
Proste i użyteczne kawałki gdb

Bartosz Szreder

Bartosz Szreder Proste i użyteczne kawałki gdb 1 / 16

Przechlapane

gdb to jeden z tych programów, którym przydałby się manpage do spisu treści
jego manpage’a.

Bartosz Szreder Proste i użyteczne kawałki gdb 2 / 16

Przechlapane

gdb to jeden z tych programów, którym przydałby się manpage do spisu treści
jego manpage’a.

Bartosz Szreder Proste i użyteczne kawałki gdb 2 / 16

. . . no może nie do końca

Flagi kompilacji

Kompilujemy program z -O0 -ggdb, chyba, że chcemy co chwila czytać value
optimized out.

Uruchamianie debuggera: gdb ./program. To jeszcze nie uruchamia
śledzonego programu, ale da konsolę debuggera.
Ustawianie argumentów dla śledzonego programu: set args Coś
takiego nie zadziała: gdb ./program < argumenty

Uruchomienie programu: run. Można też tutaj podać argumenty do
programu.

Bartosz Szreder Proste i użyteczne kawałki gdb 3 / 16

. . . no może nie do końca

Flagi kompilacji

Kompilujemy program z -O0 -ggdb, chyba, że chcemy co chwila czytać value
optimized out.

Uruchamianie debuggera: gdb ./program. To jeszcze nie uruchamia
śledzonego programu, ale da konsolę debuggera.

Ustawianie argumentów dla śledzonego programu: set args Coś
takiego nie zadziała: gdb ./program < argumenty

Uruchomienie programu: run. Można też tutaj podać argumenty do
programu.

Bartosz Szreder Proste i użyteczne kawałki gdb 3 / 16

. . . no może nie do końca

Flagi kompilacji

Kompilujemy program z -O0 -ggdb, chyba, że chcemy co chwila czytać value
optimized out.

Uruchamianie debuggera: gdb ./program. To jeszcze nie uruchamia
śledzonego programu, ale da konsolę debuggera.
Ustawianie argumentów dla śledzonego programu: set args Coś
takiego nie zadziała: gdb ./program < argumenty

Uruchomienie programu: run. Można też tutaj podać argumenty do
programu.

Bartosz Szreder Proste i użyteczne kawałki gdb 3 / 16

. . . no może nie do końca

Flagi kompilacji

Kompilujemy program z -O0 -ggdb, chyba, że chcemy co chwila czytać value
optimized out.

Uruchamianie debuggera: gdb ./program. To jeszcze nie uruchamia
śledzonego programu, ale da konsolę debuggera.
Ustawianie argumentów dla śledzonego programu: set args Coś
takiego nie zadziała: gdb ./program < argumenty

Uruchomienie programu: run. Można też tutaj podać argumenty do
programu.

Bartosz Szreder Proste i użyteczne kawałki gdb 3 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.

info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.
Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).

help <polecenie> pomaga.
Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.

Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.
Wyjście: quit.

W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.
Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.

Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.
Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.

Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Ogólnie

set ustawia różne parametry debuggera, show je wyświetla.
info wyświetla informacje o śledzonym programie i różnych rzeczach, które
podczas tego śledzenia ustawiamy (np. breakpointy).
help <polecenie> pomaga.
Wyjście: quit.
W konsoli gdb działa uzupełnianie tabulacją.
Większość poleceń ma krótszą wersję, np. backtrace można wołać bt.
Jeśli chcemy rozpocząć od nowa uruchomienie, wystarczy użyć polecenia run.

Bartosz Szreder Proste i użyteczne kawałki gdb 4 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.

Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.
Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).
Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.
Wznowienie działania zatrzymanego programu: continue.
Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.
Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.

Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).
Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.
Wznowienie działania zatrzymanego programu: continue.
Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.
Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.
Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).

Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.
Wznowienie działania zatrzymanego programu: continue.
Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.
Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.
Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).
Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.

Wznowienie działania zatrzymanego programu: continue.
Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.
Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.
Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).
Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.
Wznowienie działania zatrzymanego programu: continue.

Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Przebieg

stdout i stderr śledzonego programu będzie widoczne w konsoli gdb.
Program może normalnie zakończyć swoje działanie albo zostać przerwany z
jakiegoś powodu.
Powód przerwania jest wypisywany, zwykle jest to jakiś sygnał (np.
SIGSEGV).
Można też klepnąć na klawiaturze Ctrl+c, czyli wysłać sygnał SIGINT.
Wznowienie działania zatrzymanego programu: continue.
Powrót z bieżącej ramki stosu: return. Można w argumencie przekazać
wartość, która ma być zwrócona z tej ramki.

