
Inductive Consequences in the Calculus of
Constructions?

Daria Walukiewicz-Chrząszcz and Jacek Chrząszcz

Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warsaw, Poland

{daria,chrzaszcz}@mimuw.edu.pl

Abstract. Extending the calculus of constructions with rewriting would
greatly improve the efficiency of proof assistants such as Coq. In this
paper we address the issue of the logical power of such an extension.
In our previous work we proposed a procedure to check completeness of
user-defined rewrite systems. In many cases this procedure demonstrates
that only a basic subset of the rules is sufficient for completeness. Now
we investigate the question whether the remaining rules are inductive
consequences of the basic subset.
We show that the answer is positive for most practical rewrite systems. It
is negative for some systems whose critical pair diagrams require rewrit-
ing under a lambda. However the positive answer can be recovered when
the notion of inductive consequences is modified by allowing a certain
form of functional extensionality.

1 Introduction

Theorem provers based on type theory and Curry-Howard Isomorphism, such
as Coq [9], are built on top of a powerful computing mechanism which is the
lambda calculus. The typing rule which allows for integration of computation
into the typing system is called the conversion rule.

Conversion is based on the terminating syntactic reduction relation, it is de-
cidable and hence rather weak. A separate, stronger propositional equality used
for reasoning is defined as an inductive predicate with no special treatment in
the typing systems. The negative consequences of such approach are the diffi-
culties in handling propositional equalities. For example, if addition is defined
by induction on the first argument then even though ∀x:nat, x+0 = x can be
proved by induction, the type vector (n+0) is not convertible to vector n while
vector (0+n) is.

One solution is to look for new type theories where equality has better rea-
soning properties without compromising its computational properties [20,2,1].
Another approach is to try to put more power in the computation part, either
by adding specific decision procedures to the existing conversion relation, e.g.

? This work was partly supported by Polish government grant N N206 355836.

congruence closure [6], or simply extending the reduction mechanism with user-
defined rewriting rules. This paper is concerned with the latter possibility.

Of course adding arbitrary rewrite rules may easily break strong normaliza-
tion or confluence and hence compromise good meta-theoretical properties of the
formalism. Since these properties are undecidable for rewriting systems, there are
a number of incomplete decidable criteria that ensure termination and that are
flexible enough to be met by many useful rewriting systems [3,5,4,16,17]. Once
termination is established an easy test of joinability of critical pairs can tell if the
rewriting system is also confluent. A terminating and confluent rewriting system
leads to the decidable conversion—it is sufficient to syntactically compare the
unique normal forms of inspected terms.

There are two most important roles a rewriting system may play in a theorem
prover. First, it can provide a means to decide e.g. a word problem in certain
axiomatic theories, for example in group theory. Second, it can be used to define
functions, similarly to definitions by pattern matching, but in a more straightfor-
ward way. Moreover, a definition by rewriting can contain rules which add more
equations to conversion compared to a regular definition by pattern matching.
Consider again the addition on unary natural numbers. Using rewriting one can
define it in a symmetric way and even include associativity, therefore making
the conversion richer and hence the proofs shorter and more automatic.

O + y −→ y x + O −→ x
(S x) + y −→ S (x + y) x + (S y) −→ S (x + y)

(x + y) + z −→ x + (y + z)

In order to trust a proof developed with the help of a proof assistant, one must
make sure the development is logically consistent. One can show that it is the
case for all developments in which there are no axioms and all definitions by
rewriting are complete, i.e. the functions they define are total [4,18]. An auto-
matic procedure to check completeness of definitions by rewriting is also provided
in our paper [18].

It turns out that in many cases this procedure uses only a subset of the rules
given by the user, demonstrating that this basic subset is already complete.
The basic subset roughly corresponds to a definition by cases one can write for
example in Coq or a definition using recursors. In this paper we analyse the
logical power of the rules that are outside the basic subset to understand how
strong can be the generated conversion relation. These additional rules seem to
be quite arbitrary even though we know that the whole set of rules is terminating
and confluent. Throughout this paper we investigate the question whether the
additional rules are inductive consequences of the basic subset.

In the example given above, the set of five rules is strongly normalizing and
confluent. The additional three rules (in the right column) are indeed inductive
consequences of the basic complete system (in the left column) because all con-
structor instances of their respective left- and right-hand sides are joinable using
the basic set of rules. This can be generalized to all first order rewriting systems
(see e.g. Theorem 7.6.5 in [15]).

2

The standard notion of an inductive consequence [10], meaning an equation
which is valid for all ground instances, must of course be adapted to the higher-
order setting. Instead of ground instances, we use instances typable in closed
environments. Our proof technique works by analysing critical pairs formed by
additional rules with rules from the basic complete subsystem. In order to trans-
fer the critical pair diagrams to the typed context we impose some slight restric-
tions on the form of rules and critical pairs.

The first result of the paper concerns the majority of useful rewriting sys-
tems: if confluence of critical pairs can be proved without rewriting under a
binder, additional rules are inductive consequences of the basic subset (Sec-
tion 6, Theorem 1). This of course includes all first order rewriting systems, but
also definitions over dependently typed symbols and higher-order functions as
used in functional programming languages.

The situation is more difficult when rewriting under a binder is necessary to
join the critical pair diagrams (Section 7). This is usually the case for functions
defined over functional inductive types. To get the positive result in this case
(Theorem 2), we must modify the notion of inductive consequences, allowing
for a more lax comparison of functional terms, similar in spirit to functional
extensionality. Otherwise there are examples where closed instances of left- and
right-hand sides of additional rules are not joinable using the basic subset.

From the perspective of a proof assistant user, our results are reassuring
about relevance of definitions by rewriting with additional rules. Indeed, for a
given definition by rewriting, if the additional rules are shown to be inductive
consequences, it means they are valid equations on closed terms, even if they are
not necessarily provable as lemmas. Another motivation concerns extraction [12]
in a system with rewriting. Although the extraction mechanism can only treat
rules which resemble pattern matching, it turns out that the others do not affect
the results of computation even for higher order and polymorphic functions.

This paper is the full version of [19]. In the appendix, there are all proofs
and examples that have been removed from [19] due to space limitation.

2 Motivating examples

In a future version of Coq with rewriting, apart from definitions, axioms and
inductive definitions, a user would be allowed to enter definitions by rewriting,
even for higher-order and polymorphic functions:1

Inductive list (A:Set) : Set := nil | cons : A → list A → list A
Symbol map : forall A:Set, (A → A) → list A → list A
Rules
map A f (nil A) −→ nil A
map A f (cons A a l) −→ cons A (f a) (map A f l)
map A (fun x ⇒ x) l −→ l
Parameter l : list nat.
1 The syntax of the definition by rewriting is inspired by the experimental “recriture”

branch of Coq developed by Blanqui. For the sake of clarity we omit certain details,
like environments of rule variables.

3

The above fragment can be interpreted as an environment consisting of the
inductive definition of lists, a definition by rewriting of the map function and the
declaration of a variable l of type list nat. In this environment all rules for
map contribute to conversion. They form a terminating and confluent rewriting
system in which the first two rules completely define map. The third rule is an
inductive consequence of the first two (by Theorem 1) and, transformed into
equation, can be proved by induction.

