1. A set of 8 problems was prepared for an examination. Each student was given 3 of them. No two students received more than one common problem. What is the largest possible number of students?

2. Let \(n \geq 2 \) be a positive integer. Find whether there exist \(n \) pairwise nonintersecting nonempty subsets of \(\{1, 2, 3, \ldots \} \) such that each positive integer can be expressed in a unique way as a sum of at most \(n \) integers, all from different subsets.

3. The numbers 1, 2, \ldots, 49 are placed in a 7 \(\times \) 7 array, and the sum of the numbers in each row and in each column is computed. Some of these 14 sums are odd while others are even. Let \(A \) denote the sum of all the odd sums and \(B \) the sum of all even sums. Is it possible that the numbers were placed in the array in such a way that \(A = B \)?

4. Let \(p \) and \(q \) be two different primes. Prove that

\[
\left\lfloor \frac{p}{q} \right\rfloor + \left\lfloor \frac{2p}{q} \right\rfloor + \left\lfloor \frac{3p}{q} \right\rfloor + \cdots + \left\lfloor \frac{(q-1)p}{q} \right\rfloor = \frac{1}{2}(p-1)(q-1) .
\]

(Here \(\lfloor x \rfloor \) denotes the largest integer not greater than \(x \).)

5. Let 2001 given points on a circle be colored either red or green. In one step all points are recolored simultaneously in the following way: If both direct neighbors of a point \(P \) have the same color as \(P \), then the color of \(P \) remains unchanged, otherwise \(P \) obtains the other color. Starting with the first coloring \(F_1 \), we obtain the colorings \(F_2, F_3, \ldots \) after several recoloring steps. Prove that there is a number \(n_0 \leq 1000 \) such that \(F_{n_0} = F_{n_0+2} \). Is the assertion also true if 1000 is replaced by 999?

6. The points \(A, B, C, D, E \) lie on the circle \(c \) in this order and satisfy \(AB \parallel EC \) and \(AC \parallel ED \). The line tangent to the circle \(c \) at \(E \) meets the line \(AB \) at \(P \). The lines \(BD \) and \(EC \) meet at \(Q \). Prove that \(|AC| = |PQ|\).

7. Given a parallelogram \(ABCD \). A circle passing through \(A \) meets the line segments \(AB, AC \) and \(AD \) at inner points \(M, K, N \), respectively. Prove that

\[
|AB| \cdot |AM| + |AD| \cdot |AN| = |AK| \cdot |AC|.
\]

8. Let \(ABCD \) be a convex quadrilateral, and let \(N \) be the midpoint of \(BC \). Suppose further that \(\angle AND = 135^\circ \). Prove that \(|AB| + |CD| + \frac{1}{\sqrt{2}} \cdot |BC| \geq |AD|\).

9. Given a rhombus \(ABCD \), find the locus of the points \(P \) lying inside the rhombus and satisfying \(\angle APD + \angle BPC = 180^\circ \).

10. In a triangle \(ABC \), the bisector of \(\angle BAC \) meets the side \(BC \) at the point \(D \). Knowing that \(|BD| \cdot |CD| = |AD|^2 \) and \(\angle ADB = 45^\circ \), determine the angles of triangle \(ABC \).

11. The real-valued function \(f \) is defined for all positive integers. For any integers \(a > 1, b > 1 \) with \(d = \gcd(a, b) \), we have

\[
f(ab) = f(d) \left(f\left(\frac{a}{d}\right) + f\left(\frac{b}{d}\right) \right).
\]
Determine all possible values of $f(2001)$.

12. Let a_1, a_2, \ldots, a_n be positive real numbers such that $\sum_{i=1}^{n} a_i^3 = 3$ and $\sum_{i=1}^{n} a_i^5 = 5$. Prove that $\sum_{i=1}^{n} a_i > 3/2$.

13. Let a_0, a_1, a_2, \ldots be a sequence of real numbers satisfying $a_0 = 1$ and $a_n = a_{[7n/9]} + a_{[n/9]}$ for $n = 1, 2, \ldots$. Prove that there exists a positive integer k with $a_k < \frac{k}{2001!}$.
(Here $[x]$ denotes the largest integer not greater than x.)

14. There are $2n$ cards. On each card some real number x, $1 \leq x \leq 2$, is written (there can be different numbers on different cards). Prove that the cards can be divided into two heaps with sums s_1 and s_2 so that $\frac{n}{n+1} \leq \frac{s_1}{s_2} \leq 1$.

15. Let a_0, a_1, a_2, \ldots be a sequence of positive real numbers satisfying $i \cdot a_i^2 \geq (i+1) \cdot a_{i-1} a_{i+1}$ for $i = 1, 2, \ldots$ Furthermore, let x and y be positive reals, and let $b_i = xa_i + ya_{i-1}$ for $i = 1, 2, \ldots$. Prove that the inequality $i \cdot b_i^2 > (i+1) \cdot b_{i-1} b_{i+1}$ holds for all integers $i \geq 2$.

16. Let f be a real-valued function defined on the positive integers satisfying the following condition: For all $n > 1$ there exists a prime divisor p of n such that $f(n) = f(n/p) - f(p)$. Given that $f(2001) = 1$, what is the value of $f(2002)$?

17. Let n be a positive integer. Prove that at least $2^{n-1} + n$ numbers can be chosen from the set $\{1, 2, 3, \ldots, 2^n\}$ such that for any two different chosen numbers x and y, $x + y$ is not a divisor of $x \cdot y$.

18. Let a be an odd integer. Prove that $a^{2^m} + 2^{2^n}$ and $a^{2^m} + 2^{2^m}$ are relatively prime for all positive integers n and m with $n \neq m$.

19. What is the smallest positive odd integer having the same number of positive divisors as 360?

20. From a sequence of integers (a, b, c, d) each of the sequences

$$(c, d, a, b), \quad (b, a, d, c), \quad (a + nc, b + nd, c, d), \quad (a + nb, b, c + nd, d)$$

for arbitrary integer n can be obtained by one step. Is it possible to obtain $(3, 4, 5, 7)$ from $(1, 2, 3, 4)$ through a sequence of such steps?