
Computation in sets with atoms

Mikołaj Bojańczyk

October 3, 2016

Contents

I Data words and their automata 2

1 Data words and register automata 3
1.1 Nondeterministic register automata. 3
1.2 Emptiness and universality for register automata 6

1

Part I

Data words and their automata
We begin with an investigation of concrete automata models for words over infinite
alphabets. One goal of this part is to build up intuitions for the more abstract models
that will be presented in the later parts.

2

1 Data words and register automata
Define a data word over a finite alphabet Σ to be a word where every position has a
label in Σ× A, where A is a fixed infinite set. The first coordinate is called the label
and the second coordinate is called the data value. The idea is that we can test labels
explicitly by asking questions like

Does the second letter have a ∈ Σ as its label?

but we can only test the data value for equality e.g. ask

Do the third and fifth letters have the same data value?

In the later parts of this book, we will try to formalise what it means to only test
data values for equality, but for now the intuitive understanding should be sufficient.

Example 1. By abuse of notation, we assume that a word over the alphabet A is
also a data word, which uses no labels. Here are some examples of languages of data
words, in all of these examples we use no labels:

1. the first data value is the same as the last data value

2. some data value appears twice

3. no data value appears twice

4. the first data value appears again

5. consecutive data values are different

�

We will introduce automata models for data words that capture the properties
above. These models use registers to talk about data values.

1.1 Nondeterministic register automata.
The syntax of a nondeterministic register automaton consists of:

• a finite alphabet Σ of labels;

• a finite set Q of control states;

• a finite set R of register names;

• an initial state q0 ∈ Q and a set of accepting states F ⊆ Q;

• a transition relation

δ ⊆ Q× (A ∪ {⊥})R︸ ︷︷ ︸
configurations

×Σ× A︸ ︷︷ ︸
input

×Q× (A ∪ {⊥})R︸ ︷︷ ︸
configurations

(1)

subject to an equivariance condition described below.

3

The automaton is used to accept or reject data words where the alphabet is Σ×A.
After processing part of the input, the automaton keeps track of a configuration,
which is defined to be a control state plus a register valuation (i.e. a partial function
from register names to data values). Initially, the configuration consists of the initial
state and a completely undefined register valuation. The configuration is then up-
dated according to the transition relation δ, and the automaton accepts if at the end
of the word the control state belongs to the accepting set.

How to describe the transition relation? Since the space of configurations is in-
finite, the transition relation must satisfy some constraints, otherwise it cannot be
represented in a finite way. We choose the following constraint, called equivariance:
the transition relation can only compare data values with respect to equality. Equiv-
ariance can be formalized in two different ways below.

Semantic equivariance. A bijection π : A → A on the data values can be applied
to configurations in the natural way, and therefore also to triples in the transition
relation δ (the states and undefined values are not affected, only the data values). We
say that δ is semantically equivariant if

t ∈ δ iff π(t) ∈ δ for every t ∈ π and every bijection π : A→ A.

The advantage of semantic equivariance is that the definition is short, and it will be
easy to generalise to other models, like alternating automata or pushdown automata.
The disadvantage is that it is not clear how to represent a semantically equivariant
transition relation, e.g. for the input of a nonemptiness algorithm. The converse
situation holds for syntactic equivariance, as presented below.

Syntactic equivariance. We say that δ is syntactically equivariant if it can be de-
fined by a finite boolean combination of constraints of the following types:

1. the control state in the source (respectively, target) configuration is q ∈ Q;

2. the label in the input letter is a ∈ Σ;

3. the data value is undefined in register r ∈ R of the source configuration (re-
spectively, target configuration);

4. the data value in the input letter equals the contents of register r ∈ R in the
source configuration (respectively, target configuration);

5. the data value in register r ∈ R of the source configuration (respectively, target
configuration) equals the data value in register s ∈ S of the source configura-
tion (respectively, target configuration).

Lemma 1.1 Semantics and syntactic equivariance are the same.

Proof
It is not difficult to see that semantically equivariant subsets of the set (1) are closed

4

under boolean combinations. Since the bijections of data values do not affect satisfac-
tion of the constraints 1-5 used in the definition of syntactic equivariance, it follows
that syntactic equivariance implies semantic equivariance.

We now show that semantic implies syntactic. Define an orbit of transitions to
be a subset of the set (1) which is semantically equivariant and which is minimal for
that property with respect to inclusion.

Claim 1.1.1 Every orbit of transitions is syntactically equivariant.