Bartosz Szreder Proste i użyteczne kawałki gdb 5 / 16

Gdy już się wywali

. . . fajnie byłoby wiedzieć dlaczego.

Program received signal SIGSEGV, Segmentation fault.
0x00007fffe0000158 in ?? ()

Bartosz Szreder Proste i użyteczne kawałki gdb 6 / 16

Stos wywołań

(gdb) backtrace
#0 0x00007fffe0000158 in ?? ()
#1 0x000000000043d311 in ClientThread::cleanup (this=0x87a430)

at .../src/networking/ClientThread.cpp:212
...

W moim roboczym przykładzie jest dużo tekstu, który się tu nie zmieści, ale mogę
pokazać pełen backtrace.

Numerek po lewej (#0 i dalsze) to numer ramki stosu. Potem mamy adres w
pamięci i informacja o miejscu wykonania (wraz z argumentami funkcji),
która powinna być czytelna dla człowieka (a przynajmniej programisty).
Znaki zapytania się niefortunnie zdarzają – może nie mamy symboli
debugowych na tym poziomie stosu, a może wykonanie programu poleciało w
kosmos?

Bartosz Szreder Proste i użyteczne kawałki gdb 7 / 16

Stos wywołań

(gdb) backtrace
#0 0x00007fffe0000158 in ?? ()
#1 0x000000000043d311 in ClientThread::cleanup (this=0x87a430)

at .../src/networking/ClientThread.cpp:212
...

W moim roboczym przykładzie jest dużo tekstu, który się tu nie zmieści, ale mogę
pokazać pełen backtrace.

Numerek po lewej (#0 i dalsze) to numer ramki stosu. Potem mamy adres w
pamięci i informacja o miejscu wykonania (wraz z argumentami funkcji),
która powinna być czytelna dla człowieka (a przynajmniej programisty).
Znaki zapytania się niefortunnie zdarzają – może nie mamy symboli
debugowych na tym poziomie stosu, a może wykonanie programu poleciało w
kosmos?

Bartosz Szreder Proste i użyteczne kawałki gdb 7 / 16

Stos wywołań

(gdb) backtrace
#0 0x00007fffe0000158 in ?? ()
#1 0x000000000043d311 in ClientThread::cleanup (this=0x87a430)

at .../src/networking/ClientThread.cpp:212
...

W moim roboczym przykładzie jest dużo tekstu, który się tu nie zmieści, ale mogę
pokazać pełen backtrace.

Numerek po lewej (#0 i dalsze) to numer ramki stosu. Potem mamy adres w
pamięci i informacja o miejscu wykonania (wraz z argumentami funkcji),
która powinna być czytelna dla człowieka (a przynajmniej programisty).

Znaki zapytania się niefortunnie zdarzają – może nie mamy symboli
debugowych na tym poziomie stosu, a może wykonanie programu poleciało w
kosmos?

Bartosz Szreder Proste i użyteczne kawałki gdb 7 / 16

Stos wywołań

(gdb) backtrace
#0 0x00007fffe0000158 in ?? ()
#1 0x000000000043d311 in ClientThread::cleanup (this=0x87a430)

at .../src/networking/ClientThread.cpp:212
...

W moim roboczym przykładzie jest dużo tekstu, który się tu nie zmieści, ale mogę
pokazać pełen backtrace.

Numerek po lewej (#0 i dalsze) to numer ramki stosu. Potem mamy adres w
pamięci i informacja o miejscu wykonania (wraz z argumentami funkcji),
która powinna być czytelna dla człowieka (a przynajmniej programisty).
Znaki zapytania się niefortunnie zdarzają – może nie mamy symboli
debugowych na tym poziomie stosu, a może wykonanie programu poleciało w
kosmos?

Bartosz Szreder Proste i użyteczne kawałki gdb 7 / 16

Jak widać ramka #0 jest nieużyteczna, ale przeskoczmy do kolejnej i zobaczmy na
czym się wywala.

(gdb) frame 1
(gdb) list
207 }
208
209 void ClientThread::cleanup()
210 {
211 if (udpSocket != NULL) {
212 udpSocket->close();
213 delete udpSocket;
214 }
215 }

Bartosz Szreder Proste i użyteczne kawałki gdb 8 / 16

Jak widać ramka #0 jest nieużyteczna, ale przeskoczmy do kolejnej i zobaczmy na
czym się wywala.

