) → bool
Rules
head n (ncons b n l) −→ b

The algorithm is necessarily incomplete, since in the presence of de-
pendent types emptiness of types trivially reduces to completeness and
the former is undecidable. The algorithm accepts all definitions that follow
dependent pattern matching schemes presented by Coquand and studied
by McBride in his PhD thesis. Extended with the second run, it deals with
all usual definitions by case analysis in Coq. It also accepts many defini-
tions by rewriting containing rules which depart from standard pattern
matching.
The rewriting systems for +, append, map, JMeq std, JMeq nstd pre-

sented earlier can be easily proved complete by the algorithm. This is also
true for Streicher’s axiom K:

Symbol K : forall (A:Set) (a:A) (P:eq A a a → Set),
P (refl A a) → forall p: eq A a a, P p

Rules
K A a P h (refl A a) −→ h

13

Another method for checking completeness of pattern matching equa-
tions in the Calculus of Constructions is presented in [34]. It consists in
computing approximations of inductive types and is not based on split-
ting; for that reason it accepts some of the examples not accepted by the
algorithm described above. Fortunately, it seems that the approximation
method can be easily added to the algorithm from [45] as another phase,
if the original version fails to show completeness.

Inductive consequences. During the completeness check of a definition by
rewriting only some of the rules are used; usually they correspond to the
pattern matching definition of a given symbol. An interesting question is
how much the rules outside this part extend the conversion.
For first-order rewriting it is known that these rules are inductive con-

sequences of the pattern matching ones, i.e. all their canonical instances
are satisfied as equalities (see e.g. Theorem 7.6.5 in [40]). It is also true for
higher-order and dependent rewriting in the calculus of constructions as
long as there is no rewriting under a binder in the rewrite steps needed to
join the critical pairs [44]. For example, the identity rule for the monomor-
phic mmap function from Section 3 is clearly an inductive consequence of
the basic rules for nil and cons.
Unfortunately, the problem is more difficult for higher-order rules over

inductive types with functional arguments. The defined function symbol
might get under a binder and might be applied to a bound variable instead
of a canonical term on which it is always reducible. Here is an example:

Inductive ord : Set :=
o : ord
| s : ord → ord
| lim : (nat → ord) → ord.

Rewriting n2o : nat → ord
Rules
n2o O −→ o
n2o (S x) −→ s (n2o x)

Rewriting id : ord → ord
Rules
id o −→ o
id (s x) −→ s (id x)
id (lim f) −→ lim (fun n ⇒ id (f n))

id (id x) −→ id x

The last rewriting system is confluent (unlike the one in which the last
rule is replaced with id x −→ x because the critical pair for x=(lim f)

14

needs eta to be joinable). Now, for l = id (id x), r = id x, σ = {x 7→
lim (fun n ⇒ n2o n)} one has:

lσ = id (id (lim (fun n ⇒ n2o n)))
−→ id (lim (fun n’ ⇒ id ((fun n ⇒ n2o n) n’)))
−→ id (lim (fun n’ ⇒ id (n2o n’)))
−→ lim (fun n’’ ⇒ id ((fun n’ ⇒ id (n2o n’)) n’’))
−→ lim (fun n’’ ⇒ id (id (n2o n’’)))

rσ = id (lim (fun n ⇒ n2o n))
−→ lim (fun n’ ⇒ id ((fun n ⇒ n2o n) n’))
−→ lim (fun n’ ⇒ id (n2o n’))

and they are not equal.
It seems that in case when critical pairs are joinable using rewriting

under a binder, rules that are outside definitional part can also be consid-
ered as inductive consequences of the definition, but then the conversion
needs to be functionally extensional (similarly to [34]) and some special
care should be payed to the contexts under which rewriting occurs.

Summarizing, in many rewriting systems, especially simple ones, defining
functions over non-functional inductive types, additional rules are induc-
tive consequences of the complete subsystem. In other rewriting systems,
even if we are not sure that this is the case, by [10, 45], a terminating,
confluent and complete rewriting system cannot lead to inconsistency.
In practice it would be best to have two different keywords for com-

plete and “not necessarily complete” definitions by rewriting. For ex-
ample, the keyword Complete Symbol would mean that the set of rules
must be checked for completeness by Coq and rejected if its completeness
cannot be proved. The keyword Symbol (without Complete) would not
incur any completeness checking and the user would understand that the
responsibility for consistency in entirely in his hands.