Even though we consider higher-order rewriting, we choose the simple match-
ing modulo α-conversion to match a rule to a term. Higher-order matching is
useful for example to encode logical languages by higher-order abstract syntax,
but it is seldom used in Coq where modeling relies rather on inductive types.

Let us consider another example, the inductive identity function on Brouwer’s
ordinals:

Inductive ord : Set :=
o : ord | s : ord → ord | lim : (nat → ord) → ord.

Symbol id : ord → ord
Rules
id o −→ o
id (s x) −→ s (id x)
id (lim f) −→ lim (fun n ⇒ id (f n))
id (id x) −→ id x

This set of rules is also terminating and confluent and the first three rules com-
pletely define id. The fourth rule says that id is an idempotent function. This
time, because ord is a functional inductive type, the fourth rule cannot be proved
to be an inductive consequence of the first three without weakening the notion
of inductive consequences. This example will be discussed in details in Section 7.
Note however that ∀x : ord, id (id x) = x can be proved in Coq assuming the
functional extensionality axiom ∀f g : A→ B, (∀x :A, f x = g x)→ f = g.

The last example in this section is the substitutivity property of equality:

Inductive eq (A:Set)(a:A) : A → Prop := refl : eq A a a.

Symbol subst : forall (A: Set)(P: A → Set)(a b: A)(p: eq A a b)(x: P a), P b
Rules
subst A P a a (refl A a) x −→ x
subst A P a a p x −→ x

This set of rules is also terminating and confluent and already the first rule
completely defines subst. The second rule is an inductive consequence of the first
one (by Theorem 1) but this time the corresponding equality lemma subst eq
∀(A : Set)(P : A → Set)(a : A)(p : eq Aa a)(x : P a), substAP a a p x = x, is
unprovable in the environment where we have only the standard (like in Coq)
elimination of equality. Indeed, one can show2 that subst eq implies Streicher’s
axiom K which is not derivable from the standard elimination of equality [11].

2 See for example http://coq.inria.fr/stdlib/Coq.Logic.EqdepFacts.html

4

http://coq.inria.fr/stdlib/Coq.Logic.EqdepFacts.html

3 Pure type systems with generative definitions

Even though most papers motivated by the development of Coq concentrate on
the calculus of constructions, we present here a slightly more general formaliza-
tion of a pure type system with inductive definitions and definitions by rewriting.
The presentation, taken from [7,8,18], is quite close to the way these elements
are and could possibly be implemented in Coq. The formalism is built upon a
set of PTS sorts S, a binary relation A and a ternary relation R over S govern-
ing the typing rules (Term/Ax) and (Term/Prod) respectively (Fig. 1). The
syntactic class of pseudoterms is defined as follows:

t ::= v | s | (t1 t2) | (λv : t1.t2) | (∀v : t1.t2)

A pseudoterm can be a variable v ∈ Var , a sort s ∈ S, an application, an
abstraction or a product. Pseudoterms are identified with finite labelled trees; a
λv and a ∀v are binary nodes with the first child corresponding to the type of
the variable v and the second to the body of the abstraction (product).

Positions are strings of positive integers. The subterm of t at position p is
denoted by t|p while t1[t2]p stands for the result of replacing t1|p with t2 in t1.
We use FV (t) to denote the set of free variables of a term t. For convenience we
assume that all bound variables are different and are different from the free ones.

We use Greek letters γ, δ to denote substitutions which are finite partial maps
from variables to pseudoterms. The postfix notation is used for the application
of substitutions. We write [t/x] for the substitution of t to a variable x.

Inductive definitions and definitions by rewriting are generative, i.e. they
are stored in the environment and are used in terms only through names they
“generate”. An environment is a sequence of declarations, each of them is a
variable declaration v : t, an inductive definition Ind(Γ I := ΓC), where Γ I and
ΓC are environments providing names and types of (possibly mutually defined)
inductive types and their constructors, or a definition by rewriting Rew(Γ,R),
where Γ is an environment providing names and types of (possibly mutually
defined) function symbols and R is a set of rewrite rules defining them. A rewrite
rule is a triple denoted by G ` l −→ r, where l and r are pseudoterms and G is
an environment, assigning types to variables occurring in the left- and right-hand
sides l and r. Each l is of the form f(l1, . . . , ln) where f ∈ Γ .

Given an environment E, inductive types, constructors and function symbols
declared in E are called constants (even though syntactically they are variables).
General environments are denoted by E and the environment containing only
variable declarations are denoted by Γ , ∆, G, D. We assume that names of
all declarations in environments are pairwise disjoint. The set of all variables
declared in an environment Γ is denoted by dom(Γ).

Given a term t and a position p, we write Γ (t, p) to denote the environment
of variables that are bound in t on the path from the root to p.

Definition 1. A pure type system with generative definitions is defined by the
typing rules in Fig. 1, where:

5

Let Γ I = I1 : tI1 . . . In : tIn and ΓC = c1 : tC1 . . . cm : tCm

E ` tIj : sj tIj = ∀−−−−→(z : Zj) s′
j for j = 1 . . . n

E;Γ I ` tCi : ŝi tCi = ∀
−−−−→
(z : Z′

i) Iji ~w for i = 1 . . .m

E ` Ind(Γ I := ΓC) : correct
if POSE(Γ I := ΓC)

Let Γ = f1 : t1 . . . fn : tn and R = {Gi ` li −→ ri}i=1...m, where
Gi = xi

1 : ti1; . . . ;x
i
ni

: tini

E ` tk : sk for k = 1 . . . n

E;Gi ` ok FV (li, ri) ⊆ Gi for i = 1 . . .m

E ` Rew(Γ,R) : correct
if ACCE(Γ,R)

ε ` ok
E ` ok E ` t : s
E; v : t ` ok

E ` ok E ` Ind(Γ I := ΓC) : correct
E; Ind(Γ I := ΓC) ` ok

E ` ok E ` Rew(Γ,R) : correct
E;Rew(Γ,R) ` ok

E1; v : t;E2 ` ok
E1; v : t;E2 ` v : t

E ` ok
E ` Ii : tIi

E ` ok
E ` ci : tCi

where

8<:
E = E1; Ind(Γ I := ΓC);E2

Γ I = I1 : tI1 . . . In : tIn
ΓC = c1 : tC1 . . . cm : tCm

E ` ok
E ` fi : ti

E ` ok δ : Gi → E

E ` liδ −→R riδ
where

8<:
E = E1;Rew(Γ,R);E2

Γ = f1 : t1 . . . fn : tn
R = {Gi ` li −→ ri}i=1...m

(Term/Prod)
E ` t1 : s1 E; v : t1 ` t2 : s2

E ` ∀v : t1.t2 : s3
where (s1, s2, s3) ∈ R

(Term/Abs)
E; v : t1 ` e : t2 E ` ∀v : t1.t2 : s

E ` λv : t1.e : ∀v : t1.t2

(Term/Ax)
E ` ok

E ` s1 : s2
where (s1, s2) ∈ A

(Term/App)
E ` e : ∀v : t1.t2 E ` e′ : t1

E ` e e′ : t2{v 7→ e′}

(Term/Conv)
E ` e : t E ` t′ : s E ` t ≈ t′

E ` e : t′

Fig. 1. Definition correctness, environment correctness and lookup, PTS rules

– The relation ≈ used in the rule (Term/Conv) is the smallest congruence
on well typed terms, generated by −→ which is the sum of beta and rewrite
reductions, denoted by −→β and −→R respectively (for the exact definition
see [8], Section 2.8).

