
KOTEK: Clustering Of The Enterprise CodeAndrzej G¡sieni
a-Samek1, Tomasz Sta
howi
z1,Ja
ek Chrz¡sz
z2, and Aleksy S
hubert2
1 ComAr
h SAul. Le±na 202-844 WarsawPoland 1 Institute of Informati
s⋆Warsaw Universityul. Bana
ha 202-097 WarsawPolandAbstra
t Development of large 
ode bases is extremely di�
ult. Themain 
ause of this situation is that the internal dependen
ies in a large
ode body be
ome unwieldy in management. This 
alls for methods andtools that support software development managers in maintaining prop-erly ordered 
onne
tions within the sour
e 
ode. We propose a methodand a stati
 module system KOTEK to fa
ilitate high and medium levelmanagement of su
h sour
e 
ode dependen
ies. The system enfor
es alldependen
ies to be 
learly de
lared. Sin
e KOTEK is also a build sys-tem, it automati
ally enfor
es these de
larations to be up-to-date. More-over, KOTEK allows advan
ed software engineering 
onstru
tions likeparametrisation of large 
ode fragments with respe
t to some fun
tion-ality.1 Introdu
tionBig sour
e 
ode bases are extremely di�
ult to develop and maintain. Thus, aproper management of the 
ode is needed [PC90℄. There are various ways toorganise the 
ode. In obje
t-oriented languages, the most basi
 ones are obje
ts(or 
lasses). The obje
ts or 
lasses are usually 
onsidered as low-level units,though, so they are grouped in 
omponents, pa
kages or modules.The power of the organisation me
hanism depends on the way the groupinga�e
ts the 
ode and is imposed on the 
ode. For instan
e the tools whi
h arebased on UML or Semanti
 Web ontologies provide grouping in the design stageof software produ
tion but are weakly enfor
ed in the development and main-tenan
e stages. Moreover, they do not en
ourage 
omprehensive arrangement of
onstru
tion blo
ks and so 
ompli
ated diagrams are 
ommonly en
ountered.Moreover, the �exibility of these design standards and programming languagegrouping 
onstru
ts like pa
kages make it easy to build 
ir
ular dependen
ies.The experien
e in software development shows that 
ir
ular dependen
ies 
auseproblems [SM03,Fow01℄ so the DAG-based 
oding pattern o

urs often in proje
tdesign guidelines [Mar02,Kno01,Com05℄. Cy
li
 dependen
ies are regarded as a

⋆ This work was partly supported by KBN grant 3 T11C 002 27.



