
Slightly Infinite Sets

Mikołaj Bojańczyk
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Preface

This book is about algorithms that run on objects that are infinite, but finite up
to certain symmetries. Under a suitably chosen notion of symmetry, such ob-
jects – called orbit-finite sets – can be represented, searched and processed just
like finite sets. The goal of the book is to explain orbit-finiteness and demon-
strate its usefulness. Most of the examples of orbit-finite sets are taken from
automata theory, since this is where orbit-finite sets began.
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PART ONE

AUTOMATA FOR DATA WORDS
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We begin with an investigation of concrete automata models for words over
infinite alphabets. The goal of this part is to build intuitions for the more ab-
stract models that will be presented in the later parts.



1
Register automata

A data word is a word where each letter carries two pieces of information: a
label from a finite set, and a data value from an infinite set. Here is a picture:
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data values from {1, 2, 3,...}

labels from {a, b}

For the rest of Part I, fix a countably infinite set A. Elements of this set, called
the atoms, will be used for the data values. Formally, a data word over a finite
set of labels Σ is defined to be a word in

w ∈
(

Σ︸︷︷︸
label

× A︸︷︷︸
data value

)∗
.

When describing properties of data words, we will be able to test the labels
explicitly by asking questions like

does the second letter have a ∈ Σ as its label?

but we will only test the data values for equality, e.g. ask

do the third and fifth letters have the same data value?

Later in the book, we will formalise what it means to only test data values for
equality, but for now the intuitive understanding should be enough.

Example 1.1. By abuse of notation, we assume that a word in A∗ is also a data
word, which uses no labels. Here are examples of languages of data words, in
all of these examples we use no labels:

4
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(1) the first data value is the same as the last data value;
(2) some data value appears twice;
(3) no data value appears twice;
(4) the first data value appears again;
(5) every three consecutive data values are pairwise distinct.

We will introduce automata models for data words that recognise the above
languages. These models use registers to talk about data values.

1.1 Nondeterministic register automata

We begin our discussion with some of the simplest automaton models for data
words, namely nondeterministic and deterministic register automata1.

Definition 1.2 (Nondeterministic register automaton). The syntax of a nonde-
terministic register automaton consists of:

• a finite set Σ of labels;
• a finite set Loc of locations2;
• a finite set R of register names;
• an initial location `0 ∈ Loc and a set of accepting locations F ⊆ Loc;
• a transition relation

δ ⊆

register valuations, i.e.
partial functions
from registers

to atoms

Loc ×
︷       ︸︸       ︷
(A ∪ {⊥})R︸                ︷︷                ︸
states

×Σ × A︸︷︷︸
input

× Loc × (A ∪ {⊥})R︸                ︷︷                ︸
states

(1.1)

subject to an equivariance condition described below.

The automaton is used to accept or reject data words with labels Σ, i.e. words
where each position is labelled by Σ × A. After processing part of the input,
the automaton keeps track of a state, which is defined to be a location plus a
register valuation. Initially, the state consists of the initial location and a com-
pletely undefined register valuation. For each input letter, the state is updated
according to the transition relation δ, and the automaton accepts if at the end

1 Register automata where introduced in Kaminski and Francez (1994), under the name of finite
memory automata, together with a decidability proof for the emptiness problems in the
deterministic and nondeterministic one-way cases (Theorem 1.7 in this text). The presentation
using syntactic and semantics equivariance, in particular Lemma 1.3, is essentially due
to Bojańczyk (2013); Bojańczyk et al. (2014).

2 We use the name location instead of state because the state of the automaton will store
additional information, namely the contents of the registers.
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of the input word the state is accepting, in the sense that the location belongs
to the accepting set.

How is the transition relation described? Since the state space is infinite,
some restrictions on the transition relation are needed to represent it in a finite
way. We choose the following restriction, called equivariance: the transition
relation can only compare atoms with respect to equality, and is not allowed to
depend on any specific atoms. Equivariance can be formalised in two different
ways, as described below.

Semantic equivariance. A permutation π : A → A of the atoms (i.e. a bi-
jection from the atoms to themselves) can be applied to states in the natural
way, and therefore also to triples in the transition relation δ (the locations and
undefined values are not affected, only the atoms). Here is a picture:

2, ⊥ 1, 2 
1 

3, ⊥ 5, 3 
5 

π

π(1) = 5
π(2) = 3

state with orange location, 
atom 2 in the first register, 
and undefined second register

input letter with red label
and atom 1

We say that δ is semantically equivariant if the set of transitions is invariant
under actions of atom permutations, i.e.

π(t) ∈ δ for every t ∈ δ and every permutation π : A→ A.

The advantage of semantic equivariance is that the definition is short, and easy
to generalise to other models like alternating automata or pushdown automata.
The disadvantage is that it is not clear how to represent a semantically equiv-
ariant transition relation, e.g. for the input of a nonemptiness algorithm. The
converse situation holds for syntactic equivariance, as presented below.

Syntactic equivariance. We say that δ is syntactically equivariant if it can be
defined by a finite boolean combination of constraints of the following types:

(1) the location in the source / target state is ` ∈ Loc;
(2) the label in the input letter is a ∈ Σ;
(3) register r ∈ R is undefined in the source / target state;
(4) the atom in the input letter is the same as in register r ∈ R of the source /

target state;
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(5) register r ∈ R of the source / target state stores the same atom as register
s ∈ R of the source / target state.

In the above, source / target means that the constraint can be instantiated with
either “source” or “target”. For example, in item (5), there are four possibilities
regarding the choice of source vs target, since the choice is taken independently
for r and s.

Lemma 1.3. Semantic and syntactic equivariance are the same.

Proof It is not difficult to see that semantically equivariant subsets of the
set (1.1) are closed under boolean combinations. Since the bijections of data
values do not affect satisfaction of the constraints 1-5 used in the definition of
syntactic equivariance, it follows that syntactic equivariance implies semantic
equivariance.

We now show that semantic implies syntactic. Define an orbit of transitions
to be a set of the form

{π(t) : π is a permutation of the atoms} for some transition t ∈ δ.

Here is a picture of an orbit of transitions:

3, ⊥ 2, 3
2

1, ⊥ 5, 1
5

3, ⊥ 4, 3
4

2, ⊥ 1, 2 
1 

...

nonempty subset of the set (1.1) which is semantically equivariant and which
is minimal for that property with respect to inclusion.

Claim 1.4. Every orbit of transitions is syntactically equivariant.

Proof of the claim An orbit of transitions is uniquely defined by its locations,
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which registers are undefined, what is the label of the input letter, and what is
the equality type of the tuple of atoms in the defined registers and the input
letter. All of this information can be expressed using the constraints 1-5 in the
definition of syntactic equivariance. �

Once the number of registers and locations is fixed, there are finitely many
possible constraints as in the definition of syntactic equivariance. Boolean
combinations make the number of possibilities grow, but it remains finite.
Therefore, thanks to the above claim, there are finitely many possible orbits
of transitions. Finally, every semantically equivariant relation is easily seen to
be the union of the orbits contained in it. This union is finite, and each part of
the union is syntactically equivariant, hence the result follows. �

This completes the definition of nondeterministic register automata: the tran-
sition relation is required to be equivariant in either of the two equivalent senses
defined above. The transition relation is called deterministic if the source state
and the input letter determine uniquely the target state.

Example 1.5. Here is a deterministic register automaton which recognises
language 1 from Example 1.1, i.e. the words in A∗ where the first and last data
values are equal. The automaton stores the first data value in its register, and
then toggles between accepting or rejecting states depending on whether the
input agrees with the register. Here is a picture:

a

a

a

a

b

b

a

The above picture should be interpreted as follows. There are three locations,
standing for the three coloured circles, with initial and final locations depicted
using dangling arrows. Since there is one register, a state consists of a location
and an atom, with the atom possibly undefined. Such states can be found in
the picture above. For every pair of distinct atoms a , b, we add a transition
from the above picture to the automaton. Note how every arrow in the picture
corresponds to an orbit of transitions.

The method of drawing above has its limitations. For example, if we wanted
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to add a transition that would involve the orange location with an undefined
register, we would need to draw a separate instance of the orange state.

Example 1.6. Languages recognised by nondeterministic register automata
are not closed under complement. Consider the language

L = {w ∈ A∗ : some data value appears twice in w}.

This language is recognised by a nondeterministic register automaton with one
register and three locations. The automaton uses nondeterminism to guess the
repeating data value. Here is a picture:

a
a a

ba b

We now show that the complement of this language – namely the words where
no data value repeats – is not recognised by any nondeterministic register au-
tomaton. Toward a contradiction, suppose that there is such a nondeterministic
automaton, say with < k registers, and consider an accepting run over a word
with 2k distinct data values:

q0
a1
→ q1

a2
→ · · ·

a2k
→ q2k (1.2)

Since the automaton has < k registers then there must be some atoms

a ∈ {a1, . . . , ak} b ∈ {ak+1, . . . , a2k}

such that neither a nor b appear in the registers of state qk. Let π be the atom
permutation which swaps a and b. If we apply π to the second half of the run
in (1.2), then we also get an accepting run (because transitions and accepting
states are closed under applying permutations, and the permutation π does not
affect the state qk in the middle of the run). This new run sees the atom a twice.

Exercises

Exercise 1. Show that deterministic register automata can recognise languages
4 and 5 from Example 1.1.

Exercise 2. Show that the expressive power of nondeterministic register au-
tomata is not affected if we allow ε-transitions.
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Exercise 3. For languages of data words one can also define the Myhill-
Nerode relation, as used in minimisation of deterministic automata. Show a
language of data words where every deterministic register automaton that recog-
nises the language distinguishes (by its state) some two words which are Myhill-
Nerode equivalent.

Exercise 4. Find a language of data words, for which there are at least two
nonisomorphic deterministic register automata with a minimal number of reg-
isters and locations (lexicographically, with the number of registers being more
important than the number of locations).

Exercise 5. Show that a nondeterministic register automaton can recognise
language 2 from Example 1.1, but a deterministic one cannot.

Exercise 6. Call a nondeterministic register automaton guessing if there exists
a transition t ∈ δ such that some data value in the target state appears neither
in the source state nor in the input. Give an example of a language that needs
guessing to be recognised.

A corollary of the above two exercises is that:

deterministic ( nondeterministic without guessing ( nondeterministic.

Exercise 7. Call a nondeterministic register automaton weakly guessing if
every accepting run has the following property: if the transition reading the
i-th letter loads a data value a into some register r, then a appears in some
position j ≥ i such that the transitions reading letters {i, . . . , j} do not remove a
from register r. Show that for every nondeterministic register automaton there
is a weakly guessing one which accepts the same words.

1.2 Emptiness and universality for register automata

In this section, we discuss two decision problems for register automata:

• nonemptiness (does the automaton accept at least one input word); and
• universality (does the automaton accept all input words).

When talking about decidability, we assume that the transition function in a
register automaton is represented according to the syntactic equivariance con-
dition.
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Theorem 1.7. Emptiness is decidable for nondeterministic register automata.

Proof This proof just sketches the decidability argument, the complexity is
discussed in Exercise 8. Similarly to the orbits of transitions used in the proof
of Lemma 1.3, we define an orbit of states to be a set of the form

{π(q) : π is a permutation of the atoms} for some state q.