6 Modularity

A very important issue in an interactive system like Coq is modularity.
Coq developments are usually composed of many files and use the stan-
dard library or some libraries developed by third parties.
Once the given library file is checked, Coq metatheory guarantees

that the compiled library can be read and included in any development
without risking undecidability or logical inconsistency (the latter provided
that there are no axioms in the library or the development).

15

In order to retain this status once rewriting is added to Coq one must
be very careful to ensure good modularity properties on the rewriting
systems included in library files.
In particular it should be impossible to define a rewrite rule f(x) −→

g(x) in one file and g(x) −→ f(x) in another one, because loading these
two files together would break strong normalization. Although it is pos-
sible to design a new version of Coq in such a way that the whole set of
rewriting rules is rechecked every time a new library is loaded, it would
be very time consuming and therefore it is not a good solution.
Instead, the acceptance criteria for rewrite rules should take modular-

ity into consideration. In other words, the following lemma should hold
even if there are some definitions by rewriting in E1, E2 and/or J :

For all judgments J , if E;E1 ` J and E;E2 ` ok then E;E1;E2 ` J .

In practice, many modularity problems are avoided by allowing only
rewrite definitions Rew(Γ, R) whose head symbols of the left hand sides
of rules come from Γ . It is the case in all examples given in Section 2.

The module system. Additional modularity requirements for definitions
by rewriting come from the module system. The Coq module system [15,
16] was designed with adding rewriting in mind. In particular, even though
more theoretically advanced module systems existed at the time it was im-
plemented (first-class modules, anonymous modules [38, 22, 23]), a simple
named version was chosen, similar to [30], where each module construct
must be given a name before being used in terms. Thanks to that, exist-
ing syntactic acceptance criteria (see Section 3) can be easily adapted to
modules.
The module language resembles a simply typed lambda calculus with

records and record types. A very important feature is module subtyping,
with its subsumption rule permitting to give a less precise type to a
module.

E ` M : T E ` T <: T ′

E ` M : T ′

This rule is useful in two cases. First, it permits to hide some implemen-
tation details of a module in order to be able to change them in the future
without affecting other parts of the project. Second, it permits to define
a functor with minimal requirements to its arguments and then apply it
to a module at hand with more elements and more precise interface.
Once rewriting is added to Coq, definitions by rewriting will be al-

lowed in module interfaces and in particular in argument types of functors.

16

Since functors can be applied to all modules whose interface is a sub-
type of the functor argument type, the subtyping on module interfaces
has to be extended to interfaces containing definitions by rewriting.
It is clear that the convertibility properties required by the functor

argument interface must be satisfied by the actual parameter’s interface.
Otherwise the functor result would not be well-typed.
In [16] no other restrictions on “rewriting-subtyping” are imposed.

Note however, that such liberal definition of subtyping implies very strict
modularity properties for the acceptance condition for definitions by rewrit-
ing. This means that the definition by rewriting must be guaranteed not
only to be terminating and confluent in the current environment, but also
in an environment, where some module type is replaced by a subtype. For
example consider the following module type and functor:

Module Type T.
Symbol g : bool → bool
Rules
g true → true.

End T.

Module F(X:T).
Symbol f : bool → nat.
Rules
f true −→ 0
f false −→ 0
f (X.g false) −→ 1.

End F.

The definition of f inside the functor F is confluent, because no reduc-
tion rules are associated with g false and hence there are no critical
pairs. Consider a possible implementation M of the module type T and the
application of F to M.

Module M <: T.
Symbol g : bool → bool
Rules
g true −→ true
g false −→ false.

End M.

Module Z := F M.

