
C++11 w domu i zagrodzie

Bartosz Szreder

Bartosz Szreder C++11 w domu i zagrodzie 1 / 41

O czym nie zamierzam mówić

. . . co nie znaczy, że nie mogę.

<regex>

<memory>: unique_ptr, shared_ptr, weak_ptr
λ-abstrakcja
variadic templates, <tuple>, metaprogramowanie
wielowątkowość
rvalue reference, move semantics
delegacja konstruktorów

Bartosz Szreder C++11 w domu i zagrodzie 2 / 41

O czym nie zamierzam mówić

. . . co nie znaczy, że nie mogę.

<regex>

<memory>: unique_ptr, shared_ptr, weak_ptr
λ-abstrakcja
variadic templates, <tuple>, metaprogramowanie
wielowątkowość
rvalue reference, move semantics
delegacja konstruktorów

Bartosz Szreder C++11 w domu i zagrodzie 2 / 41

O czym nie zamierzam mówić

. . . co nie znaczy, że nie mogę.

<regex>

<memory>: unique_ptr, shared_ptr, weak_ptr
λ-abstrakcja
variadic templates, <tuple>, metaprogramowanie
wielowątkowość
rvalue reference, move semantics
delegacja konstruktorów

Bartosz Szreder C++11 w domu i zagrodzie 2 / 41

Ostateczne rozwiązanie kwestii NULL-pointerów

Ostateczne rozwiązanie kwestii NULL-pointerów

NULL nie jest częścią języka, a makrodefinicją.

//<cstddef >
#ifndef __cplusplus
#define NULL ((void *)0)
#else /* C++ */
#define NULL 0

Bartosz Szreder C++11 w domu i zagrodzie 3 / 41

Ostateczne rozwiązanie kwestii NULL-pointerów

Problem

void f(int);
void f(char *);

Co się stanie jak wywołamy f(NULL)?

Żeby nie było takich sytuacji, mamy od teraz nullptr:

f(nullptr);
int *p = nullptr;

Bartosz Szreder C++11 w domu i zagrodzie 4 / 41

Ostateczne rozwiązanie kwestii NULL-pointerów

Problem

void f(int);
void f(char *);

Co się stanie jak wywołamy f(NULL)?

Żeby nie było takich sytuacji, mamy od teraz nullptr:

f(nullptr);
int *p = nullptr;

Bartosz Szreder C++11 w domu i zagrodzie 4 / 41

Ostateczne rozwiązanie kwestii NULL-pointerów

Problem

void f(int);
void f(char *);

Co się stanie jak wywołamy f(NULL)?

Żeby nie było takich sytuacji, mamy od teraz nullptr:

f(nullptr);
int *p = nullptr;

Bartosz Szreder C++11 w domu i zagrodzie 4 / 41

„Specyfikatory” override i final

„Specyfikatory” override i final

Jawnie deklarujemy metody jako przeciążające bazowe metody wirtualne:

class A {
public:

virtual void f(int);
virtual void g(int);

};

class B : public A {
public:

void f(int) override; //OK
void g(long long) override; // compile error

};

Bartosz Szreder C++11 w domu i zagrodzie 5 / 41

„Specyfikatory” override i final

Możemy też zabronić przeciążania:

class A {
public:

virtual void f(int);
virtual void g(int) final;

};

class B : public A {
public:

void f(int) override; //OK
void g(int) override; // compile error

};

Bartosz Szreder C++11 w domu i zagrodzie 6 / 41

„Specyfikatory” override i final

Możemy nawet zabronić dziedziczenia:

class A final { ... };
class B : A { ... }; // compile error

Bartosz Szreder C++11 w domu i zagrodzie 7 / 41

„Specyfikatory” override i final

Gdzie to się może przydać?

Przykład 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodnej.
Mamy złapanie błędu na etapie kompilacji.

Przykład 2.

Real-life problem, który udało mi się wygenerować programując w Qt:

class SomeQtClass {
public:

virtual int rowCount(const QModelIndex &) const;
};

class MyClass : public SomeQtClass {
public:

int rowCount(const QModelIndex &);
};

Gdzie jest błąd?

Bartosz Szreder C++11 w domu i zagrodzie 8 / 41

„Specyfikatory” override i final

Gdzie to się może przydać?

Przykład 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodnej.
Mamy złapanie błędu na etapie kompilacji.

Przykład 2.

Real-life problem, który udało mi się wygenerować programując w Qt:

class SomeQtClass {
public:

virtual int rowCount(const QModelIndex &) const;
};

class MyClass : public SomeQtClass {
public:

int rowCount(const QModelIndex &);
};

Gdzie jest błąd?

Bartosz Szreder C++11 w domu i zagrodzie 8 / 41

„Specyfikatory” override i final

Gdzie to się może przydać?

Przykład 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodnej.
Mamy złapanie błędu na etapie kompilacji.

Przykład 2.

Real-life problem, który udało mi się wygenerować programując w Qt:

class SomeQtClass {
public:

virtual int rowCount(const QModelIndex &) const;
};

class MyClass : public SomeQtClass {
public:

int rowCount(const QModelIndex &);
};

Gdzie jest błąd?

Bartosz Szreder C++11 w domu i zagrodzie 8 / 41

„Specyfikatory” override i final

Gdzie to się może przydać?

Przykład 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodnej.
Mamy złapanie błędu na etapie kompilacji.

Przykład 2.