strong fa
tor in measures of 
ode 
omplexity [TT01℄ espe
ially when maintain-ability of the 
ode is of the main interest [Jun02℄. Moreover, the presentation of
ode dependen
ies in form of a DAG has already been used in the 
ontext ofsupport for maintainability [BR01℄.We propose a system KOTEK whi
h assists in maintaining the 
ode stru
tureand in organising knowledge within a software proje
t. It ensures the mat
hbetween the des
ription of the organisation and the 
ode sin
e it is a tool thatbuilds the �nal appli
ation. All kinds of dependen
ies are based on the tree orDAG stru
ture here. Moreover, we impose the rule that ea
h 
omponent may
onsist of at most seven items [Mil56,Dou02℄.The basi
 unit of 
ode organisation in KOTEK is 
alled a module. KOTEKhas two perspe
tives of 
ode organisation. They 
orrespond to a di�erent ba-si
 sour
e 
ode organisation a
tivities. The �rst one, verti
al, allows to abstra
tknowledge about the modelled fragment of the real world. The se
ond one, hor-izontal, des
ribes fun
tional dependen
ies between the abstra
ted notions. Thisdivision separates two basi
 modes of thinking. The �rst one fo
uses on the in-ternal stru
ture of the de�ned 
omputing notion, and the se
ond one fo
uses onthe relations with other pie
es of the software. Other Java module systems didnot 
onsider expli
itly this 
ode organisation fa
ets [CBGM03,IT02,AZ01℄.As KOTEK is a build tool, it is related to ant, make and maven. The maindi�eren
e is that these tools operate on �les only while KOTEK performs se-manti
al 
he
ks. Thus, it gives an additional 
ontrol power for a 
ode manager.2 Gentle introdu
tion to KOTEKIn this se
tion we des
ribe the most important aspe
ts of using the KOTEKtool through 
onse
utive refa
toring of an example of a simple database 
lientappli
ation.KOTEK builds the appli
ation making sure that all dependen
ies are de-
lared and that their stru
ture follows the stru
ture des
ribed in Se
t. 1. Theinvo
ation of KOTEK in the root dire
tory of the proje
t, makes it re
ursivelybuild all 
omponents and 
ombine them (link) into the resulting obje
t �le.The order of the building pro
ess and dependen
ies between modules must bedes
ribed in the �le .kotek, whi
h is lo
ated in the proje
t's root dire
tory.The �rst example. In this se
tion we use the simplest version of our sampleappli
ation. Its main .kotek �le 
an be seen in Fig. 1 left.The �rst line of this �le says that in order to build our proje
t, one needsexternal libraries JDBC and Swing. Next, one has to build the module DataModelusing JDBC, the module UI using Swing, and Logi
 using Swing together withjust built DataModel and UI. The �nal produ
t of our 
ode is the module Logi
,whi
h provides a 
lass with the main method.Apart from being a building instru
tion, the .kotek �le provides an overviewof the main dependen
ies of the proje
t whi
h helps in understanding of the 
ode.Sin
e DataModel, UI and Logi
 may be large pie
es of 
ode, they 
an alsobe divided into submodules and KOTEK 
an be used to manage the order of



uses JDBC Swingbuild DataModel: JDBCbuild UI: Swingbuild Logi
: DataModel Swing UIreturn Logi

uses DataModel Swing UIbuild DataManip: DataModelbuild UILogi
:DataModel DataManip Swing UIbuild App: Swing UILogi
return AppFigure 1. Files Root/.kotek and Root/Logi
/.kotek of the sample appli
ation.their building and their dependen
ies. We assume that larger modules lie in the
orresponding subdire
tories and ea
h subdire
tory 
ontains the lo
al .kotek�le. For example, in the Logi
 dire
tory, this �le may look like in Fig. 1 right.The Logi
 
omponent 
ontains 3 sub-modules: DataManip, UILogi
 and App.Note that our modules DataModel and UI are treated inside Logi
 as externalones and the implementation of Logi
 has no a

ess to their internal details.The hierar
hi
al stru
ture of .kotek �les permits a person who wants tolearn the 
ode (e.g. a new developer) to read it in a needed level of details andonly in the bran
hes that are interesting at the moment.Abstra
tion and programming with variants. Sometimes, almost identi
al 
odeis used in several pla
es of the whole proje
t. This 
ode must be pla
ed in aseparate organisational unit. This is done by abstra
tion. As the way the 
odeis used in di�erent pla
es may di�er, it is useful to have more than one run-time
omponent derived from a single pie
e of the sour
e 
ode (for example, it is the
ase when one wants to provide several versions of the appli
ation, for di�erentgraphi
al environments). In KOTEK, su
h multiple produ
ts of a single pie
e ofthe sour
e 
ode are 
alled views. Ea
h view may have di�erent dependen
ies, asit is the 
ase in the �nal version of our example in Fig. 2.In the example, we repla
e a single UI module from Fig. 1 by two modules:UICommon and UIJ2SE. The �rst one provides only the abstra
t window inter-fa
e used in our appli
ation. The interfa
e 
an be understood as a Java pa
kage
ontaining only 
lass interfa
es. The se
ond module, UIJ2SE, provides the im-plementation of the abstra
t interfa
e, based on Swing. Both modules are thenpassed on to the Logi
 
omponent.Moreover, we add a .NET frontend based on Forms to our appli
ation. Mul-tiple views are used in two 
omponents in this version of our appli
ation. First,the two related modules, UICommon and UIJ2SE, have been joined into a big-ger 
omponent UI, whi
h got the third sub-module Dotnet, implementing theCommon 
ontra
t using Forms. The 
ode that is the same in J2SE and Dotnethas been extra
ted to the module Utils. Apart from the latter, the other threemodules are exported as three produ
ts of the UI 
omponents.The Logi
 
omponent 
hanged a

ordingly: the UILogi
 is based on the
ommon interfa
e as before, and there are now two �nal modules AppJ2SE andAppDotnet, depending on suitable graphi
 toolkits and instantiated UILogi
.



