C++11 w domu i zagrodzie J

Bartosz Szreder

(61 1) e § e gt T I

O czym nie zamierzam moéwic

(61) e § e gt T Y

O czym nie zamierzam moéwic

...CO nie znaczy, ze nie moge.

(61) e § e gt T Y

O czym nie zamierzam moéwic

...CO nie znaczy, ze nie moge.

<regex>
<memory>: unique_ptr, shared_ptr, weak_ptr

A-abstrakcja

wielowatkowosé

o
°
°
@ variadic templates, <tuple>, metaprogramowanie
o
@ rvalue reference, move semantics

o

delegacja konstruktoréw

(61) e § e gt Y

Ostateczne rozwigzanie kwestii NULL-pointeréw

Ostateczne rozwigzanie kwestii NULL-pointeréw

NULL nie jest czescia jezyka, a makrodefinicja.

//<cstddef >

#ifndef __cplusplus
#define NULL ((void *)O0)
#else /* C++ x/
#define NULL O

(6t 1) Al O e et T B 7 hl

Ostateczne rozwigzanie kwestii NULL-pointeréw

Problem

void f (int);
void f(char *);

(61) e § e gt T Y

Ostateczne rozwigzanie kwestii NULL-pointeréw

Problem

void f (int);
void f(char *);

Co sie stanie jak wywotamy f (NULL)?

(61) e § e gt T Y

Ostateczne rozwigzanie kwestii NULL-pointeréw

Problem

void f (int);
void f(char *);

Co sie stanie jak wywotamy f (NULL)?

Zeby nie byto takich sytuacji, mamy od teraz nullptr:

f (nullptr);
int *p = nullptr;

(61 1) e § e gt T Y

Specyfikatory”’ override i final

Specyfikatory’ override i final

Jawnie deklarujemy metody jako przecigzajace bazowe metody wirtualne:

class A {

public:
virtual void f(int);
virtual void g(int);

}s
class B : public A {
public:
void f(int) override; // 0K
void g(long long) override; //compile error
s
C++11 w domu i zagrodzie

5 /41

Specyfikatory”’ override i final

Mozemy tez zabroni¢ przecigzania:

class A {

public:
virtual void f(int);
virtual void g(int) final;

}s

class B : public A {
public:
void f(int) override; //0K
void g(int) override; //compile error

}s

(61 1) e § e gt Y

Specyfikatory”’ override i final

Mozemy nawet zabroni¢ dziedziczenia:

class A final { ... };
class B : A { ... }; //compile

error

(61 1) e § e gt

7 /41

Specyfikatory”’ override i final

Gdzie to sie moze przydac?

(61 1) e § e gt T B 71 il

Specyfikatory”’ override i final

Gdzie to sie moze przydac?
Przyktad 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodne;j.
Mamy zfapanie btedu na etapie kompilacji.

(61 1) e § e gt T B 71 il

.Specyfikatory” override i final

Gdzie to sie moze przydac?

Przyktfad 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodne;j.
Mamy zfapanie btedu na etapie kompilacji.

Przyktad 2.
Real-life problem, ktéry udato mi sie wygenerowa¢ programujac w Qt:

class SomeQtClass {
public:
virtual int rowCount (const QModelIndex &) const;

}s

class MyClass : public SomeQtClass {
public:
int rowCount (const QModellIndex &) ;

+s

(61 1) e § e gt T 81 Cl

.Specyfikatory” override i final

Gdzie to sie moze przydac?

Przyktfad 1.

Zmiana sygnatury metody w klasie bazowej i niezrobienie tego w klasie pochodne;j.
Mamy zfapanie btedu na etapie kompilacji.

Przyktad 2.
Real-life problem, ktéry udato mi sie wygenerowa¢ programujac w Qt:

class SomeQtClass {
public:
virtual int rowCount (const QModelIndex &) const;

}s

class MyClass : public SomeQtClass {
public:
int rowCount (const QModellIndex &) ;

+s

Gdzie jest btad?
C++11 w domu i zagrodzie 8/ a1

Operatory rzutowania/konwersji explicit

Operatory rzutowania/konwersji explicit

Dobra praktyka z poprzedniego standardu: niektére konstruktory warto
prefiksowa¢ stowem kluczowym explicit. Bez tego kompilator ma prawo
dokona¢ niejawnej konwersji np. w takiej sytuacji:

class MyClass {
public:

MyClass (int);
T

void f(MyClass);

f(42); // 0K
MyClass x = 42; //0K

(61 1) e § eyt T B 71 il

Operatory rzutowania/konwersji explicit

Wersja z konstruktorem explicit

class MyClass {
public:

explicit MyClass (int);
};

£f(42);

f (MyClass (42));

MyClass x = 42;

MyClass x(42);

MyClass x = MyClass (42);

//compile error
// 0K
//compile error
// 0K
// 0K

(61 1) e § e gt T

10 / 41

Operatory rzutowania/konwersji explicit

Poprzedni standard dozwalat tez na implementacje operatoréw konwersji:

class MyClass {

public:
operator int () const
{
return value;
}
private:

int value;

s
void f(int);
MyClass x;

£f(x); // 0K
int a = x; //0K

(61) oo § e gt

11 / 41

Mozna w ten sposéb konwertowa¢ w dowolnie ztozone typy, np. QString

lub witasne. Przydatne chociazby w konwersji do napiséw celem wypisek
debugowych. Silne, ale niebezpieczne. Nowy standard umozliwia definiowanie
takich operatoréw jako explicit.