For example, if the automaton has three locations (orange, red and blue) and
two registers, then there are 15 orbits of states, as shown in the following pic-
ture, with orbits represented by examples of states that use atoms 1 and 2:

1, ⊥ ⊥, 1 ⊥, ⊥ 1, 1 1, 2 

1, ⊥ ⊥, 1 ⊥, ⊥ 1, 1 1, 2 

1, ⊥ ⊥, 1 ⊥, ⊥ 1, 1 1, 2 

As in Lemma 1.3, an orbit of states can be defined by saying what is the loca-
tion, which registers have defined values, and what is the equality type of the
atoms stored in the defined registers. Such a description takes finite space to
store, and there are finitely many possible descriptions (although the number
of orbits is exponential in the number of registers). The key observation is that
being in the same orbit of states respects reachability, i.e. if two states are in
the same orbit, then both are reachable or both are unreachable. The algorithm
for nonemptiness computes the orbits of reachable states. Initially, we have the
orbit of the unique initial state, which has all registers undefined. If we have
the equality type of some state, we can easily compute the equality types of
all states reachable from it in one step; thus finishing the description of the
algorithm. �

Theorem 1.8. Universality is undecidable3 for nondeterministic register au-
tomata.

Proof We reduce from the halting problem for Turing machines, i.e. the prob-
lem of deciding if a given Turing machine has at least one accepting compu-
tation. Suppose that we have a Turing machine which is an instance of the

3 This proof follows the same lines as the undecidability for a stronger model, namely timed
automata, see (Alur and Dill, 1994, Theorem 5.2).
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halting problem. We encode a computation of a Turing machine as a data word
according to the following picture:

a
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_

3

_
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#

5
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q
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2

a

3

_

4

#

5data values

control state of
 the Turing machine

cell
content

separator

labels

Each letter encodes a single cell in a single configuration of the Turing ma-
chine. The data word represents a sequence of configurations, padded with
blanks so that they all have the same length. The configurations are separated
by a letter #. The labels are used to store the contents of the cell plus the con-
trol state of the head if the head happens to be over that cell. Finally, each cell
gets a unique identifier, which is its data value (the same cell in consecutive
configurations gets the same identifier).

Claim 1.9. There is a nondeterministic register automaton which accepts a
data word if and only if it is not an encoding of an accepting computation of
the Turing machine.

It follows that the Turing machine has no accepting computation if and only
if the nondeterministic register automaton accepts all inputs. Therefore, uni-
versality of nondeterministic register automata is undecidable.

Proof of the claim To prove the claim, we list the mistakes that can happen
in a data word that does not encode an accepting computation of a Turing
machine:

(1) The data values identifying the cells are chosen incorrectly. This means that:

(i) the separator # is used with more than one data value; or
(ii) there exist positions i, j with the same data value such that the successor

positions i + 1 and j + 1 are defined and have distinct data values.

The first condition can be tested using one register, the second condition
using two registers.

(2) There is a mistake between two consecutive configurations. Assuming that
the identifiers are chosen correctly, this mistake can be tested using only
one register, which is used to identify corresponding cells in consecutive
configurations.
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(3) The first configuration is not initial, or the last configuration is not accepting.
For this, no registers are needed.

�

�

Exercises

Exercise 8. The complexity of the emptiness problem for nondeterministic
register automata depends on how the size |A| of the input automaton is mea-
sured. Show that emptiness is:

• pspace-complete if |A| is the number of locations and registers;
• np-complete if |A| is the number of reachable orbits of states;
• polynomial time if |A| is the number of orbits of transitions.

Exercise 9. The undecidability proof in Theorem 1.8 used automata with two
registers but no guessing (as defined in Exercise 6). Show that, in the presence
of guessing, universality remains undecidable even with one register.

Exercise 10. To express properties of data words, we can use first-order logic,
where the quantifiers range over positions, and there are predicates for the or-
der on positions, equality of data values, and the labels. For example, the fol-
lowing formula says that every position with label a is followed by a position
with label b and the same data value:

∀x︸︷︷︸
for every position x

(
a(x)︸︷︷︸

x has label a

⇒ ∃y︸︷︷︸
exists a position y

( y > x︸︷︷︸
y is after x

∧ y ∼ x︸︷︷︸
x and y

have the same
data value

∧ b(y)︸︷︷︸
y has label b

)
)

Show that satisfiability is undecidable for this logic, i.e. one cannot decide if a
given formula is true in some data word.

1.3 Alternating register automata

In a nondeterministic automaton, each transition is chosen nondeterministi-
cally in favour of acceptance, i.e. for acceptance it suffices that there is at least
one choice of transitions that gives an accepting run. An alternating automaton
is a generalisation of a nondeterministic automaton, where the syntax specifies
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which locations choose transitions in favour of acceptance, and which loca-
tions choose transitions against acceptance. The main result of this section is
that emptiness is decidable for a restricted version of alternating register au-
tomata4.

Alternating register automata. The syntax of an alternating register au-
tomaton is defined the same way as for a nondeterministic register automaton,
except that there is an additional partition of the locations into two parts, called
existential and universal.

We define the semantics of the automaton using bags5, where a bag is de-
fined to be a set of states. Here is a picture of a bag:

a bag with four states

blue location and
atom 2 in register

orange location and 
undefined register

2

1 2

We write P,Q for bags. Bags can be infinite, but for the automata that we will
mainly be interested in – non-guessing ones – only finite bags will play a role.
If a is an input letter (consisting of a label and a data value) and P,Q are bags
then we write

P
a
→ Q

if the following conditions hold:

• for every state p ∈ P with an existential location, the bag Q contains some
state q such that (p, a, q) is a transition; and

• for every state p ∈ P with an universal location, the bag Q contains all states
q such that (p, a, q) is a transition.

A data word a1 · · · an is accepted by an alternating automaton if there exists a

4 The main result of Section 1.3, namely decidability of emptiness for alternating one-way
register automata with one register, was first shown in Demri and Lazić (2009). A tree
extension of the result can be found in Jurdziński and Lazić (2011).

5 An alternative but equivalent semantics would use a game played by two players, called
“universal” and “existential”.
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run, which is defined to be a sequence of bags

initial bag︷         ︸︸         ︷
{initial state} = Q0

a1
→ Q1

a2
→ · · ·

an
→ Qn

where the last bag is accepting, in the sense that all of its states use accepting
locations. We define → to be the union of all relations

a
→, ranging over all

letters a. In terms of this notation, an alternating automaton is nonempty if and
only if some accepting bag is reachable from the initial bag via a finite number
of steps using the relation→.

Languages recognised by alternating register automata are closed under com-
plementation, essentially by design, see Exercise 11.

An emptiness algorithm using well quasi-orders. Nondeterministic register
automata are the special case of alternating register automata where all states
are existential. By Exercise 11, the emptiness and universality problems for
alternating register automata are essentially the same problem, which is unde-
cidable by Theorem 1.8.

We now identify a restriction on alternating automata which makes empti-
ness (or universality) decidable. We consider alternating automata that are non-
guessing, see Exercise 6, which means that for every transition (p, a, q), each
atom that appears in q must appear in either p or a. By the remarks in Exer-
cise 9, universality is undecidable for non-guessing nondeterministic automata
with two registers, or even guessing nondeterministic automata with one regis-
ter. Therefore, emptiness is undecidable for alternating automata that are either
non-guessing with two registers, or guessing with one register. Anything below
that is decidable:

Theorem 1.10. Emptiness is decidable for alternating non-guessing automata
with one register.

The rest of this section is devoted to proving the above theorem. Nonempti-
ness is semi-decidable, i.e. there is an algorithm (guess a word and run the au-
tomaton on it) which terminates if and only if the input automaton is nonempty.
Therefore, in order to prove decidability it suffices to show that emptiness is
also semi-decidable. The rest of this section is devoted to designing an al-
gorithm which inputs an automaton (alternating, non-guessing, and with one
register) and terminates if and only if the input automaton is empty. In other
words, we are searching for a finite and computable witness of emptiness.

Fix an alternating non-guessing automata with one register. Because the au-
tomaton is non-guessing, only finite bags can be reached from the initial state.
Therefore, from now on, all bags are assumed to be finite.
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As in the definition of semantic equivariance from Section 1, permutations
of the atoms can be applied to states and to bags of states. The following order
on bags is the key to our proof: we write P ≤ Q if there is some permutation
of the atoms π such that P ⊆ π(Q). Here is a picture:

π

P

Q

3

2

41

1
2

The relation ≤ is easily seen to be a quasi-ordering, i.e. it is transitive and
reflexive, but not necessarily anti-symmetric. Call a set of bags upward closed
if whenever it contains a bag P, and P ≤ Q, then it also contains Q. The upward
closure of a set of bags is the least upward closed set of bags that contains it. To
show that emptiness is semi-decidable, we will use upward closed invariants
as described in the following lemma.

Lemma 1.11. An alternating non-guessing automata with one register is empty
if and only if there is an upward closed invariant, i.e. a family of bags Q which:

(1) is upward closed; and
(2) contains no accepting bags; and
(3) contains the initial bag; and
(4) is closed under transitions, i.e. P→ Q and P ∈ Q imply Q ∈ Q.

Proof Clearly, if there is an upward closed invariant, then the automaton is
empty. For the converse implication, suppose that the automaton is empty, and
define Q to be the bags that cannot reach an accepting bag. By definition, Q
contains no accepting bags, and by assumption on emptiness, Q contains the
initial bag. Also, Q is closed under transitions. To prove the lemma, it remains
to show that Q is upward closed. This will follow from the following property
of the transition relation.

Claim 1.12. The order ≤ on bags is compatible with the transition relation→
in following sense: for every transition P → Q and every P′ ≤ P there exists
some Q′ ≤ Q with P′ → Q′.

Proof Here is the picture of compatibility:
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∀∃

transition

≥ ≥

transition

Because→ is closed under atom permutations, and also closed under making
the first argument a smaller bag. �

Since the family of accepting bags is downward closed, a corollary of com-
patibility as in the above claim is that if a bag can reach an accepting bag, then
the same is true for any smaller bag. The contrapositive is that if a bag belongs
to Q, then the same is true for any bigger bag. �

The general idea behind the semi-algorithm for emptiness is to search for
upward closed invariants as in the above lemma. To represent these invariants
in a finite way, we will use the following result.

Lemma 1.13. Every upward closed invariant is the upward closure of some
finite family of bags.

Before proving the above lemma, we use it to complete the proof of Theo-
rem 1.10. This semi-algorithm for emptiness works as follows: searches through
all finite families of bags, and terminate with success if there is a finite family
whose upward closure is an upward closed invariant in the sense of Lemma 1.11.
By Lemmas 1.11 and 1.13, this semi-algorithm terminates with success if and
only if the automaton is empty. It remains to show how one can check, given
a finite family of bags, if its upward closure is an upward closed invariant.
The first condition, about upward closure, is vacuously satisfied. The second
condition, about having no accepting bags, corresponds to checking that the
finite family has no accepting bags because upward closure cannot add accept-
ing bags. The third condition, about containing the initial bag, corresponds to
checking if the finite family contains either the initial bag or the empty bag
(which is the unique bag that is strictly smaller than the initial bag). Finally,
we are left with checking if the upward closure is closed under transitions. By
compatibility, see Claim 1.12, the upward closure of a finite family Q is closed
under taking transitions if and only if for every bag Q ∈ Q and every transi-
tion Q → P, the target bag is in the upward closure of Q, which can easily be
checked by enumerating all finitely many candidates for the transition Q→ P.
Closure under transitions is illustrated in the following picture:
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π

upward closure of Q

reachable in one step from Q

�nite set of bags Q
initial

bag

The idea is that the orange area, i.e. the upward closure of Q0, is a trap in the
sense that no transition can leave the orange area.