Proof (of Claim)
Because an orbit of transitions is uniquely defined by its states, which registers are
undefined, and what is the equality type of the tuple of data values in the defined
registers. All of this information can be expressed using the constraints 1-5 in the
definition of syntactic equivariance. �

Once the number of registers and states is fixed, there are finitely many possi-
ble constraints as in the definition of syntactic equivariance. Boolean combinations
make the number of possibilities grow, but it remains finite. Therefore, thanks to
the above claim, there are finitely many possible orbits of transitions. Finally, every
semantically equivariant relation is easily seen to be the union of the orbits contained
in it. This union is finite, and each part of the union is syntactically equivariant, and
thus the result follows. �

This completes the definition of nondeterministic register automata: the tran-
sition relation is required to be equivariant in either of the two equivalent senses
defined above. The transition relation is called deterministic if the source configura-
tion and the input letter determine uniquely the target configuration.

Exercise 1. Show that deterministic register automata can recognise languages 1,4
and 5 from Example 1.

Exercise 2. Show that a nondeterministic register automaton can recognise language
2 from Example 1, but a deterministic one cannot.

Exercise 3. Call a nondeterministic register automaton guessing if there exists a
transition t ∈ δ such that some data value in the target register valuation appears nei-
ther in the source register valuation nor in the input. Given an example of language
that needs guessing to be recognised.

In particular, deterministic register automata are strictly weaker than nondeter-
ministic ones, and nondeterministic ones are not closed under complement.

Exercise 4. Consider the two-way variant of register automata, where the head
of the automaton can move both ways. Show that a deterministic two-way register
automaton can recognise the language:

{a1 · · · an : a1, . . . , an are distinct and n is a prime number}

5

Exercise 5. Possibly using unproved conjectures from complexity theory, show that
two-way register automata cannot be determinised.

1.2 Emptiness and universality for register automata
In this section we discuss two standard decision problems: emptiness (does the au-
tomaton accept at least one input word) and universality (does the automaton accept
all input words). When talking about decidability, we assume that the transition
function is represented according to the syntactic equivariance condition.

Theorem 1.2 Emptiness is decidable for nondeterministic register automata.

Proof
This proof just sketches the decidability argument, the complexity is discussed in
Exercise 6. Define an orbit of configurations to be a set of configurations that is closed
under bijections of data values. As in Lemma 1.1, an orbit of configurations can be
defined by saying what is the states, which are the defined registers, and what is the
equality type on the data values stored in the defined registers. Such a description
takes finite space to store, and there are finitely many possible descriptions. The
key observation that being in the same orbit of configurations is a congruence with
respect to transitions, i.e. if two configurations are in the same orbit then both are
reachable or both are unreachable. The algorithm for nonemptiness computes the
orbits of reachable configurations. Initially, we have the equality type of the unique
initial configuration, which can be easily computed. If we have the equality type of
some configuration, we can easily compute the equality types of all configurations
reachable from it in one step; thus finishing the description of the algorithm. �

Exercise 6. The complexity of the emptiness problem depends on how the size |A|
of the input automaton is measured. Show that that emptiness is:

• PSPACE-complete if |A| is the number of states and registers;

• NP-complete if |A| is the number of reachable orbits of configurations;

• polynomial time if |A| is the number of orbits of transitions.

Theorem 1.3 Universality is undecidable for nondeterministic register automata.

Proof
We reduce from the halting problem. Suppose that we have a Turing machine which
is an instance of the halting problem. We encode a run of a Turing machine as a data
word according to the following following picture:

6

a

1

q
_

2

_

3

_

4

#

5

b

1

r
_

2

_

3

_

4

#

5

b

1

s
c

2

_

3

_

4

#

5

b

1

q
c

2

a

3

_

4

#

5
data
values

control
state

cell
content

separator

identi�er

labels

Each letter encodes a single cell in a single configuration. The word represents a
sequence of configurations, padded with blanks so that they all have the same length,
and separated by a letter #. The labels are used to store the contents of the cell
(blue), plus the control state (red) of the head if the head happens to be over that cell.
Finally, each cell gets a unique identifier, a data value (orange). The following claim
shows that the lahting problem reduces to universality of nondeterministic register
automata, thus proving the theorem.

Claim 1.3.1 There is a nondeterministic register automaton which accepts a data word
if and only if it is not an encoding of an accepting run of the Turing machine.

Proof
To prove the claim, we list the mistakes that can happen in a word that does not
encode an accepting run of a Turing machine:

1. The data values identifying the cells are chosen wrong. This means that:

(a) the separator # is used with more than one data value; or
(b) there exist positions x, y with the same data value such that the successor

positions x+ 1 and y + 1 have distinct data values.

The first condition can be tested using one register, the second condition using
two registers.

2. There is a mistake between two consecutive configurations. Assuming the
identifiers are chosen correctly, this can be tested using only one register, to
tell which cells correspond to which ones in the following configuration.

3. The first configuration is not initial, or the last configuration is not accepting.
For this, no registers are needed.

� �

Exercise 7. The undecidability proof in Theorem 1.3 used automata with two
register but no guessing (as in Exercise 3). Show that, in the presence of guessing,
universality remains undecidable even with one register.

7