(61) oo O e gt 5 /7 (8

Operatory rzutowania/konwersji explicit

Mozna w ten sposéb konwertowa¢ w dowolnie ztozone typy, np. QString
lub witasne. Przydatne chociazby w konwersji do napiséw celem wypisek
debugowych. Silne, ale niebezpieczne. Nowy standard umozliwia definiowanie
takich operatoréw jako explicit.

class MyClass {
public:
explicit operator int() const;

};

void f(int);

MyClass x;

f(x); //compile error
f(static_cast<int>(x)); / /0K

f(int (x)); // 0K

int a = x; //compile error
int a = static_cast<int>(x); //0K

int a = int(x); // 0K

int a(x); / /0K

Gt o Al B csied 53 7 (51

Wsparcie dla napiséw UTF

Wsparcie dla napiséw UTF

W poprzednim standardzie oprécz "standardowych" napiséw typu char *

umieszczanych w cudzystowie mozna byto uzy¢ przedrostka L i pisaé L"napisy"
typu wchar_t *.

(G5t) e § eyt T

13 / 41

Wsparcie dla napiséw UTF

Wsparcie dla napiséw UTF

W poprzednim standardzie oprécz "standardowych" napiséw typu char *

umieszczanych w cudzystowie mozna byto uzy¢ przedrostka L i pisaé L"napisy"
typu wchar_t *.

W zasadzie nikt nie wie co to jest wchar_t (wide char). J

(61 1) e § e gt T 8 /7 (8

Wsparcie dla napiséw UTF

Wsparcie dla napiséw UTF

W poprzednim standardzie oprécz "standardowych" napiséw typu char *

umieszczanych w cudzystowie mozna byto uzy¢ przedrostka L i pisaé L"napisy"
typu wchar_t *.

W zasadzie nikt nie wie co to jest wchar_t (wide char). J

Od teraz mozna tez definiowac napisy:
o UTF-8 przedrostkiem u8 (typ char *),
o UTF-16 przedrostkiem u (nowy typ chari6_t *),
o UTF-32 przedrostkiem U (nowy typ char32_t *).

(61 1) e § e gt T

13 / 41

Wsparcie dla napiséw UTF

Pojedyncze ,krzaki" mozna wstawia¢ ciggiem heksadecymalnym. Zamiast
zwyczajowego 0x wstawiamy przedrostek:

o dla UTF-8 i UTF-16 cztery cyfry (2 bajty) \u1234,
o dla UTF-32 osiem cyfr (4 bajty) \U12345678.

(61) oo O e gt V3 /7 8

Wsparcie dla napiséw UTF

Pojedyncze ,krzaki" mozna wstawia¢ ciggiem heksadecymalnym. Zamiast
zwyczajowego 0x wstawiamy przedrostek:

o dla UTF-8 i UTF-16 cztery cyfry (2 bajty) \u1234,
o dla UTF-32 osiem cyfr (4 bajty) \U12345678.

W zasadzie jesli uzywamy Qt, to pewnie lepiej jest korzysta¢ z tamtejszych
wynalazkéw, jak np. QString: :fromUtf8(). Ale nie wszyscy korzystaja z Qt. . . J

(61) e O e gt V3 /7 8

Raw string literals

Raw string literals

Jesli musimy wpisa¢ do kodu zrédtowego tekst o sporej liczbie Smiesznych
znaczkéw typu apostrofy, cudzystowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF...), to szybko mozna sie pogubi¢ w escapingu.