It remains to prove Lemma 1.13, which we do in the rest of this section. This
is done using well quasi-orders. We say that a quasi-order is a well quasi-order
if it is well-founded (no infinite strictly decreasing chains) and has no infinite
antichains. The technique of well quasi-orders6, as used in the following proof,
is a common method of proving decidable properties for systems with infinitely
many configurations.

Lemma 1.14. In a well quasi-order, every upward closed set is the upward
closure of a finite set.

Proof By well-foundedness, every upward closed set is the upward closure
of its minimal elements. The minimal elements form an antichain, and hence
there can only be finitely many of them (up to the equivalence where x and y
are equivalent if x ≤ y and y ≤ x). �

To prove Lemma 1.13, and therefore also Theorem 1.10, it is enough to
establish that the relation ≤ on bags is a well quasi-order.

Lemma 1.15. The relation ≤ on bags is a well quasi-order.

Proof It is clear that the relation is well-founded, since a strict decrease on
bags implies a strict decrease in the cardinality (recall that we only consider
finite bags). It remains to show that there is no infinite antichain. Define

bags
profile // {true, false} locations × N nonempty subsets of locations

6 The well quasi-order technique was independently introduced in Abdulla et al. (2000)
and Finkel and Schnoebelen (2001), and is currently known as the technique of
well-structured transition systems.
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to be the function which maps a bag to the information explained in the fol-
lowing picture:

1

1

3

3 2

2 3 0true false

a bag

its profile

4 6

2 atoms use both the blue 
and orange locations

the blue location is used 
with an undefined register

0 atoms use only the 
orange location

The profile mapping reflects the order in the following sense

profile(P) ≤ profile(Q) implies P ≤ Q, (1.3)

where the order on profiles is coordinate-wise, with false ≤ true (see Exer-
cise 15 for why the converse implication fails). Because the order is reflected,
the profile mapping maps antichains of bags to antichains of profiles. Since
there are no infinite anitichains of profiles by Exercise 14, it follows that there
are no infinite antichains of bags. �

The general technique. Using the same proof, we obtain the following gen-
eralisation of Theorem 1.10.

Theorem 1.16. The following problem is decidable.

• Input.
– A directed graph where every node has finite outdegree;
– A well quasi-order ≤ on vertices which satisfies the following condition:

∀∃
edge

≥ ≥

edge
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– A source vertex plus a set of target vertices that is downward closed.

The input is represented by algorithms for: enumerating the vertices, testing
membership in the target set, testing the well quasi-order, and computing
the neighbour list of a given vertex.

• Output. Is there a path from the source to one of the targets?

A temporal logic for data words. One register alternating automata can be
dressed up in the syntax of a temporal logic. The idea is to add one register
to linear temporal logic ltl. We do not give the detailed syntax and semantics,
only some examples. We are extending ltl, so we can write a formula

a until b,

which is true in a (data) word if there is some position with label b such that
all earlier positions have label a. Instead of a, b we could have used previously
defined formulas, and Boolean combinations are also allowed. There is also an
operator next to access the next position. For example, the formula

(a ∨ ¬a)︸   ︷︷   ︸
>

until (a ∧ next a)

says that there exist two consecutive positions with label a. We use finally ϕ as
syntactic sugar for > until ϕ. If we only use the operators until and next, then
we have exactly the logic ltl, which is insensitive to the data values. To access
the data values, we can add an operator store which stores the current data
value and a formula same which is true whenever the current value is equal to
the stored one. For example, the formula

store
(
next ¬

(
finally same)

)
says that the first data value does not repeat, i.e. after storing it one cannot
find the same one again. In principle, we could have several different registers
for storing data values, but if we want to translate the logic to one register
alternating automata, then only one register is allowed (and hence there is no
need to give it a name). The register can be reused, e.g. the following formula
says that whenever the first data value of the word is used, then the next two
positions have distinct data values:

store
(
next ¬

(
finally(same ∧ next (store(next same)))

))
Every formula of this temporal logic can be converted into an alternating one
register automaton, and therefore one can decide if a formula is true in at least
one data word.



1.3 Alternating register automata 21

Exercises

Exercise 11. Show that languages recognised by alternating register automata
are closed under complementation.

Exercise 12. Show that languages recognised by one way non-guessing alter-
nating automata are not closed under reversals.

Exercise 13. Show that a quasi-order is a well-quasi-order if and only if ev-
ery infinite sequence contains a monotone subsequence, i.e. one where i ≤ j
implies xi ≤ x j.

Exercise 14. Show that for every dimension d ∈ {1, 2, . . .}, the set Nd is a well
quasi-order with respect to the coordinatewise ordering.

Exercise 15. Show that the converse implication in (1.3) is not true. Find a
well quasi-order on profiles which turns the implication into an equivalence.

Exercise 16. For a possibly infinite alphabet Σ, define the Higman ordering on
Σ∗ to be the relation of not necessarily connected substrings. Show that this is
a well quasi-ordering.

Exercise 17. Suppose that the atoms are equipped with a total order. Show
that emptiness remains decidable for one register alternating automata without
guessing, even when the machine can use the order to compare the register
with the current data value7.

Exercise 18. For a Turing machine with one tape, define a gain to be the pro-
cess of taking a configuration and inserting nondeterministically one new cell
in some position not below the head, with any label from the work alphabet.
Define a gainy computation step of a Turing machine to be a finite (possibly
zero) number of gains followed by a normal step of computation. Show that
the halting problem is decidable for Turing machines with semantics defined
using gainy computation steps.

7 The paper Lasota and Piórkowski (2018) investigates what structure on the atoms can be used
so that the order ≤ on bags is a well quasi-order.
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Exercise 19. Show that there is an infinite antichain for the following order on
A∗:

w ≤ v if w is Higman smaller or equal to π(v) for some permutation of A.

Exercise 20. Show that there is a language L ⊆ A∗ that is upward closed
under the Higman order, but is not recognised by a nondeterministic register
automaton.

1.4 Most models of register automata are inequivalent

The goal of this section is to collect exercises which paint a depressing picture:
with one exception, the only inclusions between models of register automata
are the ones that trivially follow from the definitions. To have a richer land-
scape, we also consider the two-way variant of register automata, where the
head of the automaton can move both ways, with the input being extended by
markers on both sides8. For the purpose of this section, we assume that all
models allow ε-transitions.

Exercise 21. Find a deterministic two-way register automaton which recog-
nises the language

{a1 · · · an : a1, . . . , an are distinct and n is a prime number}.

Exercise 22. Consider nondeterministic two-way register automaton A with
one register and labels Σ. Show that the following language is regular (in the
usual sense, without data values):

{b1 · · · bn ∈ Σ∗ : A accepts (b1, a1) · · · (bn, an)

for some distinct atoms a1, . . . , an ∈ A}.

Exercise 23. Find a language of data words that is recognised by an alternating
register automaton with guessing, but not by any alternating register automaton
without guessing.

8 An in-depth study of various kinds of register automata can be found in Neven et al. (2004),
including undecidability of universality of nondeterministic one-way automata (Theorem 1.8).
The non-equivalence results summarised in Figure 1.1 are originally found in Kaminski and
Francez (1994); Neven et al. (2004) and an unpublished Master’s thesis in Polish Wysocki
(2013). For a survey on automata and logic for infinite alphabets, see also Segoufin (2006).
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Exercise 24. Show that every two-way nondeterministic register automaton
can be simulated by an alternating register automaton (with guessing and ε-
transitions).

We now present a series of exercises with a more systematic study of the
following models of automata: one-way deterministic and nondeterministic,
two-way deterministic and nondeterministic, as well as one-way alternating
with or without guessing. We assume ε-transitions are allowed in all models.
The picture with these six models is in Figure 1.1. The picture shows the ob-
vious containments which follow from the syntax as well as the less obvious
containment from Exercise 23. In the solutions to the following exercises, one
is allowed to give answers conditional on open problems in complexity theory,
such as p = np.

Exercise 25. Show a language that witnesses point 3 in Figure 1.1.

Exercise 26. Show a language that witnesses point 4 in Figure 1.1, possibly
assuming conjectures about complexity classes being distinct.

Exercise 27. Show a language that witnesses point 5 in Figure 1.1, possibly
using conjectures about complexity classes being distinct.

Exercise 28. Show that all coloured areas in Figure 1.1 contain languages.
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Figure 1.1 Six classes of register automata and their combinations. Point 1 is the
language: “last letter appears only once”, while point 2 is the language “all letters
are distinct”. The remaining points 3, 4, 5 are Exercises 25-27, while Exercise 28
sums up the results by saying that all combinations are possible.



2
Two variable logic and data automata

This chapter presents an automaton model – data automata – which recognises
properties of data words without using registers. There are three reasons to
discuss data automata: (1) the study of emptiness of data automata is a pretext
to use an important decidability result about vector addition systems; (2) there
is a nontrivial result that data automata generalise nondeterministic register
automata; (3) data automata have a natural correspondence to two variable
logic over data words1.

2.1 Data automata

In the definition of a data automaton, we use a nondeterministic transducer
over words without data, so we begin by describing this transducer.

Letter-to-letter transductions. Suppose that Γ and Σ are finite alphabets (no
atoms involved). Consider a nondeterministic finite automaton with input al-
phabet Σ where every transition is labelled by a letter of Γ. We view this au-
tomaton as a device which inputs a word over Σ and outputs all possible words
that label accepting runs. In other words, the semantics of such an automaton
is a binary relation

R ⊆ Σ∗ × Γ∗.

A relation is called a nondeterministic letter-to-letter transduction if it can be
described this way. Such a relation will only contain pairs of words of the same
length.
1 The model of data automata and its application to logic is from Bojańczyk et al. (2011). Tree

generalisations of two variable logic on data words and data automata were discussed
in Bojańczyk et al. (2009) and Jacquemard et al. (2016); these problems are connected to
branching vector addition systems, see Göller et al. (2016) and the references therein.

25
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Example 1. Consider the set of pairs

(w, v) ∈ {a, b}∗ × {a, b, a, b}∗

such that v is obtained from w by underlining exactly one position. This rela-
tion is realised by the following automaton:

a/a

b/b

a/a

a/a

b/b

a/a

b/b

A transition like this

inputs a and outputs a

�

Data automata. We are now ready to define data automata.

Definition 2.1. The syntax of a data automaton is given by:

• finite input and work alphabets Σ and Γ;
• a nondeterministic letter-to-letter transduction R ⊆ Σ∗ × Γ∗;
• a regular language L ⊆ Γ∗ called the class condition.