(gdb) frame 1
(gdb) list
207 }
208
209 void ClientThread::cleanup()
210 {
211 if (udpSocket != NULL) {
212 udpSocket->close();
213 delete udpSocket;
214 }
215 }

Bartosz Szreder Proste i użyteczne kawałki gdb 8 / 16

212 udpSocket->close();

Ciekawe co jest nie tak z tym socketem.

(gdb) print udpSocket
(QUdpSocket *) 0x7fffe00013d0

To nie było zbyt pomocne. Ale widać, że gdb kuma typy z bibliotek.

(gdb) print *udpSocket
<incomplete type>

. . . jak mamy dobry dzień.

Bartosz Szreder Proste i użyteczne kawałki gdb 9 / 16

212 udpSocket->close();

Ciekawe co jest nie tak z tym socketem.

(gdb) print udpSocket
(QUdpSocket *) 0x7fffe00013d0

To nie było zbyt pomocne. Ale widać, że gdb kuma typy z bibliotek.

(gdb) print *udpSocket
<incomplete type>

. . . jak mamy dobry dzień.

Bartosz Szreder Proste i użyteczne kawałki gdb 9 / 16

212 udpSocket->close();

Ciekawe co jest nie tak z tym socketem.

(gdb) print udpSocket
(QUdpSocket *) 0x7fffe00013d0

To nie było zbyt pomocne. Ale widać, że gdb kuma typy z bibliotek.

(gdb) print *udpSocket
<incomplete type>

. . . jak mamy dobry dzień.

Bartosz Szreder Proste i użyteczne kawałki gdb 9 / 16

212 udpSocket->close();

Ciekawe co jest nie tak z tym socketem.

(gdb) print udpSocket
(QUdpSocket *) 0x7fffe00013d0

To nie było zbyt pomocne. Ale widać, że gdb kuma typy z bibliotek.

(gdb) print *udpSocket
<incomplete type>

. . . jak mamy dobry dzień.

Bartosz Szreder Proste i użyteczne kawałki gdb 9 / 16

212 udpSocket->close();

Ciekawe co jest nie tak z tym socketem.

(gdb) print udpSocket
(QUdpSocket *) 0x7fffe00013d0

To nie było zbyt pomocne. Ale widać, że gdb kuma typy z bibliotek.

(gdb) print *udpSocket
<incomplete type>

. . . jak mamy dobry dzień.

Bartosz Szreder Proste i użyteczne kawałki gdb 9 / 16

Nie wszystkie typy są zdefiniowane w miejscu wywołania metody (forward
declarations).

(gdb) print this
(ClientThread * const) 0x87a430

Przynajmniej moje typy kuma.

(gdb) print *this
{<AbstractThread> = {<QThread> = {<No data fields>},
static staticMetaObject = {d =
{superdata = 0x659140 <QThread::staticMetaObject> ...

Bartosz Szreder Proste i użyteczne kawałki gdb 10 / 16

Nie wszystkie typy są zdefiniowane w miejscu wywołania metody (forward
declarations).

(gdb) print this
(ClientThread * const) 0x87a430

Przynajmniej moje typy kuma.

(gdb) print *this
{<AbstractThread> = {<QThread> = {<No data fields>},
static staticMetaObject = {d =
{superdata = 0x659140 <QThread::staticMetaObject> ...

Bartosz Szreder Proste i użyteczne kawałki gdb 10 / 16

Nie wszystkie typy są zdefiniowane w miejscu wywołania metody (forward
declarations).

(gdb) print this
(ClientThread * const) 0x87a430

Przynajmniej moje typy kuma.

(gdb) print *this
{<AbstractThread> = {<QThread> = {<No data fields>},
static staticMetaObject = {d =
{superdata = 0x659140 <QThread::staticMetaObject> ...

Bartosz Szreder Proste i użyteczne kawałki gdb 10 / 16

Nie wszystkie typy są zdefiniowane w miejscu wywołania metody (forward
declarations).

(gdb) print this
(ClientThread * const) 0x87a430

Przynajmniej moje typy kuma.

(gdb) print *this
{<AbstractThread> = {<QThread> = {<No data fields>},
static staticMetaObject = {d =
{superdata = 0x659140 <QThread::staticMetaObject> ...

Bartosz Szreder Proste i użyteczne kawałki gdb 10 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.

stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.

skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).

print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.

print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.

Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Zatrzymywanie ręczne

break ustawia breakpoint na wskazanej linii kodu (format: plik:numer)
albo funkcji.
(gdb) break ClientThread::cleanup()
Breakpoint 1 at 0x43d2e5:

file .../src/networking/ClientThread.cpp, line 211.

step przenosi do następnej linii kodu.
stepi przenosi do następnej instrukcji procesora. Przydatne przy grzebaniu
w assemblerze.
skip przeskakuje wywołania funkcji (nie zagłębia się w nie).
print już się pojawiło, a continue było wspomniane, ale to dobre miejsce
na przypomnienie.
print wypisuje podane wyrażenie raz, display wypisuje przy każdym
zatrzymaniu programu.
Jest też printf do ładniejszego formatowania. Przydaje się, jeśli definiujemy
własne funkcje.

Bartosz Szreder Proste i użyteczne kawałki gdb 11 / 16

Mój ~/.gdbinit z czasów programowania w assemblerze

set disassembly-flavor intel
set disassemble-next-line on

define pxd
display $xmm8.v16_int8
display $xmm7.v16_int8
display $xmm6.v16_int8
display $xmm5.v16_int8
display $xmm4.v16_int8
display $xmm3.v16_int8
display $xmm2.v16_int8
display $xmm1.v16_int8
display $xmm0.v16_int8

end

Bartosz Szreder Proste i użyteczne kawałki gdb 12 / 16

Przerwania są bardzo silne i elastyczne. Kilka zachęcających linijek z help
breakpoints:

watch – Set a watchpoint for an expression
Podobne: awatch, rwatch
commands – Set commands to be executed when a breakpoint is hit
condition – Specify breakpoint number N to break only if COND is true

Bartosz Szreder Proste i użyteczne kawałki gdb 13 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.
Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.
Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.
Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.
Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.

Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.
Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.
Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.
Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.
Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.

Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.
Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.
Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.
Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.
Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.

Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.
Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.
Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.
Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.
Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.

Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Krwawe detale

Własny debugger? man 2 ptrace

Pouczająca lektura, warto wiedzieć co potrafi ten syscall.
Tak są robione np. ograniczone środowiska wywołana na konkursach
programistycznych.
Przydatne narzędzie śledzące program pod kątem używanych syscalli:
strace.
Debugging gruboziarnisty, ale czasami szybko można namierzyć problem, np.
zawieszenie na select albo poll.
Nie trzeba programu kompilować jakoś szczególnie (nie musi być -ggdb).

Bartosz Szreder Proste i użyteczne kawałki gdb 14 / 16

Co ułatwia gdb?

Śledzenie i badanie programu: breakpointy są mocne.

Szybkie łapanie głupich błędów (null-pointer dereference, off-by-one), o ile te
błędy wcześnie powodują wysypkę zamiast mazać po pamięci.
. . . coś jeszcze?

Bartosz Szreder Proste i użyteczne kawałki gdb 15 / 16

Co ułatwia gdb?

Śledzenie i badanie programu: breakpointy są mocne.
Szybkie łapanie głupich błędów (null-pointer dereference, off-by-one), o ile te
błędy wcześnie powodują wysypkę zamiast mazać po pamięci.

. . . coś jeszcze?

Bartosz Szreder Proste i użyteczne kawałki gdb 15 / 16

Co ułatwia gdb?

Śledzenie i badanie programu: breakpointy są mocne.
Szybkie łapanie głupich błędów (null-pointer dereference, off-by-one), o ile te
błędy wcześnie powodują wysypkę zamiast mazać po pamięci.
. . . coś jeszcze?

Bartosz Szreder Proste i użyteczne kawałki gdb 15 / 16

Na co nie pomaga gdb?

Heisenbugs.

Głupotę/nieznajomość języka/nieuważność (undefined behavior).
Nie jest kryształową kulą, która zastąpi asercje i logowanie ostrzeżeń, błędów
czy zwykłych informacji diagnostycznych.

Bartosz Szreder Proste i użyteczne kawałki gdb 16 / 16

Na co nie pomaga gdb?

Heisenbugs.
Głupotę/nieznajomość języka/nieuważność (undefined behavior).

Nie jest kryształową kulą, która zastąpi asercje i logowanie ostrzeżeń, błędów
czy zwykłych informacji diagnostycznych.

Bartosz Szreder Proste i użyteczne kawałki gdb 16 / 16

Na co nie pomaga gdb?

Heisenbugs.
Głupotę/nieznajomość języka/nieuważność (undefined behavior).
Nie jest kryształową kulą, która zastąpi asercje i logowanie ostrzeżeń, błędów
czy zwykłych informacji diagnostycznych.

Bartosz Szreder Proste i użyteczne kawałki gdb 16 / 16