– The notation δ : Γ → E means that δ is a well-typed substitution, i.e.
E ` vδ : tδ for all v : t ∈ Γ .

As in [17,4], recursors and their reduction rules have no special status and they
are supposed to be expressed by rewriting.

6

Assumptions. We assume that we are given a positivity condition POS for
inductive definitions and an acceptance condition ACC for definitions by rewrit-
ing. Together with the right choice of the PTS they must imply the following
properties:

P1 subject reduction, i.e. E ` e : t, E ` e −→ e′ implies E ` e′ : t
P2 uniqueness of types, i.e. E ` e : t, E ` e : t′ implies E ` t ≈ t′.
P3 strong normalization, i.e. E ` ok implies that reductions of all well-typed

terms in E are finite
P4 confluence, i.e. E ` e : t, E ` e −→∗ e′, E ` e −→∗ e′′ implies E ` e′ −→∗ ê

and E ` e′′ −→∗ ê for some ê.

These properties are usually true in all well-behaved type theories. They are for
example all proved for the calculus of algebraic constructions [4], an extension of
the calculus of constructions with inductive types and rewriting, where POS is
the strict positivity condition as defined in [14], and ACC is the General Schema.

From now on, we use the notation t↓ for the unique normal form of t.

4 Completeness of definitions

The definitions given in this section correspond to the ones given in [18]. Here,
for the sake of clarity, we unfold and hence eliminate several auxiliary definitions.

Definition 2 (Canonical form and canonical substitution). Given a judg-
ment E ` e : t we say that the term e is in canonical form if and only if:

– if t↓ is an inductive type then e = c(e1, . . . , en) for some constructor c and
terms e1, . . . , en in canonical form

– otherwise e is arbitrary

Let ∆ be a variable environment and E a correct environment. We call δ : ∆→ E
canonical if for every variable x ∈ ∆, the term xδ is canonical.

Definition 3 (Complete definition). Let E be an environment and Rew(Γ,R)
a rewrite definition such that E ` Rew(Γ,R) : correct. The definition is com-
plete, which is denoted by COMPE(Γ,R), if and only if for all function symbols
f : (x1 : t1) . . . (xn : tn) t ∈ Γ , all environments E′ and all canonical substitu-
tions δ : (x1 : t1; . . . ;xn : tn) → (E;Rew(Γ,R);E′), such that all terms xiδ are
in normal form, the term f(x1δ, . . . xnδ) is head-reducible by R.

Below we recall Definition 4.5 and Lemma 4.6 from [18].

Definition 4 (Closed environment). An environment E is closed if and only
if it contains only inductive definitions and complete definitions by rewriting, i.e.
for each partition of E into E1;Rew(Γ,R);E2 the condition COMPE1(Γ,R) is
satisfied.

Lemma 1 (Canonicity). Let E be a closed environment. If E ` e : t and e is
in normal form then e is canonical.

7

Corollary 1. Let E be a closed environment such that E = E1;Rew(Γ,R);E2.
Let f ∈ Γ and let t1, . . . , tn be terms such that E ` f(t1, . . . , tn) : t for some t.
Then f(t1, . . . , tn) is reducible.

In [18] we also give a sound and terminating, but necessarily incomplete,
algorithm that checks whether a rewrite definition is complete. In many cases
this algorithm demonstrates that only a basic subset of the rules is sufficient to
show completeness.

In the next sections we investigate the question whether the remaining rules
are inductive consequences of the basic subset.

5 Towards inductive consequences

In equational logic one says that s = t is an inductive consequence of a theory
E if for all closed substitutions σ the judgement E ` sσ = tσ holds (see for
example [10]).

If equational theories are generated by rewriting systems then the problem
of inductive consequences may be reformulated as follows: assuming R′ ⊇ R, are
the rules from R′ −R inductive consequences of the rules from R.

In our setting R′ is the set of rules given by the user, R is a confluent
and complete subsystem of R′ and the question is roughly whether for all rules
l→ r ∈ R′ −R and all closed substitutions σ, we have E;Rew(Γ,R) ` lσ ≈ rσ.

In order to show it one must find a sequence of reductions in E;Rew(Γ,R)
between lσ and rσ. The proof is done by induction on the sum of the reduction
ordering associated with E;Rew(Γ,R′) plus the suitable subterm relation. The
crucial reduction is the first one from lσ. It always exists because σ is closed,
l starts with a function symbol and E;Rew(Γ,R) is closed. The reduction takes
place either entirely in σ or overlaps with l. In the first case one easily gets a new
substitution σ′ such that lσ rewrites to lσ′ and rσ to rσ′, and one can use the
induction hypothesis.

In the second case l and the left-hand side of some rule from E;Rew(Γ,R)
overlap and one gets an instance of a critical pair of R′. Since R′ is confluent
and terminating, its critical pairs are joinable. Following the critical pair dia-
gram one replaces each R′ step (which is smaller than lσ), with a sequence of
R steps obtained from the induction hypotheses. In the end one gets the complete
R sequence from lσ to rσ.

The usual critical pairs are defined for untyped terms using syntactic uni-
fication. The latter has several good properties: it is decidable and it does not
introduce new variables.

In order to transfer a critical pair diagram from untyped terms and untyped
rewriting to typable terms and rewriting in a PTS, we must slightly restrict
the form of rules, which must be left-algebraic (Definition 5), and critical pairs,
which must be type compatible (Definition 8). In particular we must be able to
compute the types of variables that appear in the left-hand sides of the rules and
to check whether these types are compatible (Definition 7) with what is written
in the local environments of the rules.

8

Definition 5 (Algebraic terms, left-algebraic rules). A term is algebraic
if every free variable that appears in it is an argument of a constant symbol.
A rule G ` l −→ r is left-algebraic if l is algebraic.

Definition 6 (Computed type). Let t be an algebraic term, p a position and
c : ∀−−−−→(z : Z).tc a constant such that t|p = c(~a) for some ~a. For a given j the
computed type for a term t|p·j, denoted by CT (t|p·j), is Zj [a1/z1, . . . aj−1/zj−1].

Definition 7 (Type compatibility). An environment G is type compatible
with an algebraic term t if for every x : T ∈ G there is a position q such that
t|q = x and T = CT (t|q).

An environment G is type compatible with a term t if computed types for
free variables of t agree with G. It can be understood as a weaker version of
typability of t in G.

