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Abstract

We investigate concentration properties of spectral measures of Hermitian random matrices

with partially dependent entries. More precisely, let Xn be a Hermitian random matrix of the

size n× n that can be split into independent blocks of the size at most dn = o(n2). We prove

that under some mild conditions on the distribution of the entries of Xn, the empirical spectral

measure L
1√
n
Xn

n of 1√
n
Xn concentrates around its mean, i.e. ρ(L

1√
n
Xn

n ,EL
1√
n
Xn

n )→P 0, where ρ

is any metric that metrizes weak convergence of probability measures.

1. Introduction

Let Xn be a random n×n Hermitian matrix. All eigenvalues

λ1 ≤ . . . ≤ λn of Xn lie on the real line and thus we may

consider its empirical spectral distribution (ESD) being a

probability measure on R given by the formula

LXn
n :=

1

n

n∑
i=1

δλi.

Since Xn is random, then so is LXn
n . One can thus con-

sider its expected value – a deterministic probability mea-

sure ELXn
n s.t. for every compactly supported continuous

function f ∫
f dELXn

n = E
∫
f dLXn

n

(the existence of ELn follows from Riesz-Markov-Kakutani

representation theorem).

When dealing with sequences of random probability mea-

sures we distinguish (at least) three distinct modes of con-

vergence. Let ρ be any metric that metrizes weak conver-

gence of probability measures (e.g. Prokhorov’s or Lévy’s

metric). We say that µn converges to µ (weakly)

almost surely, µn⇒ µ, if ρ(µn, µ)→ 0 a.s.,

in probability, µn
P⇒ µ, if ρ(µn, µ)

P→ 0,

in expectation, Eµn⇒ µ, if ρ(Eµn, µ)→ 0.

The alternative characterization is often more handy:

µn⇒ µ ⇐⇒ ∀f∈Cc,L

∫
f dµn→

∫
f dµ a.s.,

µn
P⇒ µ ⇐⇒ ∀f∈Cc,L

∫
f dµn

P→
∫
f dµ,

Eµn⇒ µ ⇐⇒ ∀f∈Cc,L E
∫
f dµn→

∫
f dµ,

where Cc,L is the set of all continuous compactly supported

1-Lipschitz real functions. It follows that[
µn⇒ µ

]
=⇒

[
µn

P⇒ µ
]

=⇒
[
Eµn⇒ µ

]
.

A milestone that began random matrix theory is the follow-

ing result from [Wig]. It says that whenever the entries of

Xn are i.i.d. (up to the symmetry constrain) with mean 0

and variance 1, then

L
1√
n
Xn

n ⇒ σ, with σ(x) =
1

2π

√
4− x21|x|<2.
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Figure 1: Distribution of the eigen-

values of 2000 × 2000 normalized

random matrix with i.i.d. entries to-

gether with σ (black line).

Much is known about the limiting behavior of the ESD of

random matrices with independent entries but in many ap-

plications one has to deal with models of matrices having

dependent entries. In these cases the analysis is usually

much more involved and results – weaker (see e.g. re-

cent work [SchSch], where authors analyze Anderson lat-

tice model and obtain convergence in expectation to σ).

2. Main Result

Our main theorem can be stated as follows.

Theorem 2.1. Assume that Xn is a sequence of random

Hermitian matrices s.t. for each n the matrix Xn can be

split into stochastically independent blocks of size at most

dn, where dn = o(n2) (that is the size of each block is asymp-

totically dominated by the total number of entries).
X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44


Figure 2: Each color corresponds

to each block of a matrix. Distinct

blocks are stochastically indepen-

dent random vectors of length ≤ d4.

If the family {
∣∣(Xn)ij

∣∣2}1≤i,j≤n∈N is uniformly integrable,

then for any metric ρ that metrizes weak convergence of

probability measures

ρ(L
1√
n
Xn

n ,EL
1√
n
Xn

n )
P→ 0.

In particular, if EL
1√
n
Xn

n ⇒ µ, then L
1√
n
Xn

n
P⇒ µ.