A data automaton is used to accept or reject data words in (Σ × A)∗. For a
data word, define a class to be a maximal set of positions with the same data
value, and define a class string to be a sequence in Σ∗ obtained by taking some
class and reading all of its labels from left to right. A data automaton accepts
a data word if the sequence of labels can be transformed by the transducer so
that in the resulting data word in (Γ × A)∗, all class strings are in L. Here is a
picture:

data values

input labels

output of
transducer

class string of 1

class string of 2

class string of 3

1 2 3 3 2 1 1 3 2 3 3 2 2 1

a b a b a a a b a a b a a a

c d c d d c c d c c c d d c

d d c d d

c d d c c

c c c c
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The language recognised by a data automaton is the set of accepted data words.

Example 2. A data automaton can check that each data value appears exactly
twice (or not at all). The transducer is the identity, while the class condition
contains all words of length exactly two. �

Example 3. A data automaton can check that some data value appears an
even number of times. The transducer underlines exactly one position, as in
Example 1. The class condition says that if a word contains an underlined
position, then it has even length. �

Example 4. Suppose that the labels are {a, b}. Consider a data automaton
where the transducer is the identity and the class condition is {ab, ba}. The
language recognised by this data automaton, after erasing data values, is the
set of words in {a, b}∗ where a occurs the same number of times as b. The
same idea would work for labels {a, b, c}. �

Vector addition systems. We will prove that emptiness for data automata is
decidable, as it reduces to reachability problem for vector addition systems,
which is known to be decidable, although highly challenging.

Definition 2.2 (Vector Addition System). A vector addition system is any fi-
nite set δ ⊆ Zd of integer vectors with a common dimension d, called the
transitions. A run of a vector addition system is a sequence

v0, v1, . . . , vn ∈ Nd such that vi − vi−1 ∈ δ for every i ∈ {1, . . . , n}.

Note that all vectors in the run must be non-negative on all coordinates, even
though δ can use negative numbers. Here is a picture in two dimensions:

transitions a run
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The reachability problem for vector addition systems is to decide, given two
vectors of natural numbers, if there exists a run that begins in the first vector
and ends in the second one. The following famous result uses one of the more
difficult decidability proofs in computer science2; this proof is not included in
these lecture notes.

Theorem 2.3. The reachability problem for vector addition systems is decid-
able.

A vector addition system can be used as a language recogniser in the fol-
lowing way. Define a multicounter automaton to be a vector addition system
δ ⊆ Zd together with designated initial and final vectors in Nd, plus an output
function δ→ Σ∗ which associates to each transition a word that is produced by
that transition. A word in Σ∗ is accepted if there exists a run from the initial to
the final vector which produces the word after applying the output function to
each transition. Emptiness for multicounter automata is the same problem as
reachability for vector addition systems, and is therefore decidable.

Example 5. Here is a multicounter automaton which recognises the set of
words over {a, b} where the number of a’s is equal to the number of b’s. We
use two counter names a, b. When reading an a letter, we can either increment
the a counter, or decrement the b counter. When reading a b, we can either
increment the b counter or decrement the a counter. The initial vector is (0, 0)
and the final vector is also (0, 0). �

Lemma 2.4. Every regular language is recognised by a multicounter automa-
ton.

Proof Consider a regular language recognised by a nondeterministic automa-
ton with states which are numbers {1, . . . , n}. By using ε-transitions, we can
assume that the automaton has one initial state, one accepting state, and these
are not the same state. To simulate the automaton, we use a multicounter au-
tomaton with n counters where state q is encoded by a vector

(0, . . . , 0, 1︸︷︷︸
q-th counter

, 0, . . . , 0).

A transition which goes from q to p is represented by the integer vector which
decrements q and increments p. �

2 The decidability of reachability for vector addition systems, i.e. Theorem 2.3, was originally
shown by Mayr in Mayr (1984), other proofs include Kosaraju (1982) and Leroux (2010). The
current best lower bound for the problem is a tower of exponentials Czerwiński et al. (2018)
and the current best upper bound is primitive recursive for fixed dimension Leroux and
Schmitz (2019).
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For a language L ⊆ Σ∗, define shuffleL to be all words in Σ∗ which can be
labelled with data values so that all class strings are in L.

Lemma 2.5. If L is regular, then shuffleL is recognised by a multicounter
automaton.

Proof Suppose that L is recognised by a deterministic automaton with states
Q. Without loss of generality assume that this automaton has no self-loops,
i.e. transitions which have the same source and target state. We define a mul-
ticounter automaton with one counter per state from Q. The initial and final
vectors are the same, namely the zero vector. For every transition q

a
→ p of the

automaton recognising L, we create a transition in the multicounter automaton
which reads a, decrements counter q and increments counter p. If q is the ini-
tial state, then we also create a transition which reads a and only increments
counter p. If p is a final state, then we also create a transition which reads a
and only decrements counter q. �

Emptiness for data automata. In the proof of the following theorem, we
show that emptiness for data automata is the same thing as emptiness for mul-
ticounter automata and, therefore, the same thing as reachability for vector
addition systems.

Theorem 2.6. Emptiness is decidable for data automata.

Proof A data automaton is nonempty if and only if there exists a word over
the work alphabet which is a possible output of the transducer, and such that
the word can be labelled by data values so that every class string is in the class
condition of the data automaton. The set of possible outputs of the transducer
is easily seen to be a regular language (a nondeterministic automaton can guess
the input and the run of the transducer on it). Using the shuffle terminology,
we have just shown that emptiness of data automata reduces to the following
problem: given regular languages L,K ⊆ Γ∗ decide if

K ∩ shuffleL = ∅.

The language K is recognised by a multicounter automaton thanks to Lemma 2.4,
while shuffleL is recognised by a multicounter automaton thanks to Lemma 2.5.
Languages recognised by multicounter automata are easily seen to be closed
under intersection and, therefore, the problem above boils down to testing
nonemptiness for an effectively obtained multicounter automaton, which is de-
cidable thanks to Theorem 2.3. �
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Exercises

Exercise 29. Theorem 2.6 reduces emptiness for data automata to reachability
for vector addition systems. Show a converse reduction.

Exercise 30. Show that languages recognised by data automata are not closed
under Kleene star.

Exercise 31. Show that emptiness is decidable for vector addition systems if
the definition of a run is modified so that the intermediate vectors are allowed
to use negative coordinates, i.e. the intermediate coordinates are vectors in Zd.

2.2 Two-variable first-order logic on data words

At the end of Section 1.3, we described a logic for data words that had decid-
able satisfiability by virtue of a translation into alternating automata. We now
do the same thing for data automata: we describe a logic for data words which
has decidable satisfiability by virtue of a translation into data automata. The
logic is a fragment of first-order logic, i.e. it uses variables and quantifiers, as
opposed to the temporal logic in Section 1.3, which had a variable-free syntax.
We already saw this logic in Exercise 10, but we now describe it in more detail.

To describe properties of data words using first-order logic, we view a data
word with labels from a finite set Σ as a relational structure, where the universe
is the positions in the data word, and which is equipped with the following
relations:

x < y︸︷︷︸
position x
is before
position y

x = y + 1︸     ︷︷     ︸
position x is
the successor
of position y

x ∼ y︸︷︷︸
positions x, y
have the same

data value

a(x).︸︷︷︸
position x

has label a ∈ Σ

With the above representation of data words as relational structures, we can
use first-order logic to express properties of data words. For example,

∀x ∀y x = y + 1⇒ x � y

says that every two consecutive positions have different data values, while

∀x ∀y a(x) ∧ a(y)⇒ x ∼ y

says that all positions with label a have the same data value. The successor
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relation can be defined using first-order logic in terms of order:

x = y + 1 iff y < x ∧ ¬∃z (y < z ∧ z < x).

However, we will be mainly interested in the fragment of first-order logic that
can only use two variables, and in this fragment the definition of successor in
terms of order no longer works.

The idea of representing words with relational structures, and then using
logic to express their properties, dates back to the famous result of Büchi, El-
got and Trakhtenbrot3, which says that – without data values – every formula
of first-order logic (even monadic second-order logic) can be translated into an
equivalent finite automaton. Does this work for data words? As shown in Ex-
ercise 10, the satisfiability for first-order logic over data words is undecidable,
and the proof only needs three variables. The rest of this section is devoted to
showing that the two variable fragment is decidable.

Theorem 2.7. The following problem is decidable.

• Input. A sentence of first-order logic which uses two variables and relations

x < y x = y + 1 x ∼ y a(x).

• Output. Is the sentence true in some finite word?

Before proving the theorem, let us give some more examples which illustrate
the power of the two variable fragment. The sentence

∀x ∀y x , y⇒ x � y

says that all positions have different data values. This property is not recog-
nised by any nondeterministic register automaton. Another example is

∀x a(x)⇒ ∃y (y < x ∧ y ∼ x),

which says that no class string begins with a. This property is not recognised by
any alternating one register automaton without guessing, which can be proved
using the same reasoning as in Exercise 12.

An important feature of two variable first-order logic is reusing variables.
This allows us to say that there are at least four positions, without assigning
four variable names to those positions:

∃x

there are at least three positions after x︷                                              ︸︸                                              ︷
(∃y y > x ∧ (∃x x > y ∧ (∃y y > x)︸                       ︷︷                       ︸

there are at least two positions after y

) .

3 See Thomas (1997) for an introduction to the topic.
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To prove Theorem 2.7, we will show that for every formula of two variable
first-order logic there is a data automaton which accepts the same data words.
Before we do this, we show how data automata can deal with the successor
relation.

Recognising equality with successors

In two variable first-order logic, we have a successor predicate, which can be
used to compare data values in consecutive positions, e.g. by saying “every two
consecutive positions have different data values”. On the way to our final result,
which is a translation from two variable first-order logic into data automata, we
first show how data automata can compare data values in consecutive positions.
This is done in the following lemma.

Lemma 2.8. There is a data automaton which accepts a data word over labels

if and only if it satisfies conditions (a) and (b) described below:

1 2 3 3 4 1 1 1 3 2 2 4 3 4 4 4

(a) All circles are full, except for an opening semicircle at the beginning
and a closing semicircle at the end.

(b) Two consecutive positions are connected by a circle
if and only if they have different data values.

Proof For a data word over the alphabet from the statement of the lemma,
define a consistent colouring to be a colouring of the semicircles with two
colours as in the following picture:
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1 2 3 3 4 1 1 1 3 2 2 4 3 4 4 4

(1) On an edge connecting two consecutive positions, 
there is either a monochromatic circle, or no circle at all.

(2) Circles are not monochromatic for 
consecutive appearances of the same data value.
(if x < y have the same data value, and this data value does not

appear between x and y, then the right semicircle in x
has a different colour than the left semicircle in y)

(3) The first appearance of each data value has a semicircle on its left side 

To prove the lemma, we show that there is a consistent colouring if and
only if the word belongs to the language from the statement of the lemma, and
furthermore a data automaton can check if there is a consistent colouring.