A well-typed instance of an algebraic, possibly untypable term equipped with
a type compatible environment defines a well-typed substitution.

Lemma 2 (Well-typed substitution from well-typed term). Let t be an
algebraic term, G an environment type compatible with t and let ρ be a substitu-
tion such that G′ ` tρ : U for some U. Then ρ : G→ G′ is well-typed.

For our needs we equip each critical pair with an environment of variables
that appear in the pair and we impose the type compatibility assumption on
this environment.

Definition 8 (Critical pairs for R′ wrt R, type compatibility). Critical
pairs for R′ wrt R are critical pairs for every G ` l −→ r ∈ R′ and every
D ` g −→ d ∈ E;Rew(Γ,R) computed using syntactic unification. Critical pairs
of G ` l −→ r and D ` g −→ d are tuples (rθ, lθ[dθ]p, ∆) for all positions p
such that there exists the most general unifier θ unifying l|p and g and where ∆
is the subset of G;D, such that dom(∆) = FV (lθ)

A critical pair is type compatible if ∆ is type compatible with lθ.

Lemma 3 (Unification of left-algebraic rules). Let G ` l −→ r and D `
g −→ d be left-algebraic rules, p a position in l and θ the most general syntactic
unifier of l|p and g. Then lθ is algebraic.

In the next two sections we prove inductive consequence theorems for two
kinds of rewriting systems. Section 6 adresses the case of rewriting on non-
functional inductive types and Theorem 1 is an extension of results known for
first order rewriting. This covers the majority of practical cases, in particular all
examples from this paper apart from the definition by rewriting of id on ord.
Section 7 concerns rewriting on functional inductive types.

9

6 Inductive consequences

For the rest of this section let us assume that E is a closed environment such
that ACCE(Γ,R) and COMPE(Γ,R) and that R′ ⊇ R extends R with some
additional rules in such a way that ACCE(Γ,R′) holds.

At the end of this section Theorem 1 states that in the closed environment
E;Rew(Γ,R) the rules from R′−R are inductive consequences of the rules from
E;Rew(Γ,R) under the assumption that all applications of rules from R′−R in
the critical pair diagrams occur on free positions.

Definition 9 (Free position). Let t be a term. A position q is free in t if t|q
is not in the scope of any bound variable from t.

Definition 10 (Free rewriting). A term s free rewrites to t in the rewriting

system R′ − R, denoted by E;Rew(Γ,R) ` s 6λR
′

−→R′−R t, if there exists a rule
G ` l −→ r ∈ R′ − R a substitution γ : G→ (E;Rew(Γ,R)) and a free position
q in s such that s|q = lγ and t = s[rγ]q.

Definition 11 (6λR′-rewriting). A term s 6λR′-rewrites to t, which is denoted

by E;Rew(Γ,R) ` s 6λR
′

 t, if either E;Rew(Γ,R) ` s −→ t or E;Rew(Γ,R) `
s
6λR′−→R′−R t.

In other words 6λR′-rewriting consists in rewriting in the environment E;Rew(Γ,R)
with rules from E;Rew(Γ,R) or beta in any context and using rules from R′−R
only on free positions.

Definition 12 (6λR′-joinability of critical pairs, critical pairs diagram).
We say that (u, v,∆), a critical pair for R′ wrt R, is 6λR′-joinable if it is type

compatible and there is a term e such that ∆ ` u 6λR
′

 ∗e and ∆ ` v 6λR
′

 ∗e and
if for every R′ − R rewrite step ∆ ` s[l′γ]p −→ s[r′γ]p in these sequences the
substitution γ : G′ → ∆ and the term l′γ are well-typed, where G′ is the local
environment of G′ ` l′ −→ r′ ∈ R′ −R.

The terms u, v, e (with environment ∆) and the aforementioned reductions
between them are called a critical pair diagram.

Note that we do not assume that all terms in the critical pair diagrams are
typable.

Definition 13 (6λ-subterm). Let t be a term. The term s = t|q is a 6λ-subterm
of t, denoted by tD 6λ s, if q is free in t.

It is well-known that the sum of B 6λ and any relation that is well-founded and
stable by context is also well-founded.

Theorem 1. Suppose that critical pairs for R′ wrt R are 6λR′-joinable. Then
for every rule G ` l −→ r ∈ R′ − R and substitution σ : G → (E;Rew(Γ,R)),
such that E;Rew(Γ,R) ` lσ : T for some T , one has E;Rew(Γ,R) ` lσ ≈ rσ.

10

Proof. By induction on (−→ ∪ B6λ) where −→ is the reduction relation corre-
sponding to the environment E;Rew(Γ,R′)3. The relation −→ is well-founded
by assumption ACCE(Γ,R′).

Since E;Rew(Γ,R) is closed and lσ is typable, by Corollary 1 the term lσ is
reducible. There are two possibilities. If the reduction takes place in the substi-
tution then there exists a variable z such that z : Z ∈ G and E;Rew(Γ,R) `
zσ −→ t′ for some t′. Let us define σ′ to be σ′(x) = σ(x) for x 6= z and σ′(z) = t′.
The substitution σ′ is well-typed since by subject reduction E;Rew(Γ,R) `
t′ : Zσ′. The term lσ′ is also well-typed by subject reduction, since obvi-
ously E;Rew(Γ,R) ` lσ −→+ lσ′. By induction hypothesis applied to lσ′ we
have E;Rew(Γ,R) ` lσ′ ≈ rσ′. We have also E;Rew(Γ,R) ` lσ ≈ lσ′ and
E;Rew(Γ,R) ` rσ ≈ rσ′ because they result from rewriting with R. By transi-
tivity of ≈ we conclude that E;Rew(Γ,R) ` lσ ≈ rσ.

Otherwise, there is a rule D ` g −→ d coming from E;Rew(Γ,R) that has
a critical pair with G ` l −→ r at position p in l. It means that there exists θ,
the most general substitution unifying l|p and g, and ρ, such that σ = θρ,
and that the critical pair equals (lθ[dθ]p, rθ,∆) where dom(∆) = FV (lθ). Then

E;Rew(Γ,R) ` lσ
6λR′−→R′−R rσ and E;Rew(Γ,R) ` lσ −→ lθ[dθ]pρ. Let us

denote lθ[dθ]p by l̂. Since critical pairs are joinable there exists a term e such

that E;Rew(Γ,R) ` rσ 6λR
′

 ∗eρ and E;Rew(Γ,R) ` l̂ρ 6λR
′

 ∗eρ.
The term lθ may be not well-typed but it is algebraic by Lemma 3. We know

that the term lθρ is well-typed. By Lemma 2, this implies that ρ is a well-typed
substitution from ∆ to E;Rew(Γ,R).