(61) e § e gt 0 /7 08

Raw string literals

Raw string literals

Jesli musimy wpisa¢ do kodu zrédtowego tekst o sporej liczbie Smiesznych
znaczkéw typu apostrofy, cudzystowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF...), to szybko mozna sie pogubi¢ w escapingu.

const QString regexp = "*(\'|\")*\\";)

(61) e O e gt 03 /7 08

Raw string literals

Raw string literals

Jesli musimy wpisa¢ do kodu zrédtowego tekst o sporej liczbie Smiesznych
znaczkéw typu apostrofy, cudzystowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF...), to szybko mozna sie pogubi¢ w escapingu.

const QString regexp = "*(\'|\")*\\";)
Lepiej:
const QString regexp = R"(*('|")*\)";)

(61) e O e gt 03 /7 08

Raw string literals

Raw string literals

Jesli musimy wpisa¢ do kodu zrédtowego tekst o sporej liczbie Smiesznych
znaczkéw typu apostrofy, cudzystowy, backslashe itp. (regexpy, interpretery,
parsery, HTML, XML, OMG, WTF...), to szybko mozna sie pogubi¢ w escapingu.

const QString regexp = "*(\'|\")*\\";)
Lepiej:
const QString regexp = R"(*('|")*\)";)

(To wyrazenie powyZej najpewniej nie ma zadnego sensu. Nothing to see here,
move along.)

(61) e O e gt 03 /7 08

Raw string literals

® Raw strings umieszczamy w ciggu R" (.. .)".

(61) e § e gt 0 /7 08

Raw string literals

® Raw strings umieszczamy w ciggu R" (.. .)".

o Mozemy tez w ten sposéb: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciag niemalze dowolnych znakéw,
poza nawiasami okragtymi, backslashem i znakami kontrolnymi.

(61) e § e gt

16 / 41

Raw string literals

® Raw strings umieszczamy w ciggu R" (.. .)".

o Mozemy tez w ten sposéb: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciag niemalze dowolnych znakéw,
poza nawiasami okragtymi, backslashem i znakami kontrolnymi.

@ Uzycie separatora pozwala na zawarcie nawiaséw okragtych wewnatrz raw
string.

(61) e § e gt

16 / 41

Raw string literals

® Raw strings umieszczamy w ciggu R" (.. .)".

o Mozemy tez w ten sposéb: R"separator(...)separator", gdzie
separator to maksymalnie 16-znakowy ciag niemalze dowolnych znakéw,
poza nawiasami okragtymi, backslashem i znakami kontrolnymi.

@ Uzycie separatora pozwala na zawarcie nawiaséw okragtych wewnatrz raw
string.

@ Raw strings mozna taczy¢ z UTF, np. u8R" (tekst)".

(61 1) e § e gt T 0 /7 08

Listy inicjujace

Listy inicjujace
Wezmy taka klase:

struct student {
std::string nazwisko;
float srednia_ocen;

+s

(61 1) e § e gt T 7 77 281

Listy inicjujace

Wezmy taka klase:

struct student {
std::string nazwisko;
float srednia_ocen;

+s

Mozemy inicjowac obiekty tej klasy w ten sposéb:

student a{"Kowalski", 5.0};
student b = {"Nowak", 3.5};

(61 1) e § e gt T 7 77 251

Listy inicjujace

Listy inicjujace
Wezmy taka klase:

struct student {
std::string nazwisko;
float srednia_ocen;

+s

Mozemy inicjowac obiekty tej klasy w ten sposéb:

student a{"Kowalski", 5.0};
student b = {"Nowak", 3.5};

Czyli w klamerkach i po przecinku podajemy wartosci kolejnych pdl obiektu.

(61 1) e § e gt T s 77 251

Listy inicjujace

Listy inicjujace dziataja ,rekurencyjnie™

std::pair <student, student> a {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};

student b[] {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};

std::vector <student> c {
{"Kowalski", 5.0},
{"Nowak", 3.5}

};

(1) Al O e et T

18 / 41

Listy inicjujace

Listy inicjujace dziataja ,rekurencyjnie™

struct student {
std::string nazwisko;
float srednia_ocen;

};

struct indeks {
int numer;
student s;
std::string uczelnia;

}s

indeks 1{123456, {"Kowalski",

"MIMUW"};

(1) Al O e et T

19 / 41

Listy inicjujace

Korzystajac z powyzszej klamerkowej sktadni, ujednolicono inicjowanie obiektéw.
Od teraz mozemy wywotywaé konstruktory w klamerkach, a nie tylko w nawiasach:

int x{6};
std::string s{"napis"};
std::pair <double, char> p{1.0, ’w’};

struct student {
std::string nazwisko;
float srednia_ocen;

student (std::string n, float so)
nazwisko{n}, srednia_ocen{so} {}

(61 1) e § e gt T 510 /) 281

Listy inicjujace

Jeszcze jeden ciekawy przyktad:

struct student {
std::string nazwisko;
float srednia_ocen;

};
student f ()
{
return {"Kowalski", 5.0};
}

(61 1) e § e gt T W

Listy inicjujace

Mozemy tworzy¢ const obiekty skomplikowanych typéw, np. std: :map:

const std::map <std::string, float> tabela_studentow {
{"Kowalski", 5.0},
{"Nowak", 3.5}

s

(61 1) e § e gt T 5 /) 28]

Listy inicjujace

Mozemy tworzy¢ const obiekty skomplikowanych typéw, np. std: :map:

const std::map <std::string, float> tabela_studentow {
{"Kowalski", 5.0},
{"Nowak", 3.5}

}s

Przydatne nie tylko w wolnostojacych zmiennych, ale takze w obiektach.