• We first show that data automaton can check if there is a consistent colour-
ing. The transducer chooses the colours, and checks if condition (1) in the
definition of a consistent colouring is satisfied. Conditions (2) and (3) are
checked by looking at the class strings, as explained in the following pic-
ture:

1 1 11 2 2 2 3 3 3 3 4 4 4 4 4

class string of
data value 1

class string of
data value 2

class string of
data value 3

(2) In each class string, every left semicircle is matched
by a right semicircle with a different colour

(3) Every class string begins with a
right semicircle

class string of
data value 4

• We now show that every data word in the language admits a consistent
colouring. Consider a data word in the language. We need to colour each
grey circle (i.e. pairs of consecutive positions with different data values)
with a single colour so that condition (2) is satisfied. We say that two circles
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are in conflict if the left half of the left circle has the same data value as the
right half of the right circle, and this data value does not appear in between,
as in the following picture:

con�icting circles

4 does not appear

{1 2 3 3 4 1 1 1 3 2 2 4 3 4 4 4

Condition (2) in the definition of consistency says that conflicting circles
cannot have the same colour. If we view the conflict relation as a directed
graph on circles, with arrows pointing from left to right, then this graph is
a disjoint union of paths, i.e. every circle has in-degree and out-degree at
most one. Such a graph can be coloured with two colours so that edges have
endpoints with different colours.

• Finally, we show that if a data word can be coloured consistently, then it is
in the language. Suppose that a data word can be coloured consistently. We
need to show that there is a circle connecting two consecutive positions if
and only if these positions have different data values.

For the left-to-right implication, consider a circle connecting x and its
successor. By condition (2), the next position in the class of x has its left
side coloured with a different colour, and hence the next position in the class
of x cannot be the successor of x, because all circles are monochromatic by
condition (1).

We prove the right-to-left implication by doing an inductive left-to-right
pass. Consider consecutive positions x and x + 1 with different data values.
To prove that they are connected by a circle, by condition (1) it suffices to
prove that the left side of x+1 has a semicircle. If x+1 is the first position in
its class, then it has a semicircle on its left by condition (3), otherwise x + 1
has a previous position in its class and then we use the induction assumption.

�

The ideas in the above proof can be extended to show that data automata are
more expressive than nondeterministic register automata, see Exercise 36.
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Two-variable logic

We now use the results about successor to complete the proof of Theorem 2.7,
about satisfiability for two variable first-order logic over data words. We show
that every formula can be converted into a data automaton that accepts the
same data words. We begin by converting the formula into a normal form.

Normal form. We say that a formula of two-variable logic is in normal form4

if every subformula with one free variable is a Boolean combination of formu-
las of the form

ϕ(x) = ∃y (α ∧ β ∧ ψ(y)︸︷︷︸
normal form

)

where α and β are quantifier-free constraints of the following kinds:

α ∈ {y < x − 1, y = x − 1, y = x, y = x + 1, y > x + 1} (2.1)

β ∈ {x ∼ y, x � y}. (2.2)

Lemma 2.9. Every formula is equivalent to one in normal form.

Proof Induction on formula size. Since formulas in normal form are closed
under Boolean combinations, it is enough to show how to normalise a formula
that uses a quantifier:

ϕ(x) = ∃y ψ(x, y).

For every pair of positions x, y in a data word, there is a unique choice of α
as in (2.1) which is true for the pair. Likewise, there is a unique β as in (2.2)
which is true for the pair. Therefore, ϕ(x) is equivalent to∨

α,β

∃y α ∧ β ∧ ψ(x, y),

where α and β range over formulas as in (2.1) and (2.2). To finish the proof of
the lemma, it is enough to show that for every fixed α, β the formula

∃y α ∧ β ∧ ψ(x, y)

is equivalent to one in normal form. Like any formula with two variables, the
formula ψ(x, y) is a Boolean combination of formulas which are either binary
relations from the vocabulary (e.g. x ∼ y or x < y), or have one free variable.
Each binary relation is either implied by or contradictory with a given choice
of α ∧ β. Therefore, once we have fixed α and β, each of the binary relations

4 The normalisation process in Lemma 2.9 is related to what is known as Scott Normal Form for
two variable first-order logic, see Scott (1962).
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in the Boolean combination constituting ψ(x, y) can be replaced by either true
or false, leading to a Boolean combination of formulas with one free variable.
The formulas with one free variable can be transformed into normal form using
the induction assumption. �

From a formula to a data automaton. To complete the proof of Theorem 2.7,
we convert every normal form sentence ϕ into an equivalent data automaton.
The idea is that the data automaton guesses, for each subformula with one
free variable, what positions satisfy it, and then checks in parallel, for each
subformula, if its guessed positions are consistent with those of its immediate
subformulas. Let Σ be the labels used in ϕ and let Γ be the set of subformulas of
ϕ that have exactly one free variable. For a data word w with labels Σ – i.e. for a
potential model of ϕ – define its annotation wϕ to be the data word with labels
Σ×PΓ that is obtained from w by extending the label of each position with the
set of formulas from Γ that are satisfied when the unique free variable is set to
that position.

Example 2.10. Consider the formula

ϕ = ∀x

φ2(x)︷                              ︸︸                              ︷
∃y y = x + 1 ∧ x ∼ y ∧ a(y)∨

φ3(x)︷                              ︸︸                              ︷
∃y y = x − 1 ∧ x � y ∧ b(y)︸                                                                       ︷︷                                                                       ︸

φ1(x)

.

The set Γ is

{φ1(x), φ2(x), φ3(x), a(y), b(y)}.

Although each formula in Γ has one free variable, this free variable is some-
times x and sometimes y. Here is an example of annotation for ϕ:

a

1

a

3

b

2

b

2

a

1

a

2data values

input labels

labels of 
φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

φ1(x)
φ2(x)
φ3(x)
a(y)
b(y)

Lemma 2.11. The following language is recognised by a data automaton

{wϕ : w is a data word with labels Σ}.
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Before proving the above lemma, let us use it to complete the proof of The-
orem 2.7. Every sentence ϕ of two variable logic is a positive Boolean combi-
nation of quantified formulas

∃x φ(y) or ∀x φ(x).

Such a quantified formula is true in w if and only if the annotation has φ(y)
in the label of some (respectively, every) position. This can be checked by
a data automaton running on the annotation wϕ, without even looking at the
data values. Since languages recognised by data automata are closed under
positive Boolean combinations, it follows from Lemma 2.11 that there is a data
automaton which recognises annotations of data words that satisfy ϕ. If the data
automaton is only given w and not its annotation wϕ, it can use nondeterminism
of the transducer to guess the annotation, and therefore the language of ϕ is also
recognised by a data automaton. Together with the decidability of emptiness
for data automata, we get Theorem 2.7. It remains to prove the lemma.

Proof of Lemma 2.11 Define an annotation candidate to be a data word with
labels in Σ×PΓ. We say that an annotation candidate is correct for a subformula
ψ ∈ Γ if ψ belongs to the label of exactly those positions which satisfy ψ.
By definition, wϕ is the unique annotation candidate which is correct for all
subformulas and projects to w if the annotation is ignored. To prove the lemma,
we will show that for every ψ there is a data automaton Aψ which recognises
the following property of annotation candidates:

(*) If the input annotation candidate is correct for all proper subformulas of ψ,
thenAψ accepts if and only if the input is also correct for ψ.

In (*), there are no requirements for the behaviour ofAψ on annotation candi-
dates that are not correct for proper subformulas of ψ. An annotation candidate
is of the form wϕ if and only if it is accepted by all automataAψ, with ψ rang-
ing over subformulas with one free variable. Since languages recognised by
data automata are closed under intersection, the lemma will follow once we
construct the automataAψ.

If ψ is a conjunction ψ1 ∧ ψ2, then Aψ simply checks if ψ is used in the
labels of exactly those positions that have both ψ1 and ψ2 in their labels. The
same idea works for ∨ and ¬, while formulas a(x) are checked by comparing
the annotation with the label in the underlying data word. The interesting case
is when ψ is a quantified formula

ψ(x) = ∃y α ∧ β ∧ φ(y).
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where α and β are as in the definition of normal form. Without loss of gen-
erality we assume that the quantifier is existential, since the formulas can use
negation.

If β is x ∼ y, then ψ(x) corresponds to a regular property of the class strings,
which is checked by the class condition. To know which positions in the class
string are consecutive in the input word (i.e. are not separated by positions
from outside the class), we use the labelling from Lemma 2.8. If α says that y
is the successor or predecessor of x, then we can also use Lemma 2.8 to check
if the input word is correct for ψ.

The remaining case is when β is x � y and α is one of y < x−1 or y > x + 1.
By symmetry, we assume that α is y < x − 1. In words, ψ(x) says that there
exists a position y < x − 1 which has a different data value than x and φ(y) in
its label. The general idea is that there are two best candidates for this position
y, namely y1 and y2 as described in the following picture:

d d d d d d

y2 is the first position with φ in its 
label that has data value ≠ d

red positions satisfy 

y1 is the first position with φ in its 
label and d is its data value

The positions y1 and y2 might be undefined, e.g. y1 is undefined if no position
has φ in its label, and y2 is undefined if at most one data value is used for
positions with φ in their label. A short analysis reveals that the label ψ should
be found in the label of positions x which satisfy:

x � y1 ∧ y1 < x − 1 ∨ x ∼ y1 ∧ y2 < x − 1.

The positions x satisfying the above criteria can be identified using a finite
automaton, assuming that the positions y1 and y2, their successors, are marked.
These positions can be guessed and checked by a data automaton, with special
colours used to mark the classes of y1 and y2. �

Exercises

Exercise 32. Let k ∈ {0, 1, . . .}. Show that there is a data automaton which
recognises the set of data words where each position x is labelled by the set of
those i ∈ {0, 1, . . . , k} such that x and x + i have the same data value.
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Exercise 33. Recall the notion of class string in the definition of a data automa-
ton, where the positions from outside the class are erased, as in this picture:

data values

labels

class string of 1 

1 2 3 3 2 1 1 3 2 3 3 2 2 1 1

a b a b a a a b a a b a a a a

a a a a a

Consider an alternative definition of class string, where the positions from out-
side are replaced by question marks, like this:

data values

labels

class string of 1 ? ? ? ? ? ? ? ? ? ?

1 2 3 3 2 1 1 3 2 3 3 2 2 1 1

a b a b a a a b a a b a a a a

a a a a a

Show that data automata defined with this alternative notion of class string
have the same expressive power as the original model of data automata5.

Exercise 34. In the spirit of the previous exercise, consider yet another defi-
nition of class string, where the positions from outside the class are coloured
red, like this:

data values

labels

class string of 1 

1 2 3 3 2 1 1 3 2 3 3 2 2 1 1

a b a b a a a b a a b a a a a

a b a b a a a b a a b a a a a

Show that data automata defined with this alternative definition are strictly
more expressive than the original model of data automata6.

Exercise 35. Consider a sequence of data values where every position is la-
belled by a subset of {cut, chosen}. We say a position is chosen if its label
contains “chosen” and we say that two positions x < y are in the same interval
if “cut” does not appear in the labels of positions x + 1, . . . , y. Show that there
is a data automaton recognising the data words which satisfy the following two
conditions:

• all chosen positions in the same interval have the same data value; and

5 This exercise is based on (Alur et al., 2009, Theorem 2).
6 This model is called class automata, and is studied in Bojańczyk and Lasota (2012a); Bárány

et al. (2012).
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• there is no non-chosen position which has the same data value as some cho-
sen position in the same interval.

Exercise 36. Show that every language recognised by a nondeterministic reg-
ister automaton is also recognised by a data automaton7. (Hint: use the previous
exercise.)