Every R′ − R step on the path from rσ = rθρ or l̂ρ to eρ is of the form

E;Rew(Γ,R) ` sρ
6λR′−→R′−R tρ where s = s[l′γ]q, t = s[r′γ]q for some free

position q, a rule G′ ` l′ −→ r′ ∈ R′ − R, and a substitution γ : G′ → ∆ such
that l′γ is well-typed in ∆. Of course sρ = sρ[l′γρ]q. Since ρ : ∆→ E;Rew(Γ,R)
is well-typed, the substitution γρ and the term l′γρ are also well-typed. Hence
we may apply the induction hypothesis to l′γρ (since it is smaller than lσ in
(−→ ∪B 6λ)+) and get E;Rew(Γ,R) ` l′γρ ≈ r′γρ. Since ≈ is stable by context,
E;Rew(Γ,R) ` sρ ≈ tρ also holds. Obviously, all rewriting steps corresponding
to E;Rew(Γ,R) can be replaced by conversion. Hence E;Rew(Γ,R) ` rσ ≈ eρ

and E;Rew(Γ,R) ` l̂ρ ≈ eρ. Of course we have also E;Rew(Γ,R) ` lσ ≈ l̂ρ

because lσ rewrites to l̂ρ using a rule from R. Consequently by transitivity and
symmetry of ≈ we get the desired conclusion E;Rew(Γ,R) ` lσ ≈ rσ.

7 Functional inductive consequences

Like in the previous section let us assume that E is a closed environment such
that ACCE(Γ,R) and COMPE(Γ,R) and that R′ ⊇ R extends R with some
additional rules in such a way that ACCE(Γ,R′) holds.

3 Since R-normal canonical forms are not necessarily R′-normal, straightforward R-
normalization of lσ and rσ does not always lead to equal terms.

11

Like before the goal of this section is to check the power of rules from R′−R
with respect to those already present in R. The main difference is that now we
allow for systems whose critical pairs need at least one step of rewriting under a
binder. This is often the case when considering rewrite rules involving functional
inductive types.

Let us consider the ord example from Section 2. The rules for id are strongly
normalizing and confluent. However, to join the critical pair between the 4th and
the 3rd rule of id one needs rewriting under an abstraction

id (id (lim f)) −→ id (lim f) −→ lim (fun n ⇒ id (f n))
id (id (lim f)) −→ id (lim (fun n ⇒ id (f n)))
−→+ lim (fun n ⇒ id (id (f n))) −→ lim (fun n ⇒ id (f n))

It is easy to check that the first three rules for id form a complete subsystem.
However, it is not true that for every closed substitution σ, term (id (id x))σ
is convertible with (id x)σ using only the first three rules. Let n2o be defined
in the following way:

Rewriting n2o : nat → ord
Rules n2o O −→ o n2o (S x) −→ s (n2o x)

Consider σ = [lim (fun n ⇒ n2o n) / x]. Then:

lσ = id (id (lim (fun n ⇒ n2o n))) −→+ lim (fun n ⇒ id (id (n2o n)))
rσ = id (lim (fun n ⇒ n2o n)) −→+ lim (fun n ⇒ id (n2o n))

and these are different normal forms. The reason is that even though the sub-
stitution is closed, the corresponding instances of the left- and right-hand side
of the 4th rule reduce to terms where the function symbol id is applied to open
terms. In order to pass from open to closed terms again one can consider a new
equivalence, containing the usual conversion and identifying functions that are
equal for all closed arguments. Let ∼ω be the smallest congruence containing ≈
and closed by the following (ω) rule:

E closed
E ` f : ∀x :A.B E ` g : ∀x :A.B
∀d (E ` d : A =⇒ E fd ∼ω gd)

E f ∼ω g
(ω)

The rule states roughly that functions f and g are equal if all their closed in-
stances are. It is similar in spirit to functional extensionality in a sense that the
∼ω equality is roughly the same to inductive consequences as the propositional
equality with functional extensionality to the equality without it.

In fact, we do not need the (ω) rule in its full generality. We will use it only for
functions that are arguments of constructors on functional recursive positions,
like in lim (fun n ⇒ n2o n). One may also argue that in these places functions
are only a means to express infinite branching of a constructor and hence that
these functions should be treated extensionally.

Before we can state and prove the theorem corresponding to Theorem 1 from
the previous section we need to know more about ∼ω.

12

Lemma 4. Let E be a closed environment and let s[a]p, s[b]p and T be terms
such that E ` s[a]p : T , E ` s[b]p : T . Moreover, suppose that all declarations in
Γ (s, p) come from abstractions.

If E aδ ∼ω bδ holds for all δ : Γ (s, p)→ E then E s[a]p ∼ω s[b]p.

The above lemma states that in order to know E s[a]p ∼ω s[b]p, which is
in some sense an ∼ω equality between open terms a and b, it is sufficient to
check that E aδ ∼ω bδ holds for all closed substitutions δ. Hence, it shows
how to pass from open terms to the closed ones, and in particular from an
open instance of the left-hand side of a rule l′γ to a closed one l′γδ. Closed
instances are necessary since we want to follow the proof of Theorem 1 and use
the inductive hypothesis. On the other hand this forces us to use an induction
ordering > strong enough to show that lσ > l′γδ for an arbitrary δ, instead of
the usual lσ > l′γ.

An example of a well-founded ordering allowing for applications to arbitrary
arguments is the constructor subterm ordering on functional types. Taking ord
for example, the term lim f is greater than f t for any t of type nat. Of course
this can be done only for recursive arguments of a constructor and because we
restrict ourselves to well-typed terms.

Unfortunately constructor subterm is not enough for our needs: we need to
use it together with the rewrite relation generated by the environment and with
beta reduction. And it is not always the case that the sum of the constructor
subterm with a well-founded relation is always well-founded (see an example in
the appendix). Fortunately, the sum of the constructor subterm with the rewrite
relation generated by rules accepted by HORPO is always well-founded [17]. Our
hypothesis is that this can be extended to any well-founded relation containing
rules for recursors.

Note that s|pδ is smaller than s in the constructor subterm ordering only if
on the path from the root to q in s there are only constructors and abstractions
and that they appear only on recursive positions. For that reason we restrict
critical pair diagrams to be joinable that way.

Let us now introduce formally the notions of a recursive position, constructor
rewriting and constructor subterm ordering.

Definition 14 (Recursive position). The i-th position of a constructor
c : ∀−−−−→(p : P)

−−−→
(z : d), I(~p)~w of an inductive type I is recursive if di is of the form

∀(x1 : T1) . . . (xn : Tn).I(~p)~v. It is called a nonfunctional recursive position if
n = 0; otherwise is is called a functional recursive position.

Definition 15 (Constructor rewriting). A term s constructor rewrites to t
in a rewriting system R′ − R, which is denoted by E;Rew(Γ,R) ` s c−→R′−R t,
if there exists a rule G ` l −→ r ∈ R′ − R, a position q = q1 · . . . · qm, and
a substitution γ : G → (E;Rew(Γ,R)) such that s = s[lγ]q, t = s[rγ]q, and for
every k = 0..m− 1

– either s|q1...qk
= c(~a,~b) for some constructor c and qk+1 is a recursive posi-

tion of c,

13

– or s|q1...qk
= λx : T.s|q1...qk+1 , 0 < k < m, s|q1...qk−1 = c(~a,~b) for some

constructor c and qk is a functional recursive position of c.

