Totalna Kaflacja, czyli teren w grach 2D J

Bartosz Szreder

et el ey, Gt (e 0 s b 210 T

Zycie jest nobelon

W BTechu teren podzielony jest na hexy i wystepuje w 5 typach: clear, rough,
water, light woods, heavy woods.

Ponadto teren moze by¢ na réznych wysokosciach (gtebokosciach), ale tym sie
nie przejmujemy na razie.

Stan obecny: bleeding edge state-of-the-art technology, czyli jednokolorowe hexy.
Jestesmy bardziej retro i vintage niz gry na Atari 65 XL/XE.

et Dl ey, Gt G 0 s b 210 VS

Kontekst

BTech jest silnie podzielony na czes¢ logiczna i graficzna. Logika nie wie niczego
o grafice i tak ma zosta¢.
o Klasa Map i GraphicsMap dziedziczaca po Map.
o Klasa Hex i GraphicsHex zawierajaca wskaznik na Hex, ktéry reprezentuje.
o Gdzies obok tego klasa Grid jako kolekcja Hexéw, ale wiedzaca o istnieniu
GraphicsHexéw i inicjujaca je (pozycja na scenie).
Jest jeszcze GridGraphicsObject zawierajacy wskaznik do GraphicsHex,
ale jeszcze nie wiem do czego stuzy. ..

et el ey, Gt G 0 s b 210 YT

Rysowanie

void GraphicsHex::paint(...)

{
painter ->setBrush (hex->getTerrain ());
painter ->setPen(Qt::NoPen);
painter ->drawPath (shape ());
}
Totalna Kaflacja, czyli teren w grach 2D

4 /23

Pobozne zyczenia

Chcemy:
@ rysowac jakies fadne teksturki,

@ wspiera¢ wiele réznych teksturek dla jednego rodzaju terenu, coby
monotonnie nie byto,

@ rozsadnie obstugiwaé Sciezki do obrazkéw w systemie plikéw, zeby tadowanie
zasobdéw nie byto zalezne od biezacego katalogu w momencie odpalenia
programu,

@ w miare mozliwosci nie popsu¢ rozgraniczenia miedzy logika a grafika.
@ Bonus #1: wspiera¢ animowane tekstury.

@ Bonus #2: wspiera¢ tekstury udajace trzeci wymiar (np. ,wystajace”
z powierzchni mapy drzewa).

et el ey, Gt G 0 s b 210 YT

|
The Good

Dodajemy klase Tile (kafel), bedaca lekkim opakowaniem na QImage. Trzymamy
w $rodku:

@ QVector <QImage> frames — kolejne ,klatki" animowanego kafla.
Nieanimowany ma tylko jedna klatke.

o Nic wiecej! Dodatkowe informacje o samym pliku graficznym (np. $ciezka)
znajduja sie gdzie indziej.

Warto zdecydowa¢ sie na ustalony rozmiar pojedynczego kafla, np. 64 x 64,
256 x 256 etc. [/personal opinion]

Wtedy wieloklatkowe tekstury rozpoznajemy po tym, ze s3 rozmiaru N x k.

Ponadto dodajemy do GraphicsHex atrybut const Tile *tile.

et el ey, Gt (e 0 st b 210 VS

Rysowanie lepigj

void GraphicsHex::paint(...)

{

painter ->setBrush (hex->getTerrain ());

painter ->setPen(Qt::NoPen);

painter ->drawPath (shape ());

if (tile != nullptr)

painter ->drawImage (QRect (...),
tile->currentFrame ());

}

Metoda currentFrame () zwraca wtasciwa klate w oparciu o globalny licznik
potaczony z timerem.

et el ey, Gt (e 0 s b 210 o £

t adowanie zasobow z systemu plikéw — RFC

o Jest taka przydatna metoda (statyczna):
QCoreApplication: :applicationDirPath().

@ Ustalamy w projekcie pofozenie réznych zasobéw (np. podkatalog
data/tiles/) i tadujemy je korzystajac z powyzszej metody.

@ Trzeba uwazaé na Sciezki bezwzgledne. Zrobitem sobie taka pomocnicza

funkcyjke:
QString resolvePath(const QString &path)
{

if (QDir::isAbsolutePath(path))

return path;
return QCoreApplication::applicationDirPath()
+ ?/’ + path;

}

et Dl ey, Gt G 0 s b 210 B/ £

install target smaczny i zdrowy

o Trzeba jeszcze upewnic sie, ze zasoby s3 tam, gdzie by¢ powinny.
@ Dodajemy do CMakeLists.txt:
install (DIRECTORY data DESTINATION "${BTech_BINARY_DIR}")

@ make && make install

et el ey, Gt G 0 s b 210 B/ 65

QDir tileDir (BTech::resolvePath(...));
QFileInfolList imgFilelList
= tileDir.entryInfolList ({"*.png"},
QDir::Files | QDir::Readable);

for (QFilelInfo imgFile : imgFileList) {
const Tile *tile =
TileManager::registerTile (imgFile);
if (tile != nullptr)
tiles_.append(tile);

et el ey, Gt (e 0 s b 210 0 /) £

|
The Bad — TileManager

Klasa (singleton) skupiajaca w sobie informacje o:
@ wszystkich plikach graficznych (na potrzeby edytora map),
@ pamietaniu ktére pole ma ktéry kafel (na potrzeby serializacji).

et el ey, Gt (e & s b 210 WS

Wiecej mapowan sie nie dato?