Exercise 37. Extend two variable logic, as considered in Theorem 2.7, with
a binary relation s(x, y) called class successor which holds if y is the least
position y > x that has the same value as x. Show that the resulting logic is still
decidable.

Exercise 38. Show that satisfiability for the logic in Exercise 37 is at least as
hard as emptiness for data automata.

Exercise 39. Show that satisfiability for two variable logic becomes undecid-
able if the data values are ordered, and there is a predicate x � y for testing the
order on these data values.

Exercise 40. Consider the following alternating automaton based on the modal
logic8. The automaton has a set of states Q, an initial state q0, a partition of
states into universal and existential, and a finite transition relation

δ ⊆ Q × (formulas of two variable logic with free variables x, y) × Q.

The automaton accepts a data word w ∈ (Σ × A)∗ if player ∃ has a winning
strategy in the following game played by players ∃ and ∀. The game begins
in the first position and the initial state. If the game is in position x and state
q, then the player who owns q chooses a transition (q, ϕ(x, y), p) ∈ δ and a
position y such that ϕ(x, y) holds. If there is no such transition or position, the
player who owns q loses immediately. Otherwise, the game proceeds to state
p and position y. If the game lasts forever, player ∀ wins. Show that such an
automaton can recognise the language

{a1 · · · ana1 · · · an : a1, . . . , an are distinct data values}.

7 This exercise is based on (Björklund and Schwentick, 2010, Theorem 4.1).
8 Similar automata models are considered in Manuel et al. (2016) and Colcombet and Manuel

(2014)
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Exercise 41. Show that the automaton model in Exercise 40 has undecidable
emptiness9. Show that if infinite plays are won by ∃ then emptiness becomes
decidable10.

9 Undecidability is based on (Manuel et al., 2016, Proposition 9).
10 Decidability is based on (Colcombet and Manuel, 2014, Theorem 3.8).
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In the previous part, we discussed data words and their automata. In this part,
we move to a more abstract and general setting, where data words turn out to
be words over a “finite” alphabet, with an appropriate notion of finiteness, and
register automata turn out to be finite automata.



3
Sets with atoms and orbit-finiteness

This chapter introduces two fundamental concepts studied in this book:

• Section 3.1: sets with atoms1. Roughly speaking, a set with atoms is any
object that can be built using atoms. Examples include: the set of all atoms,
the state space of a register automaton, or the set of all data words.

• Section 3.2: orbit-finiteness. One can introduce a notion of finiteness that
is more relaxed than the usual one: a set with atoms is orbit-finite if it has
finitely many elements up to renaming atoms. Examples of orbit-finite sets
include the set of all atoms and the state space of a register automaton, but
not the set of all data words. In the world of sets with atoms, orbit-finite sets
play the role of finite sets.

Atoms as a logical structure. In Part I of this book, about automata for data
words, we assumed that atoms are equipped with equality only. Much of the
theory that we develop starting with this chapter works for atoms with more
structure, e.g. an ordering. To model this additional structure, we use the notion
of “structure” in the sense of model theory: a universe together with some
relations and functions. Examples of structures representing atoms that will

1 Sets with atoms (also known as ur-elements) have their origin in the work of Fraenkel in 1922,
further developed by Mostowski in the 1930s. The original application was to have a model of
set theory which violates the axiom of choice (or other axioms). In computer science, atoms
(with equality only) were rediscovered by Gabbay and Pitts in Gabbay and Pitts (2002), under
the name nominal sets, as a formalism for modelling name binding. Since then, nominal sets
have become a lively topic in semantics, see e.g. the book Pitts (2013). Nominal sets were also
independently rediscovered by the concurrency community, as a basis for syntax-free models
of name-passing process calculi, see Montanari and Pistore (1999, 2005).

46
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appear in this text are:

(N,=) the natural numbers (or any countably infinite set) with equality;

(Q,≤) the rational numbers with their order.

We use the name “equality atoms” for the first structure, which corresponds to
the data values in the first part about data words. For the equality atoms, as well
as the ordered rational numbers, the notions of orbit-finiteness will be useful.
Non-examples, i.e. structures where notions such as orbit-finiteness will not be
useful, are:

(Z, <) the integers with their order;

(Z,+) the integers with addition.

3.1 Sets with atoms

Roughly speaking, a set with atoms is a set which contains atoms and simpler
sets with atoms; although not every object built this way is going to be con-
sidered a set with atoms. The intuitive idea is that a set with atoms must be
built using only the structure given by the atoms (i.e. relations and functions
from the vocabulary of the atoms) and finitely many constants referring to
specific atoms. For example, in the equality atoms2 the set of even-numbered
atoms {0, 2, 4, . . .} would not be a set with atoms, because a definition of this
set would need to either explicitly mention infinitely many atoms, or refer to
the notion of “even-numbered” which is not available in the structure.

These ideas are formalised below using automorphisms of the atoms; the
following definitions are central to the book.

Definition 3.1 (Sets with atoms). Let A be a logical structure, whose elements
are called atoms.

• The cumulative hierarchy. The cumulative hierarchy over A is a hierarchy
of sets indexed by ranks that are ordinal numbers. There is only one set of
rank 0, namely the empty set. For an ordinal number α > 0, a set of rank
at most α is any set whose every element is an atom or a set of rank strictly
less than α.

2 Under the equality atoms, or the rational number atoms, a natural number like 2 can be
interpreted in two ways: as an atom, or as the set {∅, {∅}} which represents 2 according to the
Von Neumann numeral encoding. To avoid this confusion, we use an underlined number 2 for
the first meaning and 2 for the second meaning.
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• Atom automorphisms. An atom automorphism is any permutation of the
universe of A which preserves all predicates and functions in the structure.

• Action of atom automorphisms on the cumulative hierarchy. Let π be an
automorphism of the atoms. We inductively extend π from atoms to sets in
the cumulative hierarchy over A by defining π(x) to be {π(y) : y ∈ x}.

• Supports. If an atom automorphism fixes a tuple of atoms ā = (a1, . . . , an)
(i.e. maps the tuple to itself), then it is called an ā-automorphism. If x is in
the cumulative hierarchy over A and ā is a tuple of atoms, then we say that
ā is a support of x if

π(ā) = ā implies π(x) = x for every atom automorphism π,

i.e. x is fixed by every ā-automorphism3. We say that x is finitely supported
if it is supported by some finite tuple of atoms.

• Set with atoms. A set with atoms overA is any x in the cumulative hierarchy
which is finitely supported, has only finitely supported elements, and so on
until atoms are reached. We write setA for all sets with atoms over A.

The rest of Section 3.1 is devoted to exercises and examples which illus-
trate the above definitions. An intuitive description of the support of a set is
that the support consists of the atoms that are “hard-coded” into the definition
of the set. The support of a set with atoms is not unique, because supports
are closed under adding atoms. (For some atoms, such as (N,=) or (Q, <), a
canonical least support can be found, see Chapter 6.) A set with empty support
is called equivariant. Intuitively speaking, an equivariant set is one which can
be defined without referring to any specific atoms.

Example 3.2. Let A be the equality atoms (N,=) and consider the set

{a : for a ∈ A such that a , 2}.

This set is supported by the atom 2 because any 2-automorphism will map the
set to itself, although it might rearrange its elements. The set is not equivariant,
so 2 is a minimal support, actually it is the least finite support.

Example 3.3. Let the atoms A be the ordered rational numbers (Q, <) and
consider the set of open intervals that contain the atom 2:

{{c : for c ∈ A such that a < c < b} : for a, b ∈ A such that a < 2 < b}.

3 The order or repetition of atoms in the tuple ā is not relevant for the support, i.e. only the set
of atoms that appear in the tuple matters. For this reason, some authors use a set of atoms as a
support, instead of a tuple of atoms. We use tuples so that we can distinguish between an
{a1, a2}-automorphism and an (a1, a2)-automorphism. The former can swap a1 and a2, while
the latter needs to fix both a1 and a2.
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This set is supported by 2. An element of this set is the open interval

{c : for c ∈ A such that 0 < c < 3},

which is a set that is supported by the atom tuple (0, 3).

Sets are – no surprises here – a natural choice for foundations of mathe-
matics. In particular, using sets we can simulate data structures such as pairs,
tuples, etc. To define pairs, we use Kuratowski pairing:

(x, y) def
= {{x}, {x, y}}.

It is easy to see that if x is supported by a tuple of atoms ā and y is supported by
a tuple of atoms b̄, then the pair (x, y), in the Kuratowski sense defined above,
is supported by the tuple āb̄. In particular, a pair of finitely supported objects is
also finitely supported, and therefore sets with atoms are closed under pairing.

Example 3.4. Regardless of the choice of atoms, the set A∗ (defined using
pairing in the natural way) is a set with atoms. It is equivariant, but its elements
are typically not equivariant. For example, in the equality atoms, 12345 ∈ A∗ is
finitely supported, but any finite support must include 1, 2, 3, 4, 5. In particular,
A∗ contains elements with unboundedly large supports.

Using pairs, we can define sets with atoms which are binary relations, and
using binary relations, we can define sets with atoms which are functions.

Example 3.5. Consider the equality atoms. Define a choice function for un-
ordered pairs to be a function

f : {{a, b} : a, b ∈ A} → A such that f ({a, b}) ∈ {a, b} for every {a, b},

i.e. a function which chooses an element for each unordered pair of atoms. We
claim that there is no finitely supported choice function. (For this example it
is crucial that the atoms have equality only. If there were a linear order in the
atoms, then max would be a choice function.) Toward a contradiction, suppose
that f is a choice function with finite support ā. Choose two atoms b, c that do
not appear in the support ā, and let π be the transposition which swaps b with
c. By definition of supports, since π fixes ā, it must also fix f seen as a set of
pairs, i.e. it must fix the graph of f . Therefore, the graph of f must contain
both pairs

({b, c}, b) and ({b, c}, c),

which contradicts the assumption that f is a function4.
4 This example touches on the origins of sets with atoms. In 1922, Abraham Fraenkel showed

that, when the atoms have equality only, then sets with atoms:
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The following example shows that finite supports are meaningless in atoms
such as (Z, <).

Example 3.6. Consider the integer atoms (Z, <). For these atoms, the auto-
morphisms are translations, i.e. functions of the form a 7→ a + k for some
k ∈ Z. The atom 2 is supported by itself, but it is also supported by 1 because
there is only one 1-automorphism, namely the identity. One explanation is that
2 can be defined as “the smallest element after 1”. In fact, every set of atoms
is finitely supported, e.g. by 1, and therefore for the atoms (Z, <) there is no
difference between a set in the cumulative hierarchy and a set with atoms. If we
extend the structure (Z, <) by adding a constant 0, then the only automorphism
is the identity, and therefore every set in the cumulative hierarchy has empty
support.

An arbitrary subset of a set with atoms might not be finitely supported, and
therefore sets with atoms are not closed under taking arbitrary subsets, but only
under taking finitely supported subsets.

Example 3.7 (Finitely supported subsets of the equality atoms). Consider the
equality atoms. We show below that the finitely supported subsets of the atoms
are exactly the finite and co-finite sets. The finite and co-finite sets are clearly
finitely supported, see Example 3.2. For the converse implication, consider a
set X ⊆ A that is neither finite nor co-finite. We will show that X cannot have
finite support. Suppose that a finite tuple of atoms ā is a candidate for a finite
support. Since both X and its complement are infinite, there must be atoms
a ∈ X and b < X such that both a and b do not appear in the tuple ā. The
permutation of atoms which swaps a and b, and is the identity on other atoms,
is an ā-automorphism. Therefore, it should fix X, but it does not.