In the main .kotek �le the dependen
ies of the modules UI and Logi
 arelisted twi
e. The �rst time, in the absbuild 
ommand (a shorthand for abstra
tbuild), whi
h 
auses a re
ursive build of the 
omponent but without the �nallinking phase. The se
ond time, they are used as arguments of the 
reate 
om-mand whi
h performs the linking. Note that by analysing the dependen
ies inthe .kotek �le alone it 
an be seen that the J2SE version of the appli
ation doesnot depend on Forms and that the Dotnet version does not depend on Swing.3 Te
hni
al overviewThe KOTEK tool is not limited to a parti
ular programming language, eventhough we spe
i�
ally thought of needs of large Java proje
ts while design-ing it. It 
onsists of four language layers, two of whi
h are intermediate andhen
e pra
ti
ally invisible for users. These are (N) native (obje
t �les) e.g. Java,(M) low-level abstra
t (.ms �les) invisible, (L) linker instru
tions (.

 and .ld�les) invisible, (K) .kotek �les.The (M) level provides the detailed des
ription of the interfa
es of modulesthat de�ne dependen
ies outlined in Se
t. 1. The des
ription language is inde-pendent from the sour
e language. The (L) level is the list of instru
tions for thelinker, 
onne
ting formal parameters of modules to their a
tual dependen
ies.Formally, it just binds to new names the appli
ations of fun
tions to arguments.The input for KOTEK is the list of obje
t �les of the module's dependen
ies,together with their 
ontra
ts (.ms �les) and type sharing information betweenthe dependen
ies (in the .

 �les). The output is the �nal obje
t 
ode anda pertinent .ms �le with interfa
e spe
i�
ation. The information is pro
essedbetween the four layers as follows:native reader 
ompiles sour
e 
ode only modules (without .kotek �les) andderives .ms �les for them,native linker links the obje
t 
ode of the submodules into the obje
t 
ode ofthe module, a

ording to the linker instru
tions in the .ld �le,linker links the .ms �les of the submodules into the .ms �le of the module,a

ording to the linker instru
tions in the .ld �le,KOTEK main transforms the input .

 �le and .kotek into .

 of ea
h sub-module, runs KOTEK re
ursively, then builds the .ld �le and 
alls thelinkers to build the resulting .ms and obje
t �les.Note that only the two �rst transformations are language spe
i�
 and hen
e inorder to use the KOTEK method for other programming languages, one only hasto provide these two. Note also that it is possible to implement only part of thefun
tionality for a given programming language (for example without abstra
tmodules and views) and still bene�t from other advantages of KOTEK.4 Con
lusionsPrototype. The KOTEKmethod is a
tively used in ComAr
h resear
h laboratoryto manage an a
tively developed O
ean GenRap business intelligen
e platform



File: Root/.kotekuses JDBC Swing Formsbuild DataModel: JDBCabsbuild UI: Swing Formslet UICommon=UI 
reate Common ()let UIJ2SE=UI 
reate J2SE (Swing)let UIDotnet=UI 
reate Dotnet (Forms)absbuild Logi
: DataModel UICommon Swing UIJ2SE Forms UIDotnetlet AppJ2SE=Logi
 
reate AppJ2SE(DataModel UICommon Swing UIJ2SE)let AppDotnet=Logi
 
reate AppDotnet(DataModel UICommon Forms UIDotnet)return AppJ2SE AppDotnet File: Root/UI/.kotekuses Swing Formsbuild Common:build Utils:build J2SE: Utils Swingbuild Dotnet: Utils Formsreturn Common J2SE Dotnet File: Root/Logi
/.kotekuses DataModel UICommon Swing UIJ2SE Forms UIDotnetbuild DataManip: DataModelbuild UILogi
: DataModel DataManip param(UICommon 
ontr Common) as UIlet UILogi
J2SE=UILogi
(UIJ2SE as UI)let UILogi
Dotnet=UILogi
(UIDotnet as UI)build AppJ2SE: Swing UILogi
J2SEbuild AppDotnet: Forms UILogi
Dotnetreturn AppJ2SE AppDotnetFigure 2. Two versions of UI.