Definition 16 (cR′-rewriting). A term s cR′-rewrites to t, which is denoted

by E;Rew(Γ,R) ` s cR′

 t, if either E;Rew(Γ,R) ` s −→ t or E;Rew(Γ,R) `
s

c−→R′−R t.

In other words cR′-rewriting consists in rewriting in the environment E;Rew(Γ,R)
with rules from E;Rew(Γ,R) or beta in any context and using R′−R rules only in
contexts built from constructors and abstractions as described in Definition 15.

Definition 17 (cR′-joinability of critical pairs, critical pairs diagram).
We say that (u, v,∆), a critical pair for R′ wrt R, is cR′-joinable if it is type

compatible and there is a term e such that ∆ ` u cR′

 ∗e and ∆ ` v cR
′

 ∗e and if
for every R′ −R rewrite step in these sequences ∆ ` s[l′γ]p −→ s[r′γ]p

– γ is a well-typed substitution from G′ to ∆,Γ (s, p) and
– l′γ is a well-typed term in ∆,Γ (s, p)

where G’ is the local environment from G′ ` l′ −→ r′ ∈ R′ −R.
The terms u, v, e (with environment ∆) and the aforementioned reductions

between them are called a critical pair diagram.

Since the constructor subterm ordering is not well-founded on nontypable
terms, the definition below depends on environment.

Definition 18 (Constructor subterm). Let c : ∀−−−−→(p : P)
−−−→
(z : d).I(~p)~w be a

constructor of an inductive type I and let i be a recursive position of c. Let
E be an environment and ~a, ~b be terms such that c(~a,~b) is typable in E.

Then for every ~t such that E ` bi~t : T for some T the term bi~t is a constructor
subterm of c(~a,~b) in E, denoted by E ` c(~a,~b)Bc bi~t.

Theorem 2. Suppose that all critical pairs for R′ wrt R are cR′-joinable and
that the relation (−→ ∪ Bc) is well-founded in E;Rew(Γ,R′). Then for every
rule G ` l −→ r ∈ R′ − R and substitution σ : G → (E;Rew(Γ,R)), such that
E ` lσ : T for some T , one has E;Rew(Γ,R) lσ ∼ω rσ.

Proof (sketch). By induction on (−→ ∪ Bc) in the environment E;Rew(Γ,R′).
The proof follows exactly the schema of the proof of Theorem 1. The differ-

ence is that in a critical pair diagram there may be an R′ − R rewriting step
under a binder, which means that we have an open instance of some left hand-
side from R′ − R and induction hypothesis cannot be directly applied. We use
Lemma 4 to get a closed instance, and then we show that the resulting term is
always smaller than lσ in the ordering used for induction.

Once we show that induction hypothesis can be applied, the rest of the proof
goes as in Theorem 1.

14

8 Conclusions

In this paper we study the calculus of constructions with rewriting and we ad-
dress the issue of the logical power of such an extension.

We continue the research about rewriting in the calculus of constructions
presented in [18] where an algorithm that checks completeness of definitions by
rewriting was given. In many cases this algorithm demonstrates that only a basic
subset of the rules is sufficient for completeness. In this paper we have shown
that the remaining rules are inductive consequences of the basic subset.

The proof is done for two kinds of rewriting systems: when there is no rewrit-
ing under a binder in the critical pairs diagrams (Section 6) and for some class
of systems where such situation happens (Section 7). In the latter case the con-
clusion of the inductive consequences lemma must be modified by allowing for a
kind of functional extensionality in the corresponding equivalence.

The additional assumptions on rewriting that we impose do not seem restric-
tive. First of all we require the rewrite rules to be left-algebraic and the critical
pairs to be type-compatible, which can be checked easily. Second, there are as-
sumptions on the form of critical pairs diagrams. These are different in Section 6
and Section 7, where the restrictions are mainly due to difficulties in finding a
suitable ordering for induction, but they always account for a simple inspection
of a diagram.

It is interesting to relate our paper to the PhD work of Oury [13]. He studies
CCE, the extensional calculus of constructions, and shows that CCE is conserva-
tive with respect to the calculus of inductive constructions extended with three
axioms (functional extensionality, Streicher’s axiom K and the third technical
one). One of the interests of CCE is that it can be seen as a model of the calculus
of constructions with rewriting. Assuming that one uses only rewrite rules that
are provable as equalities, extending conversion with l −→ r can be modeled
in CCE by adding l = r as an axiom and then using it by extensionality. Con-
sequently, calculus of constructions with rewriting rules which are provable as
equalities is conservative with respect to the calculus of inductive constructions
extended with the three axioms mentioned above.

Unfortunately we do not prove in this paper that additional rules are prov-
able equalities. We only approach this goal by studying the notion of inductive
consequences. In the algebraic setting the three notions, being an additional
rule, being an inductive consequence and being an equality proved by induction
coincide. In our setting the gap between these notions is not trivial: there are
inductive consequences which are not provable as equalities without additional
axioms, see subst in Section 2 where axiom K is needed, and there are addi-
tional rules that are not inductive consequences in the strict sense, see id in
Section 2 and 7.

It would be interesting to check what happens if we try to prove equalities
in a system where axiom K and functional extensionality are present from the
start. Especially, since they appear independently in other works on equality in
type theory (see e.g. [2]) and that one of them, axiom K, can be easily defined
by rewriting, see for example [18].

15

References

1. A. Abel, T. Coquand, and M. Pagano. A modular type-checking algorithm for
type theory with singleton types and proof irrelevance. In P.-L. Curien, editor,
TLCA 2009, volume 5608 of LNCS, pages 5–19. Springer, 2009.

2. T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In
PLPV 2007, pages 57–68. ACM, 2007.

3. F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization
in the algebraic-λ-cube. Journal of Functional Programming, 7(6):613–660, 1997.

4. F. Blanqui. Definitions by rewriting in the Calculus of Constructions. Mathematical
Structures in Computer Science, 15(1):37–92, 2005.

5. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Construc-
tions. In P. Narendran and M. Rusinowitch, editors, RTA 1999, volume 1631 of
LNCS, pages 301–316. Springer, 1999.

6. F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. Building decision procedures in the
calculus of inductive constructions. In J. Duparc and T. A. Henzinger, editors,
CSL 2007, volume 4646 of LNCS, pages 328–342. Springer, 2007.

7. J. Chrząszcz. Modules in Coq are and will be correct. In S. Berardi, M. Coppo, and
F. Damiani, editors, TYPES 2003, volume 3085 of LNCS, pages 130–146. Springer,
2004.

8. J. Chrząszcz. Modules in Type Theory with Generative Definitions. PhD thesis,
Warsaw University and University Paris-Sud, 2004.

9. The Coq proof assistant. http://coq.inria.fr/.
10. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and

Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer, 1985.

11. M. Hofmann and T. Streicher. The groupoid model refutes uniqueness of identity
proofs. In LICS 1994, pages 208–212. IEEE Computer Society, 1994.

12. P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk, editors,
TYPES 2002, volume 2646 of LNCS, pages 200–219. Springer, 2003.