Real-life problem, który udało mi się wygenerować programując w Qt:

class SomeQtClass {
public:

virtual int rowCount(const QModelIndex &) const;
};

class MyClass : public SomeQtClass {
public:

int rowCount(const QModelIndex &);
};

Gdzie jest błąd?
Bartosz Szreder C++11 w domu i zagrodzie 8 / 41

Operatory rzutowania/konwersji explicit

Operatory rzutowania/konwersji explicit

Dobra praktyka z poprzedniego standardu: niektóre konstruktory warto
prefiksować słowem kluczowym explicit. Bez tego kompilator ma prawo
dokonać niejawnej konwersji np. w takiej sytuacji:

class MyClass {
public:

MyClass(int);
};

void f(MyClass);

f(42); //OK
MyClass x = 42; //OK

Bartosz Szreder C++11 w domu i zagrodzie 9 / 41

Operatory rzutowania/konwersji explicit

Wersja z konstruktorem explicit

class MyClass {
public:

explicit MyClass(int);
};

f(42); // compile error
f(MyClass (42)); //OK
MyClass x = 42; // compile error
MyClass x(42); //OK
MyClass x = MyClass (42); //OK

Bartosz Szreder C++11 w domu i zagrodzie 10 / 41

Operatory rzutowania/konwersji explicit

Poprzedni standard dozwalał też na implementację operatorów konwersji:

class MyClass {
public:

operator int() const
{

return value;
}

private:
int value;

};

void f(int);

MyClass x;
f(x); //OK
int a = x; //OK

Bartosz Szreder C++11 w domu i zagrodzie 11 / 41

Operatory rzutowania/konwersji explicit

Można w ten sposób konwertować w dowolnie złożone typy, np. QString
lub własne. Przydatne chociażby w konwersji do napisów celem wypisek
debugowych. Silne, ale niebezpieczne. Nowy standard umożliwia definiowanie
takich operatorów jako explicit.

class MyClass {
public:

explicit operator int() const;
};

void f(int);

MyClass x;
f(x); // compile error
f(static_cast <int >(x)); //OK
f(int(x)); //OK
int a = x; // compile error
int a = static_cast <int >(x); //OK
int a = int(x); //OK
int a(x); //OK

Bartosz Szreder C++11 w domu i zagrodzie 12 / 41

Operatory rzutowania/konwersji explicit

Można w ten sposób konwertować w dowolnie złożone typy, np. QString
lub własne. Przydatne chociażby w konwersji do napisów celem wypisek
debugowych. Silne, ale niebezpieczne. Nowy standard umożliwia definiowanie
takich operatorów jako explicit.

class MyClass {
public:

explicit operator int() const;
};

void f(int);

MyClass x;
f(x); // compile error
f(static_cast <int >(x)); //OK
f(int(x)); //OK
int a = x; // compile error
int a = static_cast <int >(x); //OK
int a = int(x); //OK
int a(x); //OK

Bartosz Szreder C++11 w domu i zagrodzie 12 / 41

Wsparcie dla napisów UTF

Wsparcie dla napisów UTF

W poprzednim standardzie oprócz "standardowych" napisów typu char *
umieszczanych w cudzysłowie można było użyć przedrostka L i pisać L"napisy"
typu wchar_t *.

W zasadzie nikt nie wie co to jest wchar_t (wide char).

Od teraz można też definiować napisy:
UTF-8 przedrostkiem u8 (typ char *),
UTF-16 przedrostkiem u (nowy typ char16_t *),
UTF-32 przedrostkiem U (nowy typ char32_t *).

Bartosz Szreder C++11 w domu i zagrodzie 13 / 41

Wsparcie dla napisów UTF

Wsparcie dla napisów UTF

W poprzednim standardzie oprócz "standardowych" napisów typu char *
umieszczanych w cudzysłowie można było użyć przedrostka L i pisać L"napisy"
typu wchar_t *.

W zasadzie nikt nie wie co to jest wchar_t (wide char).

Od teraz można też definiować napisy:
UTF-8 przedrostkiem u8 (typ char *),
UTF-16 przedrostkiem u (nowy typ char16_t *),
UTF-32 przedrostkiem U (nowy typ char32_t *).

Bartosz Szreder C++11 w domu i zagrodzie 13 / 41

Wsparcie dla napisów UTF

Wsparcie dla napisów UTF

W poprzednim standardzie oprócz "standardowych" napisów typu char *
umieszczanych w cudzysłowie można było użyć przedrostka L i pisać L"napisy"
typu wchar_t *.

W zasadzie nikt nie wie co to jest wchar_t (wide char).

Od teraz można też definiować napisy:
UTF-8 przedrostkiem u8 (typ char *),
UTF-16 przedrostkiem u (nowy typ char16_t *),
UTF-32 przedrostkiem U (nowy typ char32_t *).

Bartosz Szreder C++11 w domu i zagrodzie 13 / 41

Wsparcie dla napisów UTF

Pojedyncze „krzaki” można wstawiać ciągiem heksadecymalnym. Zamiast
zwyczajowego 0x wstawiamy przedrostek:

dla UTF-8 i UTF-16 cztery cyfry (2 bajty) \u1234,
dla UTF-32 osiem cyfr (4 bajty) \U12345678.

W zasadzie jeśli używamy Qt, to pewnie lepiej jest korzystać z tamtejszych
wynalazków, jak np. QString::fromUtf8(). Ale nie wszyscy korzystają z Qt. . .

Bartosz Szreder C++11 w domu i zagrodzie 14 / 41

Wsparcie dla napisów UTF

Pojedyncze „krzaki” można wstawiać ciągiem heksadecymalnym. Zamiast
zwyczajowego 0x wstawiamy przedrostek:

dla UTF-8 i UTF-16 cztery cyfry (2 bajty) \u1234,
dla UTF-32 osiem cyfr (4 bajty) \U12345678.

W zasadzie jeśli używamy Qt, to pewnie lepiej jest korzystać z tamtejszych
wynalazków, jak np. QString::fromUtf8(). Ale nie wszyscy korzystają z Qt. . .