(61) e § e gt T 5 /) 231

Listy inicjujace

Czym pod maska s3 listy inicjujace?

(61) oo O e gt 55 /) 231

Listy inicjujace

Czym pod maska s3 listy inicjujace?

template <typename T> std::initializer_list <T> J

(61) oo O e gt 55 /) 231

Listy inicjujace

Czym pod maska s3 listy inicjujace?

template <typename T> std::initializer_list <T>

@ Mozemy robi¢ wtasne funkcje, ktére przyjmuja w argumencie
initializer_list.

(61) oo O e gt

23 /41

Listy inicjujace

Czym pod maska s3 listy inicjujace?

template <typename T> std::initializer_list <T> J

@ Mozemy robi¢ wtasne funkcje, ktére przyjmuja w argumencie
initializer_list.

o Takie listy da sie jedynie tworzy¢ w kodzie, a nie budowa¢ ,w locie”, np.
doktadajac po jednym elemencie.

(61) oo O e gt 55 /) 231

Listy inicjujace

Czym pod maska s3 listy inicjujace?

template <typename T> std::initializer_list <T> J

@ Mozemy robi¢ wtasne funkcje, ktére przyjmuja w argumencie
initializer_list.

o Takie listy da sie jedynie tworzy¢ w kodzie, a nie budowa¢ ,w locie”, np.
doktadajac po jednym elemencie.

@ Da sie je ,,zapamietac¢” na zmienna — inaczej nie datoby sie ich obstugiwa¢
jako argumentéw funkgji, ale s3 oczywiscie read-only.

23 /41

(L) e O e et T

Listy inicjujace

Czym pod maska s3 listy inicjujace?

template <typename T> std::initializer_list <T> J

@ Mozemy robi¢ wtasne funkcje, ktére przyjmuja w argumencie
initializer_list.

o Takie listy da sie jedynie tworzy¢ w kodzie, a nie budowa¢ ,w locie”, np.
doktadajac po jednym elemencie.

@ Da sie je ,,zapamietac¢” na zmienna — inaczej nie datoby sie ich obstugiwa¢
jako argumentéw funkgji, ale s3 oczywiscie read-only.

@ Maja metody begin() i end (), zwracajace iteratory (jak w kontenerach
z STL), oraz size().

(6t) Al O e et T 55 /) 231

Listy inicjujace

Przyktad z zycia: chce mie¢ mape dziatajacag w dwie strony (BiMap).

(61) e § e gt 520 /) 280

Listy inicjujace

Przyktad z zycia: chce mie¢ mape dziatajacag w dwie strony (BiMap).

template <typename T, typename U> class BiMap {
public:
BiMap (std::initializer_1list <std::pair <T, U> >
initList);

U operator []J(const T &leftKey) const;
T operator [](const U &rightKey) const;
void insert(const T &leftKey, const U &rightKey);

private:
std::map <T, U> left;
std::map <U, T> right;
};

(61) e § e gt T 50 /1 280

Listy inicjujace

template <typename T, typename U>
BiHash <T, U>::BiHash(
std::initializer_list <std::pair <T, U> >

initList)
{
for (const std::pair <T, U> &p : initList)
insert(p.first, p.second);
}

template <typename T, typename U>

void BiHash <T, U>::insert(const T &leftKey,
const U &rightKey)

{
left.insert (leftKey, rightKey);
right.insert (rightKey, leftKey);

(61 1) e § e gt T 5 /) 281

Listy inicjujace

Moge teraz bez problemu definiowa¢ state obiekty typu BiMap:

const BiMap <float, std::vector <std::string> > oceny {
{6.0, {"Einstein", "Newton", "Feynman"}},
{3.0, {"Kowalski", "Nowak", "Malinowski"}}

Iz

(61 1) e § e gt T 520 /) 281

Nowa postaé petli for

Nowa postac petli for

Jesli chcemy dokonaé¢ iteracji po elementach jakiejs struktury (np. tablicy), to

mozemy od teraz pisaé petle w taki sposéb:

int tab[5]{1, 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += Xx;

vector <pair <int, int> > v{{1,
for (pair <int, int> p : v)
sum += p.first * p.second;

2},

{3,

4}%};

C++11 w domu i zagrodzie

27 / 41

Nowa postaé petli for

Nowa postac petli for

Jesli chcemy dokonaé¢ iteracji po elementach jakiejs struktury (np. tablicy), to
mozemy od teraz pisaé petle w taki sposéb:

int tab[5]{1, 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += Xx;

vector <pair <int, int> > v{{1, 2}, {3, 41}};
for (pair <int, int> p : v)
sum += p.first * p.second;

o lterator moze byé typu referencyjnego. Wtedy modyfikujac go, zmieniamy
zawartos¢ struktury