In general we cannot get better than dn = o(n2). To see

that, consider two random matrix ensembles Xn, Yn, whose

ESDs converge a.s. to distinct limits µ and ν. Set

Zn = εXn + (1− ε)Yn,

where P (ε = 0) = P (ε = 1) = 0.5 and ε is independent of all

Xn and Yn. Then dn = n2, LZnn ⇒ (εµ + (1 − ε)ν) a.s. and

thus ρ(LZnn ,ELZnn ) cannot converge in probability to zero for

any metric ρ that metrizes weak convergence of probability

measures. The above example can be easily modified to

get dn = αn2 for any α ∈ (0, 1).

3. Tools used

The proof of Theorem 2.1 is based on the argument from

[GuZe]. The main tools are the following theorem due to Ta-

lagrand and a standard lemma from random matrix theory.

Theorem 3.1 ([Tal]). Let {Yk ∈ Rnk}rk=1 be stochastically in-

dependent random vectors s.t. ‖|Yk|‖∞ < D for every k.

Then there exists a universal constant c s.t. for any convex

1-Lipschitz function F : Rn1+...+nr → R

P (|F (Y1, . . . , Yr)− EF (Y1, . . . , Yr)| > t) ≤ 4 exp(−ct2/D2).

Lemma 3.2. For any real convex 1-Lipschitz function h, the

mapping

Xn
F7→
∫
h dL

1√
n
Xn

n

is convex and 1
n-Lipschitz w.r.t. Hilbert-Schmidt norm of a

matrix.

4. Sketch of the proof

0. We will provide a proof of the theorem in the simplified

case, where the entries of Xn are uniformly bounded

and the ESD of 1√
n
Xn converges, i.e. we assume that

∥∥(Xn)ij
∥∥
∞ ≤ K and EL

1√
n
Xn

n ⇒ µ. The first inequality im-

plies that Xn can be decomposed into blocks Y1, . . . , Yr,

s.t. ‖|Yk|‖∞ ≤ K
√
dn.

1. Fix any f ∈ Cc,L and t > 0. Our aim is to show that

(♣) := P
(∣∣∣∣∫ f dL

1√
n
Xn

n − E
∫
f dL

1√
n
Xn

n

∣∣∣∣ > t

)
→ 0.

It will imply that
∫
f dL

1√
n
Xn

n
P→
∫
f dµ and the result will

follow by the triangle inequality.

2. Assume that the support of f is contained in the interval

[−R,R]. We approximate f with f∆ – a combination of

at most κ := 4dR/∆e convex, 1-Lipschitz functions (hl)

s.t. ‖f − f∆‖∞ < ∆. The construction is recursive with

f∆ ≡ 0 for x ≤ −R and

f∆(x) =

2dR/∆e∑
s=0

(21{f (−R+(s+1)∆)>f∆(−R+s∆)} − 1)g(x− s∆)︸ ︷︷ ︸
:=gs(x)

,

where g(x) = max(0, x) − max(0, x − ∆). Clearly gs is a

difference of two convex functions – all of which define

the family {hl}κl=1.

0
∆

−R 0 R

0

∆

xs xs + ∆

Figure 3: We define f∆

(upper figure, grey) re-

cursively: in s-th step

adding or subtracting gs

(lower figure).

3. Set ∆ ≤ t
3, then

(♣) ≤ P
(∣∣∣∣∫ f∆ dL

1√
n
Xn

n − E
∫
f∆ dL

1√
n
Xn

n

∣∣∣∣ > t

3

)
≤ κ sup

1≤l≤κ
P
(∣∣∣∣∫ hl dL

1√
n
Xn

n − E
∫
hl dL

1√
n
Xn

n

∣∣∣∣ > t

3κ

)
≤4κ exp

(
− ct2

K2 · 9κ2
· n

2

dn

)
,

where the last inequality follows from Theorem 3.1 and

Lemma 3.2 with Fs(X) =
∫
hs dL

1√
n
Xn

n . a �
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