Bartosz Szreder C++11 w domu i zagrodzie 14 / 41

Raw string literals

Raw string literals

Jeśli musimy wpisać do kodu źródłowego tekst o sporej liczbie śmiesznych
znaczków typu apostrofy, cudzysłowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF. . .), to szybko można się pogubić w escapingu.

const QString regexp = "*(\’|\")*\\";

Lepiej:

const QString regexp = R"(*(’|")*\)";

(To wyrażenie powyżej najpewniej nie ma żadnego sensu. Nothing to see here,
move along.)

Bartosz Szreder C++11 w domu i zagrodzie 15 / 41

Raw string literals

Raw string literals

Jeśli musimy wpisać do kodu źródłowego tekst o sporej liczbie śmiesznych
znaczków typu apostrofy, cudzysłowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF. . .), to szybko można się pogubić w escapingu.

const QString regexp = "*(\’|\")*\\";

Lepiej:

const QString regexp = R"(*(’|")*\)";

(To wyrażenie powyżej najpewniej nie ma żadnego sensu. Nothing to see here,
move along.)

Bartosz Szreder C++11 w domu i zagrodzie 15 / 41

Raw string literals

Raw string literals

Jeśli musimy wpisać do kodu źródłowego tekst o sporej liczbie śmiesznych
znaczków typu apostrofy, cudzysłowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF. . .), to szybko można się pogubić w escapingu.

const QString regexp = "*(\’|\")*\\";

Lepiej:

const QString regexp = R"(*(’|")*\)";

(To wyrażenie powyżej najpewniej nie ma żadnego sensu. Nothing to see here,
move along.)

Bartosz Szreder C++11 w domu i zagrodzie 15 / 41

Raw string literals

Raw string literals

Jeśli musimy wpisać do kodu źródłowego tekst o sporej liczbie śmiesznych
znaczków typu apostrofy, cudzysłowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF. . .), to szybko można się pogubić w escapingu.

const QString regexp = "*(\’|\")*\\";

Lepiej:

const QString regexp = R"(*(’|")*\)";

(To wyrażenie powyżej najpewniej nie ma żadnego sensu. Nothing to see here,
move along.)

Bartosz Szreder C++11 w domu i zagrodzie 15 / 41

Raw string literals

Raw strings umieszczamy w ciągu R"(...)".

Możemy też w ten sposób: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciąg niemalże dowolnych znaków,
poza nawiasami okrągłymi, backslashem i znakami kontrolnymi.
Użycie separatora pozwala na zawarcie nawiasów okrągłych wewnątrz raw
string.
Raw strings można łączyć z UTF, np. u8R"(tekst)".

Bartosz Szreder C++11 w domu i zagrodzie 16 / 41

Raw string literals

Raw strings umieszczamy w ciągu R"(...)".
Możemy też w ten sposób: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciąg niemalże dowolnych znaków,
poza nawiasami okrągłymi, backslashem i znakami kontrolnymi.

Użycie separatora pozwala na zawarcie nawiasów okrągłych wewnątrz raw
string.
Raw strings można łączyć z UTF, np. u8R"(tekst)".

Bartosz Szreder C++11 w domu i zagrodzie 16 / 41

Raw string literals

Raw strings umieszczamy w ciągu R"(...)".
Możemy też w ten sposób: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciąg niemalże dowolnych znaków,
poza nawiasami okrągłymi, backslashem i znakami kontrolnymi.
Użycie separatora pozwala na zawarcie nawiasów okrągłych wewnątrz raw
string.

Raw strings można łączyć z UTF, np. u8R"(tekst)".

Bartosz Szreder C++11 w domu i zagrodzie 16 / 41

Raw string literals

Raw strings umieszczamy w ciągu R"(...)".
Możemy też w ten sposób: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciąg niemalże dowolnych znaków,
poza nawiasami okrągłymi, backslashem i znakami kontrolnymi.
Użycie separatora pozwala na zawarcie nawiasów okrągłych wewnątrz raw
string.
Raw strings można łączyć z UTF, np. u8R"(tekst)".

Bartosz Szreder C++11 w domu i zagrodzie 16 / 41

Listy inicjujące

Listy inicjujące

Weźmy taką klasę:

struct student {
std:: string nazwisko;
float srednia_ocen;

};

Możemy inicjować obiekty tej klasy w ten sposób:

student a{"Kowalski", 5.0};
student b = {"Nowak", 3.5};

Czyli w klamerkach i po przecinku podajemy wartości kolejnych pól obiektu.

Bartosz Szreder C++11 w domu i zagrodzie 17 / 41

Listy inicjujące

Listy inicjujące

Weźmy taką klasę:

struct student {
std:: string nazwisko;
float srednia_ocen;

};

Możemy inicjować obiekty tej klasy w ten sposób:

student a{"Kowalski", 5.0};
student b = {"Nowak", 3.5};

Czyli w klamerkach i po przecinku podajemy wartości kolejnych pól obiektu.

Bartosz Szreder C++11 w domu i zagrodzie 17 / 41

Listy inicjujące

Listy inicjujące

Weźmy taką klasę:

struct student {
std:: string nazwisko;
float srednia_ocen;

};

Możemy inicjować obiekty tej klasy w ten sposób:

student a{"Kowalski", 5.0};
student b = {"Nowak", 3.5};

Czyli w klamerkach i po przecinku podajemy wartości kolejnych pól obiektu.