(61) oo O e gt 52 /) 251

Nowa postaé petli for

Nowa postac petli for

Jesli chcemy dokonaé¢ iteracji po elementach jakiejs struktury (np. tablicy), to
mozemy od teraz pisaé petle w taki sposéb:

int tab[5]{1, 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += Xx;

vector <pair <int, int> > v{{1, 2}, {3, 41}};
for (pair <int, int> p : v)
sum += p.first * p.second;

o lterator moze byé typu referencyjnego. Wtedy modyfikujac go, zmieniamy
zawartos¢ struktury.

@ Oprécz tablic w stylu C, mozemy tego uzy¢ na dowolnej strukturze
definiujacej odpowiednio metody begin(), end () oraz iteratory.

(61) oo O e gt 5 /) 281

Nowa postaé petli for

Nowa postac petli for

Jesli chcemy dokonaé¢ iteracji po elementach jakiejs struktury (np. tablicy), to
mozemy od teraz pisaé petle w taki sposéb:

int tab[5]{1, 2, 3, 4, 5};
int sum = 0;
for (int x : tab)

sum += XxX;

vector <pair <int, int> > v{{1, 2}, {3, 41}};
for (pair <int, int> p : v)
sum += p.first * p.second;

o lterator moze byé typu referencyjnego. Wtedy modyfikujac go, zmieniamy
zawartos¢ struktury.

@ Oprécz tablic w stylu C, mozemy tego uzy¢ na dowolnej strukturze
definiujacej odpowiednio metody begin(), end () oraz iteratory.
o To znaczy, ze mozemy uzy¢ np. initializer_list.
C++11 w domu i zagrodzie 27 / 41

Nowa postaé petli for

Z zycia wziete: mamy (np. w konstruktorze) kilka widgetéw Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposéb, poprzez wywotanie na kazdym
kilku metod, ustawiajace rézne wtasnosci i atrybuty.

(61) e § e gt 53 /) 281

Nowa postaé petli for

Z zycia wziete: mamy (np. w konstruktorze) kilka widgetéw Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposéb, poprzez wywotanie na kazdym
kilku metod, ustawiajace rézne wtasnosci i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1->setAlignment (Qt::AlignRight);
spinBox_1->setWidth (80) ;

//analogicznie dla spinBox_2, spinBox_3 itd.

(61) e § e gt 53 /) 281

Nowa postaé petli for

Z zycia wziete: mamy (np. w konstruktorze) kilka widgetéw Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposéb, poprzez wywotanie na kazdym
kilku metod, ustawiajace rézne wtasnosci i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1->setAlignment (Qt::AlignRight);
spinBox_1->setWidth (80) ;

//analogicznie dla spinBox_2, spinBox_3 itd.

o Kopypasta.

(61) e § e gt 53 /) 281

Nowa postaé petli for

Z zycia wziete: mamy (np. w konstruktorze) kilka widgetéw Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposéb, poprzez wywotanie na kazdym
kilku metod, ustawiajace rézne wtasnosci i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1->setAlignment (Qt::AlignRight);
spinBox_1->setWidth (80) ;

//analogicznie dla spinBox_2, spinBox_3 itd.

o Kopypasta.

o Jak bedziemy chcieli np. zmieni¢ typ zmiennych, bo robimy wtasnego
widgeta dziedziczacego po QSpinBox, to musimy poprawi¢ n miejsc.

(61) e § e gt 53 /) 281

Nowa postaé petli for

Z zycia wziete: mamy (np. w konstruktorze) kilka widgetéw Qt tego samego typu.
Wszystkie te widgety inicjujemy w ten sam sposéb, poprzez wywotanie na kazdym
kilku metod, ustawiajace rézne wtasnosci i atrybuty.

spinBox_1 = new QSpinBox;
spinBox_1->setAlignment (Qt::AlignRight);
spinBox_1->setWidth (80) ;

//analogicznie dla spinBox_2, spinBox_3 itd.

o Kopypasta.

o Jak bedziemy chcieli np. zmieni¢ typ zmiennych, bo robimy wtasnego
widgeta dziedziczacego po QSpinBox, to musimy poprawi¢ n miejsc.
o Tak samo jesli sposéb inicjowania bedzie trzeba zmienic.

