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‘ Abstract I

size n x n that can be split into independent blocks of the size at most d,, = o(n?). We prove

that under some mild conditions on the distribution of the entries of X,,, the empirical spectral

=X . . X0 =X,
We investigate concentration properties of spectral measures of Hermitian random matrices measure Ly, " of %ﬁXn concentrates around its mean, i.e. p(Ly" ", ELY" ") —p 0, where p

with partially dependent entries. More precisely, let X,, be a Hermitian random matrix of the

1. Introduction |

_et X,, be arandom n x n Hermitian matrix. All eigenvalues

A < ... < )\, of X, lie on the real line and thus we may
consider its empirical spectral distribution (ESD) being a

probability measure on R given by the formula
1 n
i=1

Since X,, is random, then so is LnX”. One can thus con-
sider its expected value — a deterministic probability mea-
sure ELnX“ s.t. for every compactly supported continuous

function f
/deL%n:E/dean

(the existence of EL,, follows from Riesz-Markov-Kakutani
representation theorem).

When dealing with sequences of random probability mea-
sures we distinguish (at least) three distinct modes of con-
vergence. Let p be any metric that metrizes weak conver-
gence of probability measures (e.g. Prokhorov’s or Lévy’s

metric). We say that u,, converges to p (weakly)

almost surely, u, = u, it p(pun, ) = 0 a.s.,

in probability, pm = 1, if (i, 1) = 0,

in expectation, Eu, = u, it p(Epn, u) — 0.

The alternative characterization is often more handy:

=1 = Vyea,, [ fdu > [ as,
P P
fin = b <= Vryec,, /fd,un—>/fd,u,

where C, , is the set of all continuous compactly supported

1-Lipschitz real functions. It follows that

{un:w} — [/ﬁngﬂ} — [Eunéu}

A milestone that began random matrix theory is the follow-
ing result from [Wig]. It says that whenever the entries of
X, are L.i.d. (up to the symmetry constrain) with mean 0

and variance 1, then

X . 1
Ly " =0, with o(z) = 5=V 4 — :1:21|x|<2.
7
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7f 3\ Figure 1: Distribution of the eigen-

values of 2000 x 2000 normalized
random matrix with i.i.d. entries to-
gether with o (black line).
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Much is known about the limiting behavior of the ESD of
random matrices with independent entries but in many ap-
plications one has to deal with models of matrices having
dependent entries. In these cases the analysis is usually
much more involved and results — weaker (see e.g. re-
cent work [SchSch], where authors analyze Anderson lat-

tice model and obtain convergence in expectation to o).
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‘ 2. Main Result |

Our main theorem can be stated as follows.

Theorem 2.1. Assume that X,, is a sequence of random
Hermitian matrices s.t. for each n the maftrix X,, can be
split into stochastically independent blocks of size at most
dn, where d,, = o(n?) (thatis the size of each block is asymp-

totically dominated by the total number of entries).
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Figure 2: Each color corresponds
to each block of a matrix. Distinct
blocks are stochastically indepen-

dent random vectors of length < d,.

If the family {|(Xn)¢j\2}1§7;,jgneN is uniformly integrable,
then for any metric p that metrizes weak convergence of
probability measures

LXn LXn
oL BLY ) Bo.

1 X, 1 X,
In particular, ifELY" " = 1, then LY " = ..

In general we cannot get better than d,, = o(n?). To see

that, consider two random matrix ensembles X,,, Y,,, whose

ESDs converge a.s. to distinct limits ¢ and v. Set

where P(e =0) = P(e = 1) = 0.5 and ¢ is independent of all
X, and Y,. Then d,, = n?, L7" = (e + (1 — €)v) a.s. and
thus p(LTZL”,ELgn) cannot converge in probability to zero for
any metric p that metrizes weak convergence of probability
measures. The above example can be easily modified to

get d,, = an? for any o € (0, 1).

‘ 3. Tools used |

The proof of Theorem 2.1| is based on the argument from

[GuZe]. The main tools are the following theorem due to Ta-

lagrand and a standard lemma from random matrix theory.

Theorem 3.1 ([Tal]). Let {Y}, € R} _, be stochastically in-
dependent random vectors s.t. |||Y;|||,, < D for every k.
Then there exists a universal constant c s.t. for any convex

1-Lipschitz function F : R™ " R

P(|F(Y,...,Y,) —EF(Y,....Y,)| > t) < dexp(—ct’/D?).

Lemma 3.2. For any real convex 1-Lipschitz function h, the

mapping 1
X,
Xy, / hdLy"

is convex and +-Lipschitz w.r.t. Hilbert-Schmidt norm of a

matrix.

‘ 4. Sketch of the proof |

0. We will provide a proof of the theorem in the simplified

case, where the entries of X, are uniformly bounded

and the ESD of \/LﬁXn converges, i.e. we assume that

IS any metric that metrizes weak convergence of probability measures.

1

_Xn ] " n "
[(Xn)ij||, < Kand ELY" " = p. The first inequality im-
plies that X, can be decomposed into blocks Yi,...,Y;,

St Vil < K/,

1.Fixany f € C.p and ¢ > 0. Our aim is to show that

(%) =P ('/deiﬁX"—E/de%lﬁX”

>t>%0.

LXn
it will imply that [ fdLy"™ " 5 [ fdu and the result wil

follow by the triangle inequality.

2. Assume that the support of f is contained in the interval
—R, R]. We approximate f with fA — a combination of
at most x := 4| R/A]| convex, 1-Lipschitz functions (h;)
s.t. ||f — falloo < A. The construction is recursive with

fa=0forz < —Rand

2[R/A]
fAlx) =) Clp-Ri(s41)A)> fa(—Risa)} — Dala — D),
s=0 ~~

=g,(z)
where g(x) = max(0,x) — max(0,z — A). Clearly g5 is a

difference of two convex functions — all of which define
the family {h;}7;" ;.
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0 \\\\ Vi Figure 3: We define fa
\\\\__/// (upper figure, grey) re-
= 5 = cursively: In s-th step
A1 adding or subtracting g
0F .
(lower figure).

3.Set A < 1, then

&) <P (‘/m ALy - E/fA Ly | > %)

Lx X,
< K sup P<|/hld[,%ﬁ —E/hgd[zh/ﬁ
1<I<k

<4 ct2 n2
— /ieXp _K29/{,2dn )

where the last inequality follows from Theorem [3.1] and
LXn
Lemma 3.2 with Fs(X) = [ hsdLy" . u
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