Bartosz Szreder C++11 w domu i zagrodzie 17 / 41

Listy inicjujące

Listy inicjujące działają „rekurencyjnie”:

std::pair <student , student > a {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};
student b[] {

{"Kowalski", 5.0},
{"Nowak", 3.5}

};
std:: vector <student > c {

{"Kowalski", 5.0},
{"Nowak", 3.5}

};

Bartosz Szreder C++11 w domu i zagrodzie 18 / 41

Listy inicjujące

Listy inicjujące działają „rekurencyjnie”:

struct student {
std:: string nazwisko;
float srednia_ocen;

};

struct indeks {
int numer;
student s;
std:: string uczelnia;

};

indeks i{123456 , {"Kowalski", 5.0}, "MIMUW"};

Bartosz Szreder C++11 w domu i zagrodzie 19 / 41

Listy inicjujące

Korzystając z powyższej klamerkowej składni, ujednolicono inicjowanie obiektów.
Od teraz możemy wywoływać konstruktory w klamerkach, a nie tylko w nawiasach:

int x{6};
std:: string s{"napis"};
std::pair <double , char > p{1.0, ’w’};

struct student {
std:: string nazwisko;
float srednia_ocen;

student(std:: string n, float so)
: nazwisko{n}, srednia_ocen{so} {}

};

Bartosz Szreder C++11 w domu i zagrodzie 20 / 41

Listy inicjujące

Jeszcze jeden ciekawy przykład:

struct student {
std:: string nazwisko;
float srednia_ocen;

};

student f()
{

return {"Kowalski", 5.0};
}

Bartosz Szreder C++11 w domu i zagrodzie 21 / 41

Listy inicjujące

Możemy tworzyć const obiekty skomplikowanych typów, np. std::map:

const std::map <std::string , float > tabela_studentow {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};

Przydatne nie tylko w wolnostojących zmiennych, ale także w obiektach.

Bartosz Szreder C++11 w domu i zagrodzie 22 / 41

Listy inicjujące

Możemy tworzyć const obiekty skomplikowanych typów, np. std::map:

const std::map <std::string , float > tabela_studentow {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};

Przydatne nie tylko w wolnostojących zmiennych, ale także w obiektach.

Bartosz Szreder C++11 w domu i zagrodzie 22 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.
Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.
Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.
Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.
Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.
Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.
Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.

Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.
Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.
Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.
Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.

Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.
Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.
Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.
Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.

Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Czym pod maską są listy inicjujące?

template <typename T> std:: initializer_list <T>

Możemy robić własne funkcje, które przyjmują w argumencie
initializer_list.
Takie listy da się jedynie tworzyć w kodzie, a nie budować „w locie”, np.
dokładając po jednym elemencie.
Da się je „zapamiętać” na zmienną — inaczej nie dałoby się ich obsługiwać
jako argumentów funkcji, ale są oczywiście read-only.
Mają metody begin() i end(), zwracające iteratory (jak w kontenerach
z STL), oraz size().

Bartosz Szreder C++11 w domu i zagrodzie 23 / 41

Listy inicjujące

Przykład z życia: chcę mieć mapę działającą w dwie strony (BiMap).

template <typename T, typename U> class BiMap {
public:

BiMap(std:: initializer_list <std::pair <T, U> >
initList);

U operator [](const T &leftKey) const;
T operator [](const U &rightKey) const;
void insert(const T &leftKey , const U &rightKey);

private:
std::map <T, U> left;
std::map <U, T> right;

};

Bartosz Szreder C++11 w domu i zagrodzie 24 / 41

Listy inicjujące

Przykład z życia: chcę mieć mapę działającą w dwie strony (BiMap).

template <typename T, typename U> class BiMap {
public:

BiMap(std:: initializer_list <std::pair <T, U> >
initList);

U operator [](const T &leftKey) const;
T operator [](const U &rightKey) const;
void insert(const T &leftKey , const U &rightKey);

private:
std::map <T, U> left;
std::map <U, T> right;

};

Bartosz Szreder C++11 w domu i zagrodzie 24 / 41

Listy inicjujące

template <typename T, typename U>
BiHash <T, U>:: BiHash(

std:: initializer_list <std::pair <T, U> >
initList)

{
for (const std::pair <T, U> &p : initList)

insert(p.first , p.second);
}

template <typename T, typename U>
void BiHash <T, U>:: insert(const T &leftKey ,

const U &rightKey)
{

left.insert(leftKey , rightKey);
right.insert(rightKey , leftKey);

}

Bartosz Szreder C++11 w domu i zagrodzie 25 / 41

Listy inicjujące

Mogę teraz bez problemu definiować stałe obiekty typu BiMap:

const BiMap <float , std:: vector <std::string > > oceny {
{5.0, {"Einstein", "Newton", "Feynman"}},
{3.0, {"Kowalski", "Nowak", "Malinowski"}}

};

Bartosz Szreder C++11 w domu i zagrodzie 26 / 41

Nowa postać pętli for

Nowa postać pętli for

Jeśli chcemy dokonać iteracji po elementach jakiejś struktury (np. tablicy), to
możemy od teraz pisać pętle w taki sposób:

int tab [5]{1 , 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += x;

vector <pair <int , int > > v{{1, 2}, {3, 4}};
for (pair <int , int > p : v)

sum += p.first * p.second;

Iterator może być typu referencyjnego. Wtedy modyfikując go, zmieniamy
zawartość struktury.
Oprócz tablic w stylu C, możemy tego użyć na dowolnej strukturze
definiującej odpowiednio metody begin(), end() oraz iteratory.
To znaczy, że możemy użyć np. initializer_list.

Bartosz Szreder C++11 w domu i zagrodzie 27 / 41

Nowa postać pętli for

Nowa postać pętli for

Jeśli chcemy dokonać iteracji po elementach jakiejś struktury (np. tablicy), to
możemy od teraz pisać pętle w taki sposób:

int tab [5]{1 , 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += x;

vector <pair <int , int > > v{{1, 2}, {3, 4}};
for (pair <int , int > p : v)

sum += p.first * p.second;

Iterator może być typu referencyjnego. Wtedy modyfikując go, zmieniamy
zawartość struktury.