prototype, the proje
t of about 210 000 lines of mostly Java 
ode. It is managedusing about a 100 .kotek �les of total length of 1700 lines, so less than 1%.Even though not all features presented in the paper are implemented in theKOTEK prototype, it already proves to be a great help in learning the 
ode bynew developers and in managing the 
ode by 
omponent owners.Referen
es[AZ01℄ Davide An
ona and Elena Zu

a. True Modules for Java-like Languages.In ECOOP '01: Pro
eedings of the 15th European Conferen
e on Obje
t-Oriented Programming, pages 354�380, London, UK, 2001. Springer-Verlag.[BR01℄ Liz Burd and Stephen Rank. Using Automated Sour
e Code Analysis forSoftware Evolution. In 1st IEEE International Workshop on Sour
e CodeAnalysis and Manipulation (SCAM 2001), 10 November 2001, Floren
e,Italy, pages 206�212, 2001.[CBGM03℄ John Corwin, David F. Ba
on, David Grove, and Chet Murthy. MJ: ARational Module System for Java and its Appli
ations. In Obje
t-OrientedProgramming, Systems, Langauges & Appli
ations, 2003.[Com05℄ Compuware. Optimaladvisor supersedes the Pa
kage Stru
ture AnalysisTool. Te
hni
al report, JavaCentral, 2005.[Dou02℄ Jean-Lu
 Doumont. Magi
al Numbers: The Seven-Plus-or-Minus-TwoMyth. IEEE Transa
tions on Professional Communi
ation, 45(2), June2002.[Fow01℄ Martin Fowler. Redu
ing Coupling. IEEE Software, July/August 2001.[IT02℄ Yuuji I
hisugi and Akira Tanaka. Di�eren
e-Based Modules: A Class-Independent Module Me
hanism. In ECOOP '02: Pro
eedings of the 16thEuropean Conferen
e on Obje
t-Oriented Programming, pages 62�88, Lon-don, UK, 2002. Springer-Verlag.[Jun02℄ Stefan Jungmayr. Testability Measurment and Software Dependen
ies. In"Software Measurement and Estimation", Pro
eedings of the 12th Interna-tional Workshop on Software Measurement (IWSM2002). Shaker Verlag,2002. ISBN 3-8322-0765-1.[Kno01℄ Kirk Knoerns
hild. A
y
li
 Dependen
ies Prin
iple. Te
hni
al report, Ob-je
t Mentor, In
., 2001.[Mar02℄ Robert C. Martin. Agile Software Development, Prin
iples, Patterns, andPra
ti
es. Prenti
e Hall, 2002.[Mil56℄ George A. Miller. The magi
al number seven, plus or minus two: Some limitson our 
apa
ity for pro
essing information. Psy
ologi
al Review, 63:81�97,1956.[PC90℄ A. Podgurski and L. A. Clarke. A Formal Model of Program Dependen
iesand Its Impli
ations for Software Testing, Debugging, and Maintenan
e.IEEE Transa
tions on Software Engineering, 16(9):965�979, 1990.[SM03℄ Barry Searle and Ellen M
Kay. Cir
ular Proje
t Dependen
ies in Web-Sphere Studio. developerWorks, IBM, 2003.[TT01℄ Lassi A. Tuura and Lu
as Taylor. Ignominy: a tool for software dependen
yand metri
analysis with examples from large HEP pa
kages. In Pro
eedingsof Computing in High Energy and Nu
lear Physi
s, 2001, 2001.