13. N. Oury. Extensionality in the calculus of constructions. In J. Hurd and T. F.
Melham, editors, TPHOLs 2005, volume 3603 of LNCS, pages 278–293. Springer,
2005.

14. C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and properties.
In M. Bezem and J. F. Groote, editors, TLCA 1993, volume 664 of LNCS, pages
328–345. Springer, 1993.

15. Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

16. D. Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of construc-
tions. Journal of Functional Programming, 13(2):339–414, 2003.

17. D. Walukiewicz-Chrząszcz. Termination of Rewriting in the Calculus of Construc-
tions. PhD thesis, Warsaw University and University Paris-Sud, 2003.

18. D. Walukiewicz-Chrząszcz and J. Chrząszcz. Consistency and completeness of
rewriting in the calculus of constructions. Logical Methods of Computer Science,
4(3), 2008.

19. D. Walukiewicz-Chrząszcz and J. Chrząszcz. Inductive consequences in the calculus
of constructions. In ITP 2010, LNCS. Springer, 2010. To appear.

20. B. Werner. On the strength of proof-irrelevant type theories. Logical Methods in
Computer Science, 4(3), 2008.

16

http://coq.inria.fr/

A More examples

A.1 Append on dependent vectors

Inductive vect : nat → Set :=
| vnil : vector 0
| vcons (a:A) (n:nat), vector n → vector (S n).

Symbol app : forall n:nat, list n → forall m:nat, vect m → vect (n+m)
Rules
app 0 vnil m v2 −→ v2
app (s n) (vcons a n v1) m v2 −→ vcons a (n+m) (app n v1 m v2)
app _ (app k v1 n v2) m v3 −→ app k v1 (n+m) (app n v2 m v3)
app n v1 0 vnil −→ v1

The above rewriting system is terminating, confluent, the two first rules com-
pletely define app. The third and fourth rule are inductive consequences of the
first two and, transformed into equations, could be proved by induction from the
first two, assuming that +, as defined in this paper, is already in the environment.
The type correctness of the third rule requires plus to have the associativity rule
and the fourth rule require n+0 to be convertible with n.

Note also, that the left hand side of the third rule is not typable (if is
treated as a new variable), because should be n+k. However the rule is correct
because for every typable instance of the left-hand side, the corresponding right
hand side has the same type (assuming, again, that associativity of plus is in
conversion). This is discussed in Section 2 of [18].

A.2 Uniqueness of Identity Proofs

Symbol UIP : forall (A:Set)(a b:A)(p q: eq A a b), (eq (eq A a b) p q)
Rules
UIP A a a (refl A a) (refl A a) −→ refl (eq A a a) (refl A a).
UIP A a a p p −→ refl (eq A a a) p.

The first rule completely defines UIP and the second one is its inductive con-
sequence. The type for UIP is not inhabited in CCI, because it is equivalent to
axiom K. Once it is assumed together with the first rule (as equality), the second
rule can easily be proved.

A.3 Polymorphic iterated function

Symbol iter : forall A:Set, nat → (A → A) → A → A
Rules
iter O f x −→ x
iter (S n) f x −→ f (iter n f x)
iter n (fun y ⇒ y) x −→ x
iter (add n m) f x −→ iter n f (iter m f x)

The first two rules completely define iter. The third and the fourth one are their
inductive consequences, also provable by induction. Note that the fourth rule is
confluent with the others only if the definition of addition (add) is restricted to
the two rules defining it by induction on the first argument.

17

B Details from Section 5

Proof of Lemma 2.

Proof. We have to show that for every x : T ∈ G one has G′ ` xρ : Tρ.
By assumption that G is type compatible with t, there is a position p such

that t|p = x and CT (t|p) = T .
Since tρ is typable one has G′ ` tρ|p : CT (tρ|p). Note that tρ|p = xρ and

CT (tρ|p) = CT (t|p)ρ. Hence G′ ` xρ : Tρ

Proof of Lemma 3.

Proof. By analysing the unification algorithm one notices that for every x the
term xθ is either algebraic or a variable. Hence, the term lθ is algebraic.

C Details from Section 7

C.1 Discussion on the constructor order

The example below shows that the sum of the constructor subterm with a well-
founded relation is not always well-founded.

Example 1. Let us consider the following definition Rew(f ;R)
Symbol f : nat → ord
Rules
f 0 −→ lim (fun x ⇒ f x)
f (S x) −→ lim (fun x ⇒ f x)

This rewrite system is obviously terminating, confluent and complete. But if
we combine it with constructor subterm we get an infinite reduction sequence
starting with : f 0 −→R lim(λx :nat.f x)Bc λx :nat.f x@0 −→β f 0.

On the other hand the rewrite system given above is probably not very inter-
esting if one finds that recursors for inductive types should be “automatically”
considered as rewrite rules added to the environment just after the definition of
the corresponding inductive type. The reason is that the system containing the
rules for f and the rules of recursor for ord is not terminating.

Example 2. Let us take f3 = λa :nat → nat.λb :nat → ord.(b@0) and arbitrary
P , f2, f1. Then we get an infinite rewriting sequence which starts as follows:
ord rec(P, f1, f2, f3, f 0) −→R ord rec(P, f1, f2, f3, lim(λx : nat.f x) −→ord rec

@(f3, λx : nat.f x, λy : nat.ord rec(P, f1, f2, f3, λx : nat.f x@y) −→β @(f3, λx :
nat.f x, λy :nat.ord rec(P, f1, f2, f3, f y) −→∗β ord rec(P, f1, f2, f3, f 0)

Our hypothesis is that the sum of the constructor subterm with a well-founded
relation containing rules for recursors is always well-founded.

In particular, this is true if the well-founded relation in question is the rewrite
relation generated by rules accepted by HORPO. In [17] there is a proof that
the sum of HORPO, beta reduction and Bc is well-founded on well-typed terms.
The same should be true for the General Schema [4]. Moreover it should be true
for both styles for defining interpretation of inductive types: introduction and
elimination ones.

18

C.2 Omitted proofs

Proof of Lemma 4.

Proof. By induction on the length of Γ (s, p). If it is empty then a and b are
closed terms and E a ∼ω b follows from assumption. By stability by context
one gets E s[a]p ∼ω s[b]p

If Γ (s, p) is nonempty let us focus on the innermost λ on the path from the
root to p. Then there exists positions q′, q′′ such that s[a]p = s′[λx : A.s′′[a]q′′]q′ ,
s[b]p = s′[λx : A.s′′[b]q′′]q′ , p = q′ · 2 · q′′ and Γ (s, p) = Γ (s, q′), x : A.

Let us show that E s′[λx : A.s′′[a]q′′]q′ ∼ω s′[λx : A.s′′[b]q′′]q′ by proving
that for all δ′ : Γ (s, q′) → E the judgement E (λx : A.s′′[a]q′′)δ′ ∼ω (λx :
A.s′′[b]q′′)δ′ holds and by applying the induction hypothesis.