Oprócz tablic w stylu C, możemy tego użyć na dowolnej strukturze
definiującej odpowiednio metody begin(), end() oraz iteratory.
To znaczy, że możemy użyć np. initializer_list.

Bartosz Szreder C++11 w domu i zagrodzie 27 / 41

Nowa postać pętli for

Nowa postać pętli for

Jeśli chcemy dokonać iteracji po elementach jakiejś struktury (np. tablicy), to
możemy od teraz pisać pętle w taki sposób:

int tab [5]{1 , 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += x;

vector <pair <int , int > > v{{1, 2}, {3, 4}};
for (pair <int , int > p : v)

sum += p.first * p.second;

Iterator może być typu referencyjnego. Wtedy modyfikując go, zmieniamy
zawartość struktury.
Oprócz tablic w stylu C, możemy tego użyć na dowolnej strukturze
definiującej odpowiednio metody begin(), end() oraz iteratory.

To znaczy, że możemy użyć np. initializer_list.

Bartosz Szreder C++11 w domu i zagrodzie 27 / 41

Nowa postać pętli for

Nowa postać pętli for

Jeśli chcemy dokonać iteracji po elementach jakiejś struktury (np. tablicy), to
możemy od teraz pisać pętle w taki sposób:

int tab [5]{1 , 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += x;

vector <pair <int , int > > v{{1, 2}, {3, 4}};
for (pair <int , int > p : v)

sum += p.first * p.second;

Iterator może być typu referencyjnego. Wtedy modyfikując go, zmieniamy
zawartość struktury.
Oprócz tablic w stylu C, możemy tego użyć na dowolnej strukturze
definiującej odpowiednio metody begin(), end() oraz iteratory.
To znaczy, że możemy użyć np. initializer_list.

Bartosz Szreder C++11 w domu i zagrodzie 27 / 41

Nowa postać pętli for

Z życia wzięte: mamy (np. w konstruktorze) kilka widgetów Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposób, poprzez wywołanie na każdym
kilku metod, ustawiające różne własności i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1 ->setAlignment(Qt:: AlignRight);
spinBox_1 ->setWidth (80);

// analogicznie dla spinBox_2 , spinBox_3 itd.

Kopypasta.
Jak będziemy chcieli np. zmienić typ zmiennych, bo robimy własnego
widgeta dziedziczącego po QSpinBox, to musimy poprawić n miejsc.
Tak samo jeśli sposób inicjowania będzie trzeba zmienić.

Bartosz Szreder C++11 w domu i zagrodzie 28 / 41

Nowa postać pętli for

Z życia wzięte: mamy (np. w konstruktorze) kilka widgetów Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposób, poprzez wywołanie na każdym
kilku metod, ustawiające różne własności i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1 ->setAlignment(Qt:: AlignRight);
spinBox_1 ->setWidth (80);

// analogicznie dla spinBox_2 , spinBox_3 itd.

Kopypasta.
Jak będziemy chcieli np. zmienić typ zmiennych, bo robimy własnego
widgeta dziedziczącego po QSpinBox, to musimy poprawić n miejsc.
Tak samo jeśli sposób inicjowania będzie trzeba zmienić.

Bartosz Szreder C++11 w domu i zagrodzie 28 / 41

Nowa postać pętli for

Z życia wzięte: mamy (np. w konstruktorze) kilka widgetów Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposób, poprzez wywołanie na każdym
kilku metod, ustawiające różne własności i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1 ->setAlignment(Qt:: AlignRight);
spinBox_1 ->setWidth (80);

// analogicznie dla spinBox_2 , spinBox_3 itd.

Kopypasta.

Jak będziemy chcieli np. zmienić typ zmiennych, bo robimy własnego
widgeta dziedziczącego po QSpinBox, to musimy poprawić n miejsc.
Tak samo jeśli sposób inicjowania będzie trzeba zmienić.

Bartosz Szreder C++11 w domu i zagrodzie 28 / 41

Nowa postać pętli for

Z życia wzięte: mamy (np. w konstruktorze) kilka widgetów Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposób, poprzez wywołanie na każdym
kilku metod, ustawiające różne własności i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1 ->setAlignment(Qt:: AlignRight);
spinBox_1 ->setWidth (80);

// analogicznie dla spinBox_2 , spinBox_3 itd.

Kopypasta.
Jak będziemy chcieli np. zmienić typ zmiennych, bo robimy własnego
widgeta dziedziczącego po QSpinBox, to musimy poprawić n miejsc.

Tak samo jeśli sposób inicjowania będzie trzeba zmienić.

Bartosz Szreder C++11 w domu i zagrodzie 28 / 41

Nowa postać pętli for

Z życia wzięte: mamy (np. w konstruktorze) kilka widgetów Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposób, poprzez wywołanie na każdym
kilku metod, ustawiające różne własności i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1 ->setAlignment(Qt:: AlignRight);
spinBox_1 ->setWidth (80);

// analogicznie dla spinBox_2 , spinBox_3 itd.

Kopypasta.
Jak będziemy chcieli np. zmienić typ zmiennych, bo robimy własnego
widgeta dziedziczącego po QSpinBox, to musimy poprawić n miejsc.
Tak samo jeśli sposób inicjowania będzie trzeba zmienić.