Now, the signature of Z is the same as the body of F, but the formal
parameter X is replaced by the actual parameter M. This gives the following
set of rules defining Z.f:

17

f true −→ 0
f false −→ 0
f (M.g false) −→ 1

which is non-confluent, because on one hand f (M.g false) −→ 1 and
on the other hand f (M.g false) −→ f false −→ 0.
It turns out that in presence of modules and subtyping, rewrite rules

where left-hand sides mentions external symbols whose specification may
still be completed is very dangerous. The easiest way to prevent this
danger is to restrict the left-hand sides of the rewrite rules to contain
only the symbols declared by the given rewrite definition. This is, again,
the case in all examples from Section 2.
Such restriction however turns out to be quite severe. Consider for

example defining mathematical functions over natural numbers. It might
be a good idea to add a rule defining how this function behaves for the
arguments of the form (a+b), but since + is not defined at the same time,
this is impossible. Since + is already completely defined it is unlikely to
introduce a new definition of + which would create more critical pairs.
This question, whether it is safe to allow external but completely

defined symbols in left hand sides of rewrite rules, definitely needs to be
studied further.

7 Extraction

The possibility to extract executable Ocaml, Haskell or Scheme code from
Coq developments is one of the key features of Coq [37, 31, 32]. In this
section we try to analyze the impact of introducing rewriting to Coq on
the extraction mechanism.
The general problem with rewriting is that it does not immediately

correspond to any mechanism present in functional languages. To extract
a definition of a symbol defined by rewriting it is important to check
whether this symbol is completely defined or not. If it is not, this means
that the symbol is like an axiom and its successful extraction is impossible.
If it is complete then, as we explained in Section 5, its definition

can be divided into two parts. The first part, which is a complete subset
containing the rules used by the completeness checking procedure, usually
consists of pattern matching rules. The second part is the remaining set
of rules which, in most cases, are inductive consequences of the first part.
These rules can also be called shortcut rules and they are only really
important if the function’s arguments are not ground terms, which is
never the case when a functional program is executed.

18

So it is enough to just translate those rules which have the pattern-
matching form and simply leave out all the others. The resulting definition
will include the complete definition and some of the shortcut rules which
have a pattern-matching form. Other shortcut rules should simply be
dropped or they can be transformed into rewrite rules for optimization,
available e.g. in the Glasgow Haskell Compiler.
For example the definition of + from Section 2 could be extracted to

the following Ocaml code:

(** val plus : nat → nat → nat **)

let rec plus n m =
match n, m with
| O, y → y
| x, O → x
| S x, y → S (plus x y)
| x, S y → S (plus x y);;

The second and fourth lines are not necessary for the completeness of
the translation. However, the second line can speed up the definition if
the second argument is O. Unfortunately, the fourth line is never used,
even though it could also speed the computation up. Indeed, any natural
number which does not match the first and the second rule, does match
the third one. The associativity rule for + is not extracted, as it is not in
the pattern-matching form.
The definition of append is extracted in the following way:

(** val append : nat → nat → nlist → nlist → nlist **)

let rec append n m ln lm =
match n, m, ln, lm with
| O, m, Nnil, lm → lm
| (S n0), m, Ncons (b, n0’, n1), lm →
Ncons (b, (plus n0 m), (append n0 m n1 lm))

| n, O, ln, Nnil → ln;;

A smart extraction procedure should also change the order of the second
and third rule, because otherwise one of the first two rules always applies
and the expected speed up from the third rule can never be achieved.
Note also, that an extracted function has the same number of arguments
as the original one, but the dependencies between them are broken. Con-
sequently, while append is complete in the Coq world, its extracted version
contains non-exhaustive pattern-matching, corresponding to unexpected
cases when the list and its declared length do not match. Note however

19

that the same problem it is already present for the extracted version of
definitions by fix and match in the current Coq.

8 Conclusions

The goal of this paper was to present our vision of rewriting in Coq and
to summarize the results already known in the field. We started from an
incremental character of the calculus of constructions with rewriting, the
form of the definitions by rewriting and matching used to apply rewrite
rules to terms. Then we discussed such issues as strong normalization,
confluence, logical consistency, completeness of definitions by rewriting,
modularity and extraction.
We hope that this paper can be a basis for a deeper/more detailed

discussion about rewriting in Coq, its future and its alternative views.
Moreover we hope that it can serve for comparisons with conceptually
different extensions of Coq, for example the one described in [13] aiming
at extending Coq with decision procedures.

Acknowledgements. We would like to thank Paweł Urzyczyn, Frédéric
Blanqui and the anonymous referees for their comments on the first ver-
sion of our paper.

References

1. Franco Barbanera. Adding algebraic rewriting to the calculus of constructions:
Strong normalization preserved. In Proceedings of the Second International Work-
shop on Conditional and Typed Rewriting, 1990.

2. Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of strong
normalization and confluence in the λ-algebraic-cube. In Proceedings of the Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 406–415, Paris,
France, July 1994. IEEE Comp. Soc. Press.

3. Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of
strong normalization in the algebraic-λ-cube. Journal of Functional Programming,
7(6):613–660, 1997.

4. Bruno Barras and Benjamin Grégoire. On the role of type decorations in the cal-
culus of inductive constructions. In L. Ong, editor, Proceedings of the 19th Annual
Conference of the European Association for Computer Science Logic, volume 3634
of Lecture Notes in Computer Science, pages 151–166, Oxford, UK, 2005. Springer.

5. Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. CICˆ: Type-based
termination of recursive definitions in the Calculus of Inductive Constructions. In
Miki Hermann and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence and Reasoning, 13th International Conference, Phnom Penh, Cambodia,
November 13-17, 2006, Proceedings, volume 4246 of Lecture Notes in Computer
Science, pages 257–271. Springer, 2006.

20

6. Frédéric Blanqui. Théorie des Types et Récriture. PhD thesis, Université Paris-
Sud, 2001.

7. Frédéric Blanqui. Inductive types in the Calculus of Algebraic Constructions. In
M. Hofmann, editor, Proceedings of 6th International Conference on Typed Lambda
Calculi and Applications, volume 2701 of Lecture Notes in Computer Science, Va-
lencia, Spain, 2003.

8. Frédéric Blanqui. Rewriting modulo in Deduction modulo. In R. Nieuwenhuis,
editor, 14th International Conference on Rewriting Techniques and Applications,
volume 2706 of Lecture Notes in Computer Science, Valencia, Spain, 2003. Sprin-
ger-Verlag.

9. Frédéric Blanqui. A Type-Based Termination Criterion for Dependently-Typed
Higher-Order Rewrite Systems. In V. van Oostrom, editor, Rewriting Techniques
and Applications, volume 3091 of Lecture Notes in Computer Science, pages 24–39.
Springer, 2004.

10. Frédéric Blanqui. Definitions by rewriting in the Calculus of Constructions. Math-
ematical Structures in Computer Science, 15(1):37–92, 2005.

11. Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. The Calculus
of Algebraic Constructions. In P. Narendran and M. Rusinowitch, editors, 10th
International Conference on Rewriting Techniques and Applications, volume 1631
of Lecture Notes in Computer Science, Trento, Italy, July 1999. Springer.

12. Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive data
type systems. Theoretical Computer Science, 272(1–2):41–68, 2002.

13. Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. Building de-
cision procedures in the calculus of inductive constructions. In Jacques Duparc
and Thomas A. Henzinger, editors, Computer Science Logic, 21st International
Workshop, CSL 2007, volume 4646 of Lecture Notes in Computer Science, pages
328–342. Springer, 2007.

14. Edwin Brady, Connor McBride, and James McKinna. Inductive families need not
store their indices. In S. Berardi, M. Coppo, and F. Damiani, editors, Types for
Proofs and Programs, TYPES 2003, volume 3085 of Lecture Notes in Computer
Science, pages 115–129. Springer, 2004.

15. Jacek Chrząszcz. Implementation of modules in the Coq system. In D. Basin
and B. Wolff, editors, Proceedings of the Theorem Proving in Higher Order Logics
16th International Conference, volume 2758 of Lecture Notes in Computer Science,
pages 270–286, Rome, Italy, September 2003. Springer.

16. Jacek Chrząszcz. Modules in Type Theory with Generative Definitions. PhD thesis,
Warsaw Univerity and University of Paris-Sud, Jan 2004.

17. Evelyne Contejean, Claude Marché, Benjamin Monate, and Xavier Urbain. CiME
version 2, 2000. Available at http://cime.lri.fr/.

18. The Coq proof assistant. http://coq.inria.fr/.
19. Thierry Coquand. Pattern matching with dependent types. In Proceedings of the
Workshop on Types for Proofs and Programs, pages 71–83, B̊astad, Sweden, 1992.

20. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In
P. Martin-Löf and G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

21. Cristina Cornes. Conception d’un langage de haut niveau de répresentation de
preuves. PhD thesis, Université Paris VII, 1997.