Example 3.8 (Finitely supported subsets of ordered rational numbers). Con-
sider the atoms (Q, <). In this case, the automorphisms are order-preserving
bijections. We claim that the finitely supported subsets of atoms are exactly fi-
nite unions of intervals. Consider a set X of atoms which is supported by a tuple
of atoms ā. We claim that X is a union of intervals (open, closed, open-closed
or closed-open) whose endpoints are either −∞,∞, or appear in ā. Indeed, con-
sider atoms b, c that are not in ā and are not separated by an atom in ā in terms

• fail the axiom of choice, as shown in this exercise, but
• satisfy axioms similar to the Zermelo-Fraenkel axioms of set theory.

The axioms satisfied by sets with atoms are not the real Zermelo-Fraenkel axioms,
e.g. extensionality fails because every atom has the same elements as the empty set. The
independence of the axiom of choice from the real Zermelo-Fraenkel axioms had to wait for
Cohen and forcing. See Bell (2019) for a discussion of this topic.



3.1 Sets with atoms 51

of the order. There is an ā-automorphism which maps b to c. Since the set X is
supported by ā, it follows that b ∈ X if and only if c ∈ X.

In Examples 3.7 and 3.8, the finitely supported subsets of the atoms coincide
with subsets of the atoms that can be defined by quantifier-free formulas that
can use constants from the atoms. The reason is that both examples of atoms
are homogeneous structures, see Chapter 7. When the atoms are homogeneous,
finitely supported relations on the atoms are precisely those that can be defined
using quantifier-free formulas.

Exercises

Exercise 42. Show that a tuple ā supports x if and only if

π(ā) = σ(ā) implies π(x) = σ(x) for every atom automorphisms π, σ.

Exercise 43. For the equality atoms, find all equivariant binary relations on A.

Exercise 44. For the atoms (Q, <), find all equivariant binary relations on A.

Exercise 45. Show that a function f : X → Y is supported by a tuple of atoms
ā if and only if the following diagram commutes for every ā-automorphism π:

X
f //

π

��

Y

π

��
X

f
// Y

Exercise 46. Consider the equality atoms. Show a finitely supported graph,
which admits a two-colouring that is not finitely supported, but does not admit
any finitely supported two-colouring.

Exercise 47. Consider the equality atoms. Show that for every finitely sup-
ported partial order < on A, all atoms outside the support are incomparable.

Exercise 48. Consider the atoms (Q, <). Show that there is no finitely sup-
ported well-founded total order on A.
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Exercise 49. Consider an enumeration a1, a2, . . . of some countably infinite set
A. Define the distance between two permutations of A to be 1/n where an is the
first argument where the permutations disagree. Let X be a countably infinite
set equipped with an action of permutations of the equality atoms. Show that
all elements of X are finitely supported if and only if

π︸︷︷︸
permutation of A

7→ (x 7→ π(x))︸       ︷︷       ︸
permutation of X

is a continuous mapping, and that this continuity does not depend on the choice
of enumerations of A or X.

3.2 Orbit-finiteness

Roughly speaking, orbit-finite sets are sets which have finitely many elements
up to atom automorphisms. An example is the set

{(a, b, c) ∈ A3 : a , 2 or b = 1},

or the state space of a nondeterministic register automaton.
The definition of orbit-finiteness5 makes sense only for certain atom struc-

tures, namely the oligomorphic ones, so we begin by defining oligomorphism.

Definition 3.9. A structureA is called oligomorphic6 if for every n ∈ {0, 1, . . .},
the structure An has finitely many elements up to automorphisms of A. More
precisely, for every n, the equivalence relation on n-tuples of atoms defined by

ā ∼ b̄ if π(ā) = b̄ for some automorphism π of A

has finitely many equivalence classes.

Example 3.10. The equality atoms (N,=) are oligomorphic. Two n-tuples of
atoms are equivalent up to automorphisms if and only if they have the same
equality type. The number of equality types is the same as the number of par-
titions of {1, . . . , n}, i.e. the n-th Bell number. For similar reasons, the ordered
rational numbers (Q, <) are oligomorphic: n-tuples of atoms are equivalent up
to automorphisms if and only if they have the same order type.
5 To the author’s best knowledge, the notion of orbit-finiteness was first introduced in Bojańczyk

(2011), which studied orbit-finite monoids as recognisers of languages of data words.
6 The notion of oligomorphic structures comes from Ryll-Nardzewski (1959), Engeler (1959)

and Svenonius (1959), who proved that countable oligomorphic structures are exactly those
which are ω-categorical, i.e. are the unique countable models of their first-order theory. This
connection with first-order logic will be important in Chapter 4, which discusses how
orbit-finite sets can be represented using formulas of first-order logic.
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Example 3.11. The integers with order (Z, <) are not oligomorphic. An au-
tomorphism is a translation, as discussed in Example 3.6. For n = 1, there
is only one equivalence class of integers with respect to translations, but for
n = 2 there are infinitely many equivalence classes: the equivalence class of a
pair (a, b) ∈ Z2 is determined by the difference a − b.

Example 3.12. Every structure with a finite universe is oligomorphic.

Example 3.13. Consider an undirected graph with two countably infinite cliques
(without self-loops). Here is a picture, with only 12 vertices shown for each of
the two cliques:

The graph, like any graph, can be viewed as a logical structure, where the
universe is the vertices, and there is one binary relation for edges, which is
symmetric and irreflexive. The automorphisms of this structure (which are the
same as graph automorphisms in the usual sense) are generated by: permuta-
tions of the first clique, permutations of the second clique, and swapping the
two cliques. In particular, the tuples

(a1, . . . , an) and (b1, . . . , bn)

are equal up to atom automorphisms if and only if they have the same equality
types and the same equivalence types with respect to the equivalence relation
“in the same clique”. Since there are finitely many possibilities for every choice
of n, it follows that these atoms are oligomorphic.

The precise definition of orbit-finiteness requires a little care to cover sets
that are not equivariant, so we begin with some terminology.

Definition 3.14 (Orbits). Let ā be a tuple of atoms. We say that X,Y (which are
either atoms or sets with atoms) are ā-equivalent if there is some ā-automorphism
which maps X to Y . This is an equivalence relation on sets with atoms, and its
equivalence classes are called ā-orbits. When ā is the empty tuple of atoms,
we talk about equivariant orbits.

By definition of supports, a set with atoms is supported by ā if and only if
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membership in the set is invariant under ā-equivalence; in other words, the set
is a union, possibly infinite, of ā-orbits. Adding atoms to a tuple ā makes it
support more sets, but it makes the orbits smaller. This trade-off is illustrated
in the following example.

Example 3.15. Consider the atoms (Q, <). Here are the partitions of A2 into
orbits, using supports of size 0, 1 and 2:

13 1-orbits:
6 of dimension 2
6 of dimension 1
1 of dimension 0

3 equivariant orbits:
2 of dimension 2
1 of dimension 1

31 12-orbits:
12 of dimension 2
15 of dimension 1
4 of dimension 0

1

1

1

1

2

2

The 3 equivariant orbits can be described by quantifier-free formulas:

x > y x = y x < y.

These formulas are quantifier-free types, i.e. they specify all relations over the
vocabulary (which, in this case, contains only the order relation). The 1-orbits
can also be described by quantifier-free formulas which are allowed to use the
constant 1:

x > y > 1 x > 1 = y x > 1 > y · · ·

More generally, when the atoms are (Q, <), then every ā-orbit in An can be
described by a quantifier-free formula with n free variables that uses constants
from ā. Quantifier-free formulas are enough because the atoms (Q, <) are ho-
mogeneous, a property of atom structures that is discussed in Chapter 7. Some
atom structures are oligomorphic but not homogeneous, and for those struc-
tures quantifier-free formulas will not be enough, but first-order formulas with
quantifiers will.

The key point is that even though the orbits get smaller, the number of orbits
never goes from finite to infinite. Therefore, it will make sense to talk about
sets with finitely many orbits, without specifying the support of the orbits.
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Theorem 3.16. Assume that the atoms are oligomorphic. For every set with
atoms X, the following conditions are equivalent.

(1) For some tuple of atoms ā, X is contained in a finite union of ā-orbits.
(2) For every tuple of atoms ā, X is contained in a finite union of ā-orbits.

Before proving the theorem, we give some examples and discuss its conse-
quences.

Example 3.17. Consider the set X which is the union

{(x, y) : for x, y ∈ A such that x ≤ 1 < y}︸                                                ︷︷                                                ︸
X1

∪ {(x, y) : for x, y ∈ A such that x = y}︸                                          ︷︷                                          ︸
X2

which is depicted three times in the following picture, with different choices
of support:

1

1

1

1

2

2
X

The set is contained in two equivariant orbits, it is contained in (in fact, equal
to) five 1-orbits, and it is contained in (again, equal to) eleven 12-orbits. It is
not exactly clear how to answer the question

how many orbits does X have?

without specifying the support. One idea is to use the least support, which
exists for the atoms (Q, <), as we will see in Chapter 6. It is not immediately
clear if this is a good idea, for example sizes defined this way do not sum up
when taking unions of sets with different supports:

least support 1︷    ︸︸    ︷
|X1 ∪ X2| = 5

least support 1︷︸︸︷
|X1| = 2

equivariant︷︸︸︷
|X2| = 1

We will revisit counting orbits in Chapter 9.

Although it is not clear what is the exact number of orbits in a set with atoms,
as discussed in the above example, the question

does X have finitely many orbits?
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has an unambiguous answer by Theorem 3.16. This motivates the following
definition, which is the central notion of this book.

Definition 3.18 (Orbit-finite sets). Assume that the atoms are oligomorphic.
A set with atoms which satisfies any of the two equivalent conditions from
Theorem 3.16 is called orbit-finite.

We do not talk about orbit-finiteness when the atoms are not oligomorphic.
Exercise 50 shows how the conditions in the above theorem are not equivalent
in the non-oligomorphic structure (Z, <).

By definition, every set with atoms is finitely supported, which means that it
is equal to a union of ā-orbits for some finite tuple of atoms ā. For orbit-finite
sets, this union is finite, which means that a set is orbit-finite if and only if it
is equal to a finite union of ā-orbits for some tuple of atoms ā. As the tuple
ā grows, the ā-orbits become smaller, and therefore the largest orbits are the
equivariant orbits. This means that a set with atoms is orbit-finite if and only if
it is contained in a finite union of equivariant orbits.

We now prove Theorem 3.16. The first observation is that in the definition
of an oligomorphic structure we could have talked about ā-orbits instead of
equivariant orbits, and nothing would change.

Lemma 3.19. If the atoms A are oligomorphic, then for every atom tuple ā
and every dimension n ∈ {0, 1, . . .} there are finitely many ā-orbits in An.