We have E ` (λx : A.s′′[a]q′′)δ′ : ∀x :Aδ′.Bδ′ and E ` (λx : A.s′′[a]q′′)δ′ :
∀x : Aδ′.Bδ′ for some B since s[a]p, s[b]p and δ′ are typable in E. In order to
show E λx : Aδ′.(s′′[a]q′′)δ′ ∼ω λx : Aδ′.(s′′[b]q′′)δ′ we may use (ω) rule
but first we need to know that for all d such that E ` d : Aδ′ the judgement
E (λx : Aδ′.(s′′[a]q′′)δ′)d ∼ω (λx : Aδ′.(s′′[b]q′′)δ′)d holds.

Let δd be δ′[d/x]. Then δd : Γ (s, p)→ E and by assumption of the lemma E
aδd ∼ω bδd. The context s′′δd[]q′′ is closed and by stability by context one has
also E s′′δd[aδd]q′′ ∼ω s′′δd[bδd]q′′ . But s′′δd[aδd]q′′ =β (λx : Aδ′.(s′′[a]q′′)δ′)d
and similarly for b. Hence, we get the desired conclusion.

Full proof of Theorem 2.

Proof. By induction on (−→ ∪ Bc) in the environment E;Rew(Γ,R′).
Since E;Rew(Γ,R) is closed and lσ is typable, by Corollary 1 the term lσ is

reducible. There are two possibilities. If the reduction takes place in substitution
then there exists a variable z such that z : Z ∈ G and E;Rew(Γ,R) ` zσ −→ t′.
Let us define σ′ to be σ′(x) = σ(x) for x 6= z and σ′(z) = t′. Of course, σ′

and lσ′ are well-typed (this is done in the proof of Theorem 1). By induction
hypothesis E;Rew(Γ,R) lσ′ ∼ω rσ′. Of course E;Rew(Γ,R) lσ ∼ω lσ′

and E;Rew(Γ,R) rσ ∼ω rσ′ because they result from rewriting with R. By
transitivity of ≈ω we conclude that E;Rew(Γ,R) lσ ∼ω rσ.

Otherwise, there is a rule D ` g −→ d coming from E;Rew(Γ,R) that has
a critical pair with l −→ r at position p in l. It means that there exists the
most general substitution θ unifying l|p and g, and ρ such that σ = θρ, and
that the critical pair equals (lθ[dθ]p, rθ,∆) where dom(∆) = FV (lθ). Then
E;Rew(Γ,R) ` lσ

c−→R′−R rσ and E;Rew(Γ,R) ` lσ −→R lθ[dθ]pρ. Let us
denote lθ[dθ]p by l̂. Since critical pairs are cR′-joinable there exists a term e

such that E;Rew(Γ,R) ` rσ cR′

 ∗eρ and E;Rew(Γ,R) ` l̂ρ cR
′

 ∗eρ.
The term lθ may be not well-typed but it is algebraic (by Lemma 3). We

know that the term lθρ is well-typed. By Lemma 2, this implies that ρ is a
well-typed substitution from ∆ to E;Rew(Γ,R).

Every R′−R step on the path from rσ or l̂ρ to eρ is of the form E;Rew(Γ,R) `
sρ

c−→R′−R tρ where s = s[l′γ]q, t = s[r′γ]q for some rule G′ ` l′ −→ r′ ∈ R′−R,
a position q and a substitution γ : G′ → (∆;Γ (s, q)). By the definition of

19

c−→R′−R on the path from the root to q in s there are only constructors and
lambdas and l′γ is a well-typed term in ∆;Γ (s, q).

Note that sρ = sρ[l′γρ]q and tρ = sρ[r′γρ]q. According to Lemma 4 to show
that E;Rew(Γ,R) sρ ∼ω tρ it is sufficient to prove that for every substitution
δ : Γ (s, q)→ (E;Rew(Γ,R)) one has E;Rew(Γ,R) l′γρδ ∼ω r′γρδ.

First we show that l′γρδ is smaller than lσ in the ordering used for induction.
Note that E;Rew(Γ,R) ` l′γρδ : T ′ for some T ′ since l′γ is well-typed in the en-
vironment ∆;Γ (s, q) and ρ : ∆→ E;Rew(Γ,R) and δ : Γ (s, q)→ E;Rew(Γ,R).

Of course E;Rew(Γ,R′) ` lσ −→∗ sρ. Let q = q1 · . . . qm and let us denote
s|q1...qk

by sk (using this notation s|q = sm and s = s0). Let δ = [t1/x1, . . . tn/xn]
and let δk = [t1/x1, . . . tk/xk]. Moreover let i1 < . . . < in be all indexes such
that sik = λxk :Tk.sik+1. By the assumption that critical pairs are cR′-joinable
the context s[]q is built only from constructors and lambdas and we have the
following:

1. 0 < i1 and ik + 1 ≤ ik+1 − 1 for every k ∈ [1..n− 1],
2. E;Rew(Γ,R) ` sρDc si1−1ρ,
3. E;Rew(Γ,R) ` sik−1ρδk−1 Bc (sikρδk−1)@tk for every k ∈ [1..n],
4. E;Rew(Γ,R) ` (sikρδk−1)@tk −→β s

ik+1ρδk for every k ∈ [1..n],
5. E;Rew(Γ,R) ` sik+1ρδk Dc sik+1−1ρδk for every k ∈ [1..n− 1],
6. E;Rew(Γ,R) ` sin+1ρδ Dc smρδ.

The first, the fourth and the last statements are obvious as they correspond to
constructor subterm on a nonfunctional recursive position. The second statement
corresponds to constructor subterm on functional position and it is correct since
the term tk has the right type (E;Rew(Γ,R) ` tk : Tkδk−1). The third statement
corresponds to the beta reduction step.

Summarizing we get E;Rew(Γ,R′) ` lσ (−→ ∪Bc)+ l′γρδ and hence we may
apply the induction hypothesis and get E;Rew(Γ,R) l′γρδ ∼ω r′γρδ. Since δ
is arbitrary we get E;Rew(Γ,R) s ∼ω t.

Recall that E;Rew(Γ,R) ` s c−→R′−R t is an arbitrary step in the critical
pair diagram joining rθρ and l̂ρ. Obviously, all rewriting steps corresponding to
E;Rew(Γ,R) can be replaced by conversion ≈. Hence E;Rew(Γ,R) rσ ∼ω eρ
and E;Rew(Γ,R) ` l̂ρ ∼ω eρ. Of course we have also E;Rew(Γ,R) lσ ∼ω l̂ρ.
Consequently by transitivity and symmetry of ∼ω we get the desired conclusion
E;Rew(Γ,R) rσ ∼ω lσ.

20

	1 Introduction
	2 Motivating examples
	3 Pure type systems with generative definitions
	4 Completeness of definitions
	5 Towards inductive consequences
	6 Inductive consequences
	7 Functional inductive consequences
	8 Conclusions
	A More examples
	A.1 Append on dependent vectors
	A.2 Uniqueness of Identity Proofs
	A.3 Polymorphic iterated function

	B Details from Section 5
	C Details from Section 7
	C.1 Discussion on the constructor order
	C.2 Omitted proofs