(61) e § e gt 53 /) 281

Nowa postaé petli for

Lepiej:

for (QSpinBox **spinBox : {&spinBox_1, ... }) {
*spinBox = new QSpinBox;
(*spinBox)->setAlignment (Qt::AlignRight);
(*spinBox)->setWidth (80) ;

(61) e O e gt 53 /) 281

Typ tablicowy array

@ Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

(61) e § e gt T 20 /) 231

Typ tablicowy array

@ Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

@ Jest to typ szablonowy:

template <typename T, std::size_t N>
std::array <T, N>

(61 1) oo § e gt T 20 /) 231

Typ tablicowy array

@ Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

@ Jest to typ szablonowy:

template <typename T, std::size_t N>
std::array <T, N>

@ T oznacza typ przechowywany w tablicy, N jej rozmiar.

(61 1) oo § e gt T 20 /) 231

Typ tablicowy array

@ Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

@ Jest to typ szablonowy:

template <typename T, std::size_t N>
std::array <T, N>

@ T oznacza typ przechowywany w tablicy, N jej rozmiar.

o Tablica jest statego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().

(61 1) oo § e gt T 20 /) 231

Typ tablicowy array

@ Nowy standard wprowadza bardziej wysokopoziomowy typ tablicowy
std::array.

@ Jest to typ szablonowy:

template <typename T, std::size_t N>
std::array <T, N>

@ T oznacza typ przechowywany w tablicy, N jej rozmiar.

o Tablica jest statego rozmiaru. Ale przynajmniej ma np. begin(), end()
i size().

@ Oprécz standardowego operatora tablicowego ma tez metode at (), ktéra
robi bounds-checking.

(61) e O e gt 20 /) 231

Silne typy wyliczeniowe

Silne typy wyliczeniowe

o W starszym C++ typ wyliczeniowy (enum) byt w zasadzie nazwanym zbiorem
statych, o niewielkiej nadbudowie typologiczne;.

enum Fruit {
Apple,
Orange

}s

Fruit f = Apple;

(61) e § e gt T W

Silne typy wyliczeniowe

Silne typy wyliczeniowe

o W starszym C++ typ wyliczeniowy (enum) byt w zasadzie nazwanym zbiorem
statych, o niewielkiej nadbudowie typologiczne;.

enum Fruit {
Apple,
Orange

}s

Fruit f = Apple;

o Niewiele byto wiadomo o ,fizycznym” typie danych uzytym do implementacji
typu wyliczeniowego. Byt implementation defined, w praktyce zwykle
znaczyto to int.

(61) e O e gt W

Silne typy wyliczeniowe

@ Nazwa typu wyliczeniowego nie byta zasiegiem (scope), co powodowato
konflikty nazw, gdy w tym samym scope chcielismy zdefiniowa¢ wiecej niz
jeden typ wyliczeniowy, zawierajacy wewnatrz identycznie nazwang stata.

enum Fruit {Apple, Orange};
enum Cake {Cheese, Apple};

(61) oo O e gt £ /) 231

Silne typy wyliczeniowe

@ Nazwa typu wyliczeniowego nie byta zasiegiem (scope), co powodowato
konflikty nazw, gdy w tym samym scope chcielismy zdefiniowa¢ wiecej niz
jeden typ wyliczeniowy, zawierajacy wewnatrz identycznie nazwang stata.

enum Fruit {Apple, Orange};
enum Cake {Cheese, Apple};

o Zeby doda¢ scoping robito sie rézne hacki:

struct Fruit {
enum FruitEnum {
Apple,
Orange
e
};

Fruit::FruitEnum f = Fruit::Apple;

(61) e § e gt T B /) 281

Silne typy wyliczeniowe

W C++11 pojawity sie dwa ulepszenia typéw wyliczeniowych:

(61) oo § e gt 55 /) 231

Silne typy wyliczeniowe

W C++11 pojawity sie dwa ulepszenia typéw wyliczeniowych:
© Mozna specyfikowaé dziatajacy pod spodem typ catkowitoliczbowy.

(61) oo § e gt 55 /) 231

Silne typy wyliczeniowe

W C++11 pojawity sie dwa ulepszenia typéw wyliczeniowych:
© Mozna specyfikowaé dziatajacy pod spodem typ catkowitoliczbowy.

@ Mozna dodac¢ przedrostek class (albo struct, bez réznicy) przed nazwa
typu wyliczeniowego. Powoduje to jego wzmocnienie.

(61) e § e gt T 55 /) 231

Silne typy wyliczeniowe

Typ wewnetrzny specyfikujemy w taki sposéb:

enum Fruit : int {
Apple,
Orange

3

enum Cake : quint8 {
Cheese,
Apple

}s

(61 1) e § e gt T £ /) 28

Silne typy wyliczeniowe

Typ wewnetrzny specyfikujemy w taki sposéb:

enum Fruit : int {
Apple,
Orange

3

enum Cake : quint8 {
Cheese,
Apple

}s

vy

o W tym przyktadzie nadal mamy btad kompilacji, bo powtarza sie identyfikator
Apple w tym samym zasiegu widocznosci.

o Jesli nie wyspecyfikujemy typu wewnetrznego, domysinie jest to int.