Bartosz Szreder C++11 w domu i zagrodzie 28 / 41

Nowa postać pętli for

Lepiej:

for (QSpinBox ** spinBox : {&spinBox_1 , ... }) {
*spinBox = new QSpinBox;
(* spinBox)->setAlignment(Qt:: AlignRight);
(* spinBox)->setWidth (80);

}

Bartosz Szreder C++11 w domu i zagrodzie 29 / 41

Typ tablicowy array

Typ tablicowy array

Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

Jest to typ szablonowy:

template <typename T, std:: size_t N>
std:: array <T, N>

T oznacza typ przechowywany w tablicy, N jej rozmiar.
Tablica jest stałego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().
Oprócz standardowego operatora tablicowego ma też metodę at(), która
robi bounds-checking.

Bartosz Szreder C++11 w domu i zagrodzie 30 / 41

Typ tablicowy array

Typ tablicowy array

Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.
Jest to typ szablonowy:

template <typename T, std:: size_t N>
std:: array <T, N>

T oznacza typ przechowywany w tablicy, N jej rozmiar.
Tablica jest stałego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().
Oprócz standardowego operatora tablicowego ma też metodę at(), która
robi bounds-checking.

Bartosz Szreder C++11 w domu i zagrodzie 30 / 41

Typ tablicowy array

Typ tablicowy array

Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.
Jest to typ szablonowy:

template <typename T, std:: size_t N>
std:: array <T, N>

T oznacza typ przechowywany w tablicy, N jej rozmiar.

Tablica jest stałego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().
Oprócz standardowego operatora tablicowego ma też metodę at(), która
robi bounds-checking.

Bartosz Szreder C++11 w domu i zagrodzie 30 / 41

Typ tablicowy array

Typ tablicowy array

Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.
Jest to typ szablonowy:

template <typename T, std:: size_t N>
std:: array <T, N>

T oznacza typ przechowywany w tablicy, N jej rozmiar.
Tablica jest stałego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().

Oprócz standardowego operatora tablicowego ma też metodę at(), która
robi bounds-checking.

Bartosz Szreder C++11 w domu i zagrodzie 30 / 41

Typ tablicowy array

Typ tablicowy array

Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.
Jest to typ szablonowy:

template <typename T, std:: size_t N>
std:: array <T, N>

T oznacza typ przechowywany w tablicy, N jej rozmiar.
Tablica jest stałego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().
Oprócz standardowego operatora tablicowego ma też metodę at(), która
robi bounds-checking.

Bartosz Szreder C++11 w domu i zagrodzie 30 / 41

Silne typy wyliczeniowe

Silne typy wyliczeniowe

W starszym C++ typ wyliczeniowy (enum) był w zasadzie nazwanym zbiorem
stałych, o niewielkiej nadbudowie typologicznej.

enum Fruit {
Apple ,
Orange

};

Fruit f = Apple;

Niewiele było wiadomo o „fizycznym” typie danych użytym do implementacji
typu wyliczeniowego. Był implementation defined, w praktyce zwykle
znaczyło to int.

Bartosz Szreder C++11 w domu i zagrodzie 31 / 41

Silne typy wyliczeniowe

Silne typy wyliczeniowe

W starszym C++ typ wyliczeniowy (enum) był w zasadzie nazwanym zbiorem
stałych, o niewielkiej nadbudowie typologicznej.

enum Fruit {
Apple ,
Orange

};

Fruit f = Apple;

Niewiele było wiadomo o „fizycznym” typie danych użytym do implementacji
typu wyliczeniowego. Był implementation defined, w praktyce zwykle
znaczyło to int.

Bartosz Szreder C++11 w domu i zagrodzie 31 / 41

Silne typy wyliczeniowe

Nazwa typu wyliczeniowego nie była zasięgiem (scope), co powodowało
konflikty nazw, gdy w tym samym scope chcieliśmy zdefiniować więcej niż
jeden typ wyliczeniowy, zawierający wewnątrz identycznie nazwaną stałą.

enum Fruit {Apple , Orange };
enum Cake {Cheese , Apple };

Żeby dodać scoping robiło się różne hacki:

struct Fruit {
enum FruitEnum {

Apple ,
Orange

};
};

Fruit:: FruitEnum f = Fruit::Apple;

Bartosz Szreder C++11 w domu i zagrodzie 32 / 41

Silne typy wyliczeniowe

Nazwa typu wyliczeniowego nie była zasięgiem (scope), co powodowało
konflikty nazw, gdy w tym samym scope chcieliśmy zdefiniować więcej niż
jeden typ wyliczeniowy, zawierający wewnątrz identycznie nazwaną stałą.

enum Fruit {Apple , Orange };
enum Cake {Cheese , Apple };

Żeby dodać scoping robiło się różne hacki:

struct Fruit {
enum FruitEnum {

Apple ,
Orange

};
};

Fruit:: FruitEnum f = Fruit::Apple;

Bartosz Szreder C++11 w domu i zagrodzie 32 / 41

Silne typy wyliczeniowe

W C++11 pojawiły się dwa ulepszenia typów wyliczeniowych:

1 Można specyfikować działający pod spodem typ całkowitoliczbowy.
2 Można dodać przedrostek class (albo struct, bez różnicy) przed nazwą

typu wyliczeniowego. Powoduje to jego wzmocnienie.

Bartosz Szreder C++11 w domu i zagrodzie 33 / 41

Silne typy wyliczeniowe

W C++11 pojawiły się dwa ulepszenia typów wyliczeniowych:
1 Można specyfikować działający pod spodem typ całkowitoliczbowy.

2 Można dodać przedrostek class (albo struct, bez różnicy) przed nazwą
typu wyliczeniowego. Powoduje to jego wzmocnienie.

Bartosz Szreder C++11 w domu i zagrodzie 33 / 41

Silne typy wyliczeniowe

W C++11 pojawiły się dwa ulepszenia typów wyliczeniowych:
1 Można specyfikować działający pod spodem typ całkowitoliczbowy.
2 Można dodać przedrostek class (albo struct, bez różnicy) przed nazwą

typu wyliczeniowego. Powoduje to jego wzmocnienie.