QHash <QString, const Tile *> pathToTile;
QHash <const Tile *, QFileInfo> tileToFilelnfo;
QVector <Tile *> tiles;

QHash <QPair <int, int>, const Tile *> coordToTile;

et el ey, Gt (e 0 s b 210 YT

|
Miedzymordzie

@ static QString fileName(const Tile *tile);

@ static void loadTileDictionary(QDataStream &in, const QVector
<Hex *> &hexes);

@ static const Tile * registerTile(const QFileInfo &tileFile);

@ static void saveTileDictionary(QDataStream &out, const
QVector <Hex *> &hexes);

@ static const Tile * tile(QPair <int, int> hexCoord);

et el ey, Gt (e 0 s b 210 D /) £

t adowanie jednego obrazka

const Tile * TileManager::loadTilelmage
(const QString &filePath)

{
QImage image(filePath);
if (!image.isNull ()
&& image.height () == Tile::TileSize
&& image.width() % Tile::TileSize == 0) {
Tile #*result = new Tile(image);
tiles.append(result);
pathToTile[filePath] = result;
tileToFileInfo[result] = filePath;
return result;
}
return nullptr;
}

et el ey, Gt (e 0 s b 210 V3) £

Przyszedt raz Brezniew w dzien do fryzjera

const Tile * TileManager::registerTile
(const QFileInfo &tileFile)

{
TileManager &manager = instance ();
const QString filePath = tileFile.filePath();
if (manager.pathToTile.contains(filePath))
return manager.pathToTile[filePath];
return manager.loadTileImage (filePath);
}

15 / 23

et el ey, Gt (e 0 s b 210

Zapisujac mape, dopisujemy na jej koniec:
o Stownik UID—QString path, zawierajacy tylko obrazki uzywane na danej
mapie. UIDy generujemy w locie.

o Odwzorowanie ze wspétrzednej Hexa do UID kafla (dla Hexéw posiadajacych
kafle r6zne od nullptr).

et el ey, Gt (e 0 st b 210 0) £

void TileManager::saveTileDictionary(QDataStream &out,
const QVector <Hex *> &hexes)
{

TileManager &manager = instance();

UID tileCnt = EmptyUid;
QHash <const Tile *, UID> tileTolId;
QHash <UID, QString> tileDict;

manager.coordToTile.clear ();
for (const Hex #*hex : hexes) {
const GraphicsHex *graphicsHex
= GraphicsFactory::get (hex);
const Tile *tile = graphicsHex->getTile ();

et el ey, Gt (e 0 s b 210 7) £

if (tile != nullptr) {

QPoint hexCoord = hex->getPoint ();

UID tileUid;

if (tileToId.contains(tile)) {
tileUid = tileTolId[tilel];

} else {
tileUid = ++tileCnt;
tileToId[tile] = tileUid;

3

manager .coordToTile [

gqMakePair (hexCoord.x(), hexCoord.y())] = tile;
tileDict [tileUid] =

manager .tileToFileInfo[tile].filePath();

et el ey, Gt (e 0 s b 210 D /) £

QHash <QPair <int, int>, UID> coordToTileUid;
for (auto i = manager.coordToTile.constBegin();
i != manager.coordToTile.constEnd (); ++i)
coordToTileUid [i.key ()] = tileToId[i.value()];
out << tileDict << coordToTileUid;

et el ey, Gt (e 0 s b 210 0) £

Modrzew

void TileManager::loadTileDictionary(QDataStream &in,
const QVector <Hex *> &hexes)
{

TileManager &manager = instance();

QHash <UID, QString> tileDict;

QHash <UID, const Tile *> idToTile;

QHash <QPair <int, int>, UID> coordToTileUid;
in >> tileDict >> coordToTileUid;

for (auto i = tileDict.constBegin();
i !'= tileDict.constEnd(); ++i) {
const Tile *tile = registerTile(i.value());
if (tile !'= nullptr)

idToTile[i.key ()] = tile;

et el ey, Gt (e 0 s b 210 50 /) £

|
Chyba dziata

manager.coordToTile.clear ();
for (auto i = coordToTileUid.constBegin();
i '= coordToTileUid.constEnd(); ++i)
manager .coordToTile [i.key ()]
= idToTile[i.value()];

et el ey, Gt (e 0 s b 210 FiL f) £

Po czyms takim mamy zatadowany stownik coordToTile i mozemy
go wykorzystywa¢ do odpowiadania na zapytania o kafel dla konkretnej
wspotrzedne;.

const Tile * TileManager::tile
(QPair <int, int> hexCoord)
{
return instance ()
.coordToTile.value (hexCoord, nullptr);

et el ey, Gt (e 0 s b 210 55 f) £

TODO

Jeden bonus bedzie ktopotliwy.
@ Wsparcie dla pseudo-tréjwymiarowych grafik.
o Wymaga odejscia od ustalonego na sztywno rozmiaru kafla.

o Trzeba doda¢ informacje o przesunieciu kafla podczas rysowania albo mie¢
dodatkowe zatozenia o rozmiarze kafla (np. zawsze kwadratowe per klatka).

et el ey, Gt G & s o 210 55) £