(61) e § e gt £ /) 280

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple,
Orange

}s

enum class Cake : quint8 {
Cheese,
Apple

}s

Fruit £ = Fruit::Apple;
Cake c = Cake::Apple;

(61) e § e gt T

35 / 41

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple,
Orange

}s

enum class Cake : quint8 {
Cheese,
Apple

}s

Fruit £ = Fruit::Apple;
Cake c = Cake::Apple;

@ Przedrostek z nazwa typu wyliczeniowego jest obligatoryjny przy
odwotywaniu sie do samych wartosci.

(61) e § e gt T

Silne typy wyliczeniowe

Wzmacniamy typy wyliczeniowe:

enum class Fruit : int {
Apple,
Orange

}s

enum class Cake : quint8 {
Cheese,
Apple

}s

Fruit £ = Fruit::Apple;
Cake c = Cake::Apple;

@ Przedrostek z nazwa typu wyliczeniowego jest obligatoryjny przy
odwotywaniu sie do samych wartosci.

@ Moim zdaniem jeden z wazniejszych dodatkéw do jezyka. Przestatem
korzystac ze ,stabych” typéw wyliczeniowych.

(61 1) e § eyt T T /) 281

Wyrazenia state (constexpr)

Wyrazenia state (constexpr)

@ Wyrazenia state to takie, ktére zawsze generuja ten sam wynik i mozna ten
wynik otrzymac juz na etapie kompilacji.

(G251) e § eyt T 20 /) 231

Wyrazenia state (constexpr)

Wyrazenia state (constexpr)

@ Wyrazenia state to takie, ktére zawsze generuja ten sam wynik i mozna ten
wynik otrzymac juz na etapie kompilacji.

@ Niestety w sensie poprzedniego standardu znaczy to tyle, ze wyrazenia s
state tylko wtedy, gdy sa catkowitoliczbowe i nie odpalaja po drodze zadnej
funkcji. Nawet, jesli ta funkcja zawsze zwraca te sama wartos¢.

(G251) e § eyt T 20 /) 231

Wyrazenia state (constexpr)

Wyrazenia state (constexpr)

@ Wyrazenia state to takie, ktére zawsze generuja ten sam wynik i mozna ten
wynik otrzymac juz na etapie kompilacji.

@ Niestety w sensie poprzedniego standardu znaczy to tyle, ze wyrazenia s
state tylko wtedy, gdy sa catkowitoliczbowe i nie odpalaja po drodze zadnej
funkcji. Nawet, jesli ta funkcja zawsze zwraca te sama wartos¢.

int £() {return 3;}
int al[3]; / /0K
int b[3 + 31; // 0K
int c¢[3 + £()]; //compile error

(61) oo O e gt 20 /) 231

Wyrazenia state (constexpr)

Wyrazenia state (constexpr)

@ Wyrazenia state to takie, ktére zawsze generuja ten sam wynik i mozna ten

wynik otrzymac juz na etapie kompilacji.

@ Niestety w sensie poprzedniego standardu znaczy to tyle, ze wyrazenia s

int
int
int
int

state tylko wtedy, gdy sa catkowitoliczbowe i nie odpalaja po drodze zadnej
funkcji. Nawet, jesli ta funkcja zawsze zwraca te sama wartos¢.

£f() {return 3;}

al[3];
b[3 + 3];
c[3 + £0O1;

// 0K
// 0K

//compile error

o Jesli prefiksujemy funkcje £ () stowem constexpr, to zacznie by¢ OK.

(61 1) e § e gt T 20 /) 231

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:

@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.

(61) e § eyt T T /) 23]

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:
@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.

o W ciele funkcji nie mozna deklarowaé zmiennych i definiowaé nowych typéw.

(61) e § eyt T T /) 23]

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:
@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.
o W ciele funkcji nie mozna deklarowaé zmiennych i definiowaé nowych typéw.

o W zasadzie najlepiej, jakby zawierata po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentéw.

(61) e § eyt T T /) 23]

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:
@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.
o W ciele funkcji nie mozna deklarowaé zmiennych i definiowaé nowych typéw.

o W zasadzie najlepiej, jakby zawierata po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentéw.

constexpr int g(int a, int b) {return a * b;}

(61) e § eyt T T /) 23]

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:
@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.
o W ciele funkcji nie mozna deklarowaé zmiennych i definiowaé nowych typéw.

o W zasadzie najlepiej, jakby zawierata po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentéw.

constexpr int g(int a, int b) {return a * b;}

o Jesli wywotamy funkcje constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziata OK, ale funkcja juz nie jest constexpr. Tzn.
argumenty funkcji musza by¢ constexpr, bo inaczej tracimy te wtasnosc¢.