Bartosz Szreder C++11 w domu i zagrodzie 33 / 41

Silne typy wyliczeniowe

Typ wewnętrzny specyfikujemy w taki sposób:

enum Fruit : int {
Apple ,
Orange

};

enum Cake : quint8 {
Cheese ,
Apple

};

W tym przykładzie nadal mamy błąd kompilacji, bo powtarza się identyfikator
Apple w tym samym zasięgu widoczności.
Jeśli nie wyspecyfikujemy typu wewnętrznego, domyślnie jest to int.

Bartosz Szreder C++11 w domu i zagrodzie 34 / 41

Silne typy wyliczeniowe

Typ wewnętrzny specyfikujemy w taki sposób:

enum Fruit : int {
Apple ,
Orange

};

enum Cake : quint8 {
Cheese ,
Apple

};

W tym przykładzie nadal mamy błąd kompilacji, bo powtarza się identyfikator
Apple w tym samym zasięgu widoczności.
Jeśli nie wyspecyfikujemy typu wewnętrznego, domyślnie jest to int.

Bartosz Szreder C++11 w domu i zagrodzie 34 / 41

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple ,
Orange

};

enum class Cake : quint8 {
Cheese ,
Apple

};

Fruit f = Fruit ::Apple;
Cake c = Cake:: Apple;

Przedrostek z nazwą typu wyliczeniowego jest obligatoryjny przy
odwoływaniu się do samych wartości.
Moim zdaniem jeden z ważniejszych dodatków do języka. Przestałem
korzystać ze „słabych” typów wyliczeniowych.

Bartosz Szreder C++11 w domu i zagrodzie 35 / 41

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple ,
Orange

};

enum class Cake : quint8 {
Cheese ,
Apple

};

Fruit f = Fruit ::Apple;
Cake c = Cake:: Apple;

Przedrostek z nazwą typu wyliczeniowego jest obligatoryjny przy
odwoływaniu się do samych wartości.

Moim zdaniem jeden z ważniejszych dodatków do języka. Przestałem
korzystać ze „słabych” typów wyliczeniowych.

Bartosz Szreder C++11 w domu i zagrodzie 35 / 41

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple ,
Orange

};

enum class Cake : quint8 {
Cheese ,
Apple

};

Fruit f = Fruit ::Apple;
Cake c = Cake:: Apple;

Przedrostek z nazwą typu wyliczeniowego jest obligatoryjny przy
odwoływaniu się do samych wartości.
Moim zdaniem jeden z ważniejszych dodatków do języka. Przestałem
korzystać ze „słabych” typów wyliczeniowych.

Bartosz Szreder C++11 w domu i zagrodzie 35 / 41

Wyrażenia stałe (constexpr)

Wyrażenia stałe (constexpr)

Wyrażenia stałe to takie, które zawsze generują ten sam wynik i można ten
wynik otrzymać już na etapie kompilacji.

Niestety w sensie poprzedniego standardu znaczy to tyle, że wyrażenia są
stałe tylko wtedy, gdy są całkowitoliczbowe i nie odpalają po drodze żadnej
funkcji. Nawet, jeśli ta funkcja zawsze zwraca tę samą wartość.

int f() {return 3;}
int a[3]; //OK
int b[3 + 3]; //OK
int c[3 + f()]; // compile error

Jeśli prefiksujemy funkcję f() słowem constexpr, to zacznie być OK.

Bartosz Szreder C++11 w domu i zagrodzie 36 / 41

Wyrażenia stałe (constexpr)

Wyrażenia stałe (constexpr)

Wyrażenia stałe to takie, które zawsze generują ten sam wynik i można ten
wynik otrzymać już na etapie kompilacji.
Niestety w sensie poprzedniego standardu znaczy to tyle, że wyrażenia są
stałe tylko wtedy, gdy są całkowitoliczbowe i nie odpalają po drodze żadnej
funkcji. Nawet, jeśli ta funkcja zawsze zwraca tę samą wartość.

int f() {return 3;}
int a[3]; //OK
int b[3 + 3]; //OK
int c[3 + f()]; // compile error

Jeśli prefiksujemy funkcję f() słowem constexpr, to zacznie być OK.

Bartosz Szreder C++11 w domu i zagrodzie 36 / 41

Wyrażenia stałe (constexpr)

Wyrażenia stałe (constexpr)

Wyrażenia stałe to takie, które zawsze generują ten sam wynik i można ten
wynik otrzymać już na etapie kompilacji.
Niestety w sensie poprzedniego standardu znaczy to tyle, że wyrażenia są
stałe tylko wtedy, gdy są całkowitoliczbowe i nie odpalają po drodze żadnej
funkcji. Nawet, jeśli ta funkcja zawsze zwraca tę samą wartość.

int f() {return 3;}
int a[3]; //OK
int b[3 + 3]; //OK
int c[3 + f()]; // compile error

Jeśli prefiksujemy funkcję f() słowem constexpr, to zacznie być OK.

Bartosz Szreder C++11 w domu i zagrodzie 36 / 41

Wyrażenia stałe (constexpr)

Wyrażenia stałe (constexpr)

Wyrażenia stałe to takie, które zawsze generują ten sam wynik i można ten
wynik otrzymać już na etapie kompilacji.
Niestety w sensie poprzedniego standardu znaczy to tyle, że wyrażenia są
stałe tylko wtedy, gdy są całkowitoliczbowe i nie odpalają po drodze żadnej
funkcji. Nawet, jeśli ta funkcja zawsze zwraca tę samą wartość.

int f() {return 3;}
int a[3]; //OK
int b[3 + 3]; //OK
int c[3 + f()]; // compile error

Jeśli prefiksujemy funkcję f() słowem constexpr, to zacznie być OK.