22. Judicaël Courant. A Module Calculus for Pure Type Systems. In Typed Lambda
Calculi and Applications 97, volume 1210 of Lecture Notes in Computer Science,
pages 112–128. Springer-Verlag, 1997.

21

23. Judicaël Courant. Un calcul de modules pour les systèmes de types purs. Thèse de
doctorat, Ecole Normale Supérieure de Lyon, 1998.

24. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo.
Journal of Automated Reasoning, 31(1):33–72, 2003.

25. Eduardo Giménez. Un Calcul de Constructions Infinies et son Application à la
Vérification des Systèmes Communicants. PhD thesis, Ecole Normale Supérieure
de Lyon, 1996.

26. Eduardo Giménez. Structural recursive definitions in type theory. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, 25th International Colloquium on Automata,
Languages and Programming, volume 1443 of Lecture Notes in Computer Science,
pages 397–408, Aalborg, Denmark, July 1998. Springer.

27. Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’élimination des coupures dans l’analyse et la téorie des types. In
J.E. Fenstad, editor, Proceedings of the 2nd Scandinavian Logic Symposium, pages
63–92. North-Holland, 1971.

28. Jean-Pierre Jouannaud and Mitsuhiro Okada. Executable higher-order algebraic
specification languages. In Proceedings of the Sixth Annual IEEE Symposium on
Logic in Computer Science, pages 350–361. IEEE Comp. Soc. Press, 1991.

29. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path order-
ing. In Giuseppe Longo, editor, Fourteenth Annual IEEE Symposium on Logic in
Computer Science, Trento, Italy, July 1999. IEEE Comp. Soc. Press.

30. Xavier Leroy. Manifest types, modules, and separate compilation. In Conference
Record of the 21st Symposium on Principles of Programming Languages, pages
109–122, Portland, Oregon, 1994. ACM Press.

31. Pierre Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, TYPES 2002, volume 2646 of Lecture
Notes in Computer Science. Springer, 2003.

32. Pierre Letouzey. Programmation fonctionnelle certifiée – L’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, Université Paris-Sud, 2004.

33. F. Müller. Confluence of the lambda calculus with left-linear algebraic rewriting.
Information Processing Letters, 41(6):293–299, 1992.

34. Nicolas Oury. Égalité et filtrage avec types dépendants dans le Calcul des Con-
structions Inductives. PhD thesis, Université Paris-Sud, 2006.

35. Catherine Parent. Developing certified programs in the system Coq - the Program
tactic. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs,
TYPES’93, volume 806 of Lecture Notes in Computer Science, pages 291–312.
Springer, 1994.

36. Christine Paulin-Mohring. Définitions inductives en théorie des types d’ordre
supérieur. Thèse d’habilitation, Ecole Normale Supérieure de Lyon, 1996.

37. Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the
system Coq. Journal of Symbolic Computation, 15:607–640, 1993.

38. Robert Pollack. Dependently typed records in type theory. Formal Aspects of
Computing, 13:386–402, 2002.

39. Matthieu Sozeau. Subset coercions in coq. In Types for Proofs and Programs,
TYPES 2006, Lecture Notes in Computer Science. Springer, 2007. To appear.

40. Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

41. Daria Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of con-
structions. In J. Despeyroux, editor, Proceedings of the 2nd Workshop on Logical
Frameworks and Meta-Languages, Santa Barbara, California, 2000.

22

42. Daria Walukiewicz-Chrząszcz. Termination of Rewriting in the Calculus of Con-
structions. PhD thesis, Warsaw University and University Paris XI, 2003.

43. Daria Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of con-
structions. Journal of Functional Programming, 13(2):339–414, 2003.

44. Daria Walukiewicz-Chrząszcz and Jacek Chrząszcz. Inductive con-
sequences in the calculus of constructions. Draft available at
http://www.mimuw.edu.pl/~chrzaszcz/papers/.

45. Daria Walukiewicz-Chrząszcz and Jacek Chrząszcz. Consistency and completeness
of rewriting in the calculus of constructions. In Automated Reasoning, Third In-
ternational Joint Conference, IJCAR 2006, Proceedings, volume 4130 of Lecture
Notes in Artificial Intelligence, pages 619–631. Springer, 2006.

46. Benjamin Werner. Méta-théorie du Calcul des Constructions Inductives. PhD
thesis, Université Paris VII, 1994.

23