(61) e § eyt T T /) 23]

Wyrazenia state (constexpr)

Ograniczenia i mozliwosci:
@ Funkcje constexpr musza w wyniku zawiera¢ co$ innego niz void.
o W ciele funkcji nie mozna deklarowaé zmiennych i definiowaé nowych typéw.

o W zasadzie najlepiej, jakby zawierata po prostu jedno return z obliczeniem
wyniku na podstawie ewentualnych argumentéw.

constexpr int g(int a, int b) {return a * b;}

o Jesli wywotamy funkcje constexpr z argumentami nieznanymi w czasie
kompilacji, to wszystko zadziata OK, ale funkcja juz nie jest constexpr. Tzn.
argumenty funkcji musza by¢ constexpr, bo inaczej tracimy te wtasnosc¢.

@ Mozemy tez deklarowaé konstruktory witasnych typéw jako constexpr.
Mozemy ich wtedy uzywa¢ w wyrazeniach tego typu bez straty statosci.

(61) e § e gt T T /) 281

Wyrazenia state (constexpr)

Ciekawy skutek ,,uboczny”: dawniej dato sie definiowa¢ state statyczne w klasach

juz w definicji klasy, ale tylko pod warunkiem, ze byty to state typéw
catkowitoliczbowych.

class A {
static const int I = 5;

static const double D = 5.0; //compile error

¥s
const double A::D = 5.0; //OK

(61 1) e § e gt T 53 /) 231

Wyrazenia state (constexpr)

Ciekawy skutek ,,uboczny”: dawniej dato sie definiowa¢ state statyczne w klasach
juz w definicji klasy, ale tylko pod warunkiem, ze byty to state typéw
catkowitoliczbowych.

class A {

static const int I = 5;

static const double D = 5.0; //compile error
};

const double A::D = 5.0; //OK

class A {
static const int I = 5;
static constexpr double D = 5.0; //O0K
s
C++11 w domu i zagrodzie

38 / 41

User-defined literals

User-defined literals

W C++ istnieje kilka predefiniowanych literatéw, zaréwno przedrostkowych jak
i przyrostkowych:

@ Przedrostkowe: 0x na liczby szesnastkowe, 0 na liczby ésemkowe, u8
na napisy UTF-8. ..

o Przyrostkowe: f jako float, L jako long, LL jako long long, i jako cze$¢
urojona w liczbach zespolonych. ..

(61 1) e § e gt T 55 /) 231

User-defined literals

W nowym standardzie mozna definiowa¢ wtasne literaty przyrostkowe za pomoca
specjalnego operatora.

(61 1) e § e gt T 70 /) 280

User-defined literals

W nowym standardzie mozna definiowa¢ wtasne literaty przyrostkowe za pomoca
specjalnego operatora.

typedef qint32 LengthUnit;
static const int LengthUnitPerMm = 10;

inline constexpr LengthUnit
operator"" _mm(long double mm) {
return mm * LengthUnitPerMm;

inline constexpr LengthUnit
operator"" _cm(long double cm) {
return cm * 10_mm;

inline constexpr LengthUnit
operator"" _in(long double in) {
return in * 2.54_cm;

}

Gt o Al B ecpsied 70 /) (51

User-defined literals

Sktadnia:

wynik operator"" _sufiks (argument);

TR 5t /) 280

User-defined literals

Sktadnia:

wynik operator"" _sufiks (argument); J

@ Sufiks powinien zaczynac sie od podkresinika. Literaty bez podkresinika sa
zarezerwowane na potrzeby przysztych wersji jezyka.

TR 5t /) 280

User-defined literals

Sktadnia:

wynik operator"" _sufiks (argument); J

@ Sufiks powinien zaczynac sie od podkresinika. Literaty bez podkresinika sa
zarezerwowane na potrzeby przysztych wersji jezyka.

o Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t — napis i dtugosc.

TR

41 / 41

User-defined literals

Sktadnia:

wynik operator"" _sufiks (argument); J

@ Sufiks powinien zaczynac sie od podkresinika. Literaty bez podkresinika sa
zarezerwowane na potrzeby przysztych wersji jezyka.

o Dopuszczalne typy argumentu to: unsigned long long, long double,
char, const char * (standardowy napis null-terminated). Ewentualnie dwa
argumenty, kolejno const char *, size_t — napis i dtugosc.

Uzycie:
const LengthUnit Metr = 100_cm; J
C++11 w domu i zagrodzie

41 / 41

	Ostateczne rozwiazanie kwestii NULL-pointerów
	,,Specyfikatory'' override i final
	Operatory rzutowania/konwersji explicit
	Wsparcie dla napisów UTF
	Raw string literals
	Listy inicjujace
	Nowa postac petli for
	Typ tablicowy array
	Silne typy wyliczeniowe
	Wyrazenia stałe (constexpr)
	User-defined literals