Bartosz Szreder C++11 w domu i zagrodzie 36 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.

W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.
W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.
Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.
W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.

W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.
Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.
W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.
W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.
Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.
W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.
W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.
Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.
W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.
W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.

Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ograniczenia i możliwości:
Funkcje constexpr muszą w wyniku zawierać coś innego niż void.
W ciele funkcji nie można deklarować zmiennych i definiować nowych typów.
W zasadzie najlepiej, jakby zawierała po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentów.

constexpr int g(int a, int b) {return a * b;}

Jeśli wywołamy funkcję constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziała OK, ale funkcja już nie jest constexpr. Tzn.
argumenty funkcji muszą być constexpr, bo inaczej tracimy tę własność.
Możemy też deklarować konstruktory własnych typów jako constexpr.
Możemy ich wtedy używać w wyrażeniach tego typu bez straty stałości.

Bartosz Szreder C++11 w domu i zagrodzie 37 / 41

Wyrażenia stałe (constexpr)

Ciekawy skutek „uboczny”: dawniej dało się definiować stałe statyczne w klasach
już w definicji klasy, ale tylko pod warunkiem, że były to stałe typów
całkowitoliczbowych.

class A {
static const int I = 5;
static const double D = 5.0; // compile error

};
const double A::D = 5.0; //OK

class A {
static const int I = 5;
static constexpr double D = 5.0; //OK

};

Bartosz Szreder C++11 w domu i zagrodzie 38 / 41

Wyrażenia stałe (constexpr)

Ciekawy skutek „uboczny”: dawniej dało się definiować stałe statyczne w klasach
już w definicji klasy, ale tylko pod warunkiem, że były to stałe typów
całkowitoliczbowych.

class A {
static const int I = 5;
static const double D = 5.0; // compile error

};
const double A::D = 5.0; //OK

class A {
static const int I = 5;
static constexpr double D = 5.0; //OK

};

Bartosz Szreder C++11 w domu i zagrodzie 38 / 41

User-defined literals

User-defined literals

W C++ istnieje kilka predefiniowanych literałów, zarówno przedrostkowych jak
i przyrostkowych:

Przedrostkowe: 0x na liczby szesnastkowe, 0 na liczby ósemkowe, u8
na napisy UTF-8. . .
Przyrostkowe: f jako float, L jako long, LL jako long long, i jako część
urojona w liczbach zespolonych. . .

Bartosz Szreder C++11 w domu i zagrodzie 39 / 41

User-defined literals

W nowym standardzie można definiować własne literały przyrostkowe za pomocą
specjalnego operatora.

typedef qint32 LengthUnit;
static const int LengthUnitPerMm = 10;

inline constexpr LengthUnit
operator"" _mm(long double mm) {

return mm * LengthUnitPerMm;
}

inline constexpr LengthUnit
operator"" _cm(long double cm) {

return cm * 10_mm;
}

inline constexpr LengthUnit
operator"" _in(long double in) {

return in * 2.54 _cm;
}

Bartosz Szreder C++11 w domu i zagrodzie 40 / 41

User-defined literals

W nowym standardzie można definiować własne literały przyrostkowe za pomocą
specjalnego operatora.

typedef qint32 LengthUnit;
static const int LengthUnitPerMm = 10;

inline constexpr LengthUnit
operator"" _mm(long double mm) {

return mm * LengthUnitPerMm;
}

inline constexpr LengthUnit
operator"" _cm(long double cm) {

return cm * 10_mm;
}

inline constexpr LengthUnit
operator"" _in(long double in) {

return in * 2.54 _cm;
}

Bartosz Szreder C++11 w domu i zagrodzie 40 / 41

User-defined literals

Składnia:

wynik operator"" _sufiks(argument);

Sufiks powinien zaczynać się od podkreślnika. Literały bez podkreślnika są
zarezerwowane na potrzeby przyszłych wersji języka.
Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t – napis i długość.

Użycie:

const LengthUnit Metr = 100 _cm;

Bartosz Szreder C++11 w domu i zagrodzie 41 / 41

User-defined literals

Składnia:

wynik operator"" _sufiks(argument);

Sufiks powinien zaczynać się od podkreślnika. Literały bez podkreślnika są
zarezerwowane na potrzeby przyszłych wersji języka.

Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t – napis i długość.

Użycie:

const LengthUnit Metr = 100 _cm;

Bartosz Szreder C++11 w domu i zagrodzie 41 / 41

User-defined literals

Składnia:

wynik operator"" _sufiks(argument);

Sufiks powinien zaczynać się od podkreślnika. Literały bez podkreślnika są
zarezerwowane na potrzeby przyszłych wersji języka.
Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t – napis i długość.

Użycie:

const LengthUnit Metr = 100 _cm;

Bartosz Szreder C++11 w domu i zagrodzie 41 / 41

User-defined literals

Składnia:

wynik operator"" _sufiks(argument);

Sufiks powinien zaczynać się od podkreślnika. Literały bez podkreślnika są
zarezerwowane na potrzeby przyszłych wersji języka.
Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t – napis i długość.

Użycie:

const LengthUnit Metr = 100 _cm;

Bartosz Szreder C++11 w domu i zagrodzie 41 / 41

	Ostateczne rozwiazanie kwestii NULL-pointerów
	,,Specyfikatory'' override i final
	Operatory rzutowania/konwersji explicit
	Wsparcie dla napisów UTF
	Raw string literals
	Listy inicjujace
	Nowa postac petli for
	Typ tablicowy array
	Silne typy wyliczeniowe
	Wyrazenia stałe (constexpr)
	User-defined literals