Proof Let k be the dimension of ā. Two n-tuples of atoms b̄ and c̄ are in
the same ā-orbit if and only if the (k + n)-tuples āb̄ and āc̄ are in the same
equivariant orbit. By oligomorphism, there are finitely many possibilities for
the latter. �

A corollary of the above lemma is that Theorem 3.16 is true for subsets of
An, because every finitely supported subset of An satisfies both conditions in
the theorem. To go from subsets of An to arbitrary sets with atoms, we use the
following lemma. The lemma does not need the assumption on oligomorphism.

Lemma 3.20. Let X be a set with atoms that is a single equivariant orbit.
There is some n ∈ {1, 2, . . .} and a surjective equivariant function7

f : Y → X for some equivariant Y ⊆ An.

Proof Choose some x ∈ X. Because the finite support condition is hereditary

7 A function is equivariant if it has empty support, when seen as a set of pairs. See Exercise 45
for an equivalent description of what it means for a function to have empty support.
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for sets with atoms, x has a finite support b̄. Consider the equivariant orbit of
the pair (b̄, x), i.e. the set

f = {π(b̄, x) : π is an atom automorphism}.

Here is a picture of f :

We claim that f is in fact a function, i.e. for every input there is exactly one
output. Indeed, by Exercise 42, all atom automorphisms π, σ satisfy

π(b̄) = σ(b̄) implies π(x0) = σ(x0),

which means that f is a function. Its domain is the equivariant orbit of b̄, which
is an equivariant subset ofAn, where n is the length of the support b̄. Because f
is equivariant, the image of the equivariant orbit of b̄ is equal to the equivariant
orbit of x, see Exercise 45, thus proving the lemma. �

Using the two above results, we finish the proof of Theorem 3.16.

Proof of Theorem 3.16 The only non-trivial implication is (1)⇒ (2), i.e. if X
is contained in a finite union of ā-orbits for some ā, then the same is true for
every ā. Since the biggest orbits are the equivariant orbits, the theorem boils
down to showing that if a set is contained in a finite union of equivariant orbits,
then for every atom tuple ā it is contained in a finite union of ā-orbits. This,
in turn, boils down to showing that every equivariant orbit splits into finitely
many ā-orbits, for every atom tuple ā. Let then X be an equivariant orbit. Apply
Lemma 3.20 to X yielding an equivariant surjective function

f : Y → X.

By Lemma 3.19, the set Y splits into finitely many ā-orbits. Under an equiv-
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ariant function, the image of an ā-orbit is also an ā-orbit, and therefore also X
is a finite union of ā-orbits. �

Example 3.21. When the atoms are oligomorphic, then by definition of oligo-
morphism, the set A of all atoms is orbit-finite; the same is also true for An. In
the special case of the equality atoms or the rational numbers with order (Q, <),
the set A is even a single equivariant orbit. There are oligomorphic atom struc-
tures with more than one equivariant orbit of atoms. An example is a variation
of the two clique example from Example 3.13, where one of the two cliques
has self-loops, but the other one does not:

The following example shows that the number of orbits in a product X × Y
is not polynomially bounded (in fact, not bounded by any function) by the
number of orbits in X,Y .

Example 3.22. Consider the equality atoms. For n ∈ N, we write A(n) for the
set of non-repeating n-tuples of atoms, i.e. tuples where all coordinates are
pairwise distinct. This set is one equivariant orbit because every non-repeating
tuple can be mapped to every other non-repeating tuple by an automorphism
of atoms, since the only structure is equality. The square of this set,

A(n) × A(n),

has a number of equivariant orbits that is exponential in n, corresponding to the
ways in which the first n coordinates can be equal to the second n coordinates.
In particular, the number of orbits of X × X cannot be bounded by a function
of the number of orbits in X.

A representation theorem. Recall Lemma 3.20, which said that every equiv-
ariant one-orbit set is the image, under an equivariant function, of some orbit
of tuples of atoms. Below, we build on that lemma to get a representation of
every orbit-finite set up to finitely supported bijections.

Define a partial equivalence relation to be a relation that is transitive, sym-
metric, but not necessarily reflexive. Like (total) equivalence relations, partial
equivalence relations also have disjoint equivalence classes, but these no longer
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need to cover the entire set. We write X/∼ for the family of equivalence classes
in a set X modulo a partial equivalence relation ∼.

The following straightforward representation result says that – up to finitely
supported bijections – every orbit-finite set can be obtained by quotienting
tuples of atoms modulo some partial equivalence relation.

Theorem 3.23. Assume the atoms are oligomorphic, and there are at least
two atoms. Every ā-supported orbit-finite set admits an ā-supported bijection
with a set of the form An

/∼ where n ∈ {0, 1, . . .} and ∼ is an ā-supported partial
equivalence relation on An.

Proof We first prove the theorem for sets which are a single ā-orbit, and then
justify the representation in the theorem is closed under finite unions.

Let then X be a set with atoms which is a single ā-orbit. Apply Lemma 3.20
to the equivariant orbit that contains X, yielding a partial equivariant function

f : An → sets with atoms

whose image contains X. Define ∼ to be the partial equivalence relation on An

which identifies two atom tuples if they have the same image under f , and that
image belongs to X. This equivalence relation is supported by ā. It is the same
as the kernel of the function f restricted to tuples with image in X. As usual
with kernels, the set X is in bijective correspondence with the quotient An

/∼.
Consider now the general case, where X is not necessarily a single ā-orbit.

Thanks to the assumption that there are at least two atoms, sets of the form
An
/∼ are closed under finite union. To represent a union of k such sets, each one

using dimension ≤ n, we use tuples of dimension n + log k, with the equality
type of the last log k coordinates used to indicate one of the k sets. �

If there is only one atom (which is not a very interesting case, because for
finite atom structures orbit-finite sets are the same as finite sets), then the theo-
rem above also holds, except one needs to use a finite disjoint union of sets of
the form An

/∼.

Closure properties. Some closure properties of finite sets are shared by orbit-
finite sets, some are not. Here is a summary:
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operation on orbit-finite sets is the result orbit-finite?

X ∪ Y yes (Lemma 3.24)
X ∩ Y yes (Lemma 3.24)
X × Y yes (Lemma 3.24)
take some finitely supported subset of X yes (Lemma 3.24)
image f (X) where f has an orbit-finite graph yes (Lemma 3.24)
set of all finitely supported subsets of X no (Example 3.25)
set of all finitely supported functions X → Y no (Exercises 52 and 53)

The positive results from the above table are given in the following lemma.

Lemma 3.24. Assume that the atoms are oligomorphic. Orbit-finite sets are
closed under binary union, binary product, finitely supported subsets, projec-
tions (from products), and images under finitely supported functions.

Proof Binary union is immediate, and finitely supported subsets are immedi-
ate in view of condition (2) of Theorem 3.16. For projections, we observe that
the projection of one orbit in a product is one orbit: if (x, y) and (x′, y′) are in
the same equivariant orbit, then the same is true for y and y′. For images under
orbit-finite functions, we observe that the co-domain of an orbit-finite function
is orbit-finite, by projections.

We are left with binary products. By condition (1) of Theorem 3.16, it suf-
fices to show that the product X1 × X2 of two equivariant orbits is contained
in finitely many equivariant orbits. Apply Lemma 3.20, yielding equivariant
functions

fi : Ani → sets with atoms for i = 1, 2

such that Xi is contained in the image of fi. The product X1 × X2 is contained
in the image of An1 × An2 under the equivariant function obtained by pairing
f1 and f2 in the natural way. By assumption on oligomorphism, An1 × An2 has
finitely many equivariant orbits, and therefore the same is true for X1 × X2

thanks to the previous item. �

Example 3.25. An important operation that does not preserve orbit-finiteness
is (finitely supported) powerset. If the atoms are an infinite oligomorphic struc-
ture, then the finitely supported powerset of A is necessarily not orbit-finite,
because subsets of different size are in different orbits.

Exercises
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Exercise 50. Show that in the atoms (Z, <), which are not oligomorphic, the
two conditions in Theorem 3.16, and also the condition “X is equal to a finite
union of ā-orbits”, are pairwise non-equivalent.

Exercise 51. Assume that the atoms are oligomorphic. Let R ⊆ X × X be a
binary relation which is an orbit-finite set with atoms. Show that the transitive
closure of R is also orbit-finite.

Exercise 52. Assume that the atoms are oligomorphic, and there are infinitely
many atoms. Show that orbit-finite sets are not closed under taking finitely
supported function spaces X → Y .

Exercise 53. Assume oligomorphic atoms. Let X,Y be orbit-finite sets and let
F be a finitely supported set of finitely supported functions of type X → Y .
Show that F is orbit-finite if and only if there is some n ∈ {0, 1, 2, . . .} such that
every function f ∈ F has a support of size at most n.

Exercise 54. Show the following converse of Theorem 3.16: if the two condi-
tions in the theorem are equivalent for every set with atoms X, then the atoms
are oligomorphic.

Exercise 55. Assume oligomorphic atoms. Show that in an orbit-finite set, for
every atom tuple ā there are finitely many elements supported by ā.

Exercise 56. Show a counterexample, in the equality atoms, to the converse
implication from Exercise 55. In other words, show a set which is not orbit-
finite, but where every tuple of atoms supports finitely many elements.

Exercise 57. Assume the equality atoms. Let R ⊆ An+k be a finitely supported
relation which is total in the following sense: for every ā ∈ An there is some
b̄ ∈ Ak such that R(āb̄). Show that there is a finitely supported function f :
An → Ak whose graph is contained in R.

Exercise 58. Show that Exercise 57 fails in (Q, <).

Exercise 59. Show that Exercise 57 fails in some atoms, even for a relation
R such that for every first argument, there are finitely many second arguments
related by the relation.
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Exercise 60. Assume that the atoms are oligomorphic. Let X be an orbit-finite
set and let ā be a tuple of atoms. Consider the family of equivalence relations
on X which are supported by ā and where every equivalence class is finite.
Show that this family has a greatest element with respect to inclusion (i.e. a
coarsest equivalence relation).

Exercise 61. Assume that the atoms are oligomorphic. Show that if X is an
orbit-finite set and ā is an atom tuple, then

{π(x) : x ∈ X and π is an ā-automorphism}

is also orbit-finite.

Exercise 62. Assume that the atoms are oligomorphic. Show that orbit-finite
sets are closed under orbit-finite union in the following sense. If X is an orbit-
finite set and f is a finitely supported function that maps each element of X to
an orbit-finite set, then ⋃

x∈X

f (x)

is an orbit-finite set.

Exercise 63. Show that in the equality atoms (actually, under any oligomor-
phic atoms), every orbit-finite is Dedekind finite8, i.e. does not admit a finitely
supported bijection with a proper subset of itself.

Exercise 64. Show that in the equality atoms, there is a set that is not orbit-
finite, but Dedekind finite in the sense from Exercise 63.

Exercise 65. Call a family of sets directed if every two sets from the family
are included in some set from the family. Consider the equality atoms. Show
that a set with atoms X is finite (in the usual sense) if and only if it satisfies:
for every set with atoms X ⊆ PX which is directed, there is a maximal element
in X.

Exercise 66. Call a family X of sets uniformly supported9 if there is some
tuple of atoms which supports all elements of X. Assume that the atoms are

8 This exercise is inspired by Blass (2013).
9 This exercise is inspired by (Pitts, 2013, Section 5.5).
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oligomorphic. Show that a set X is orbit-finite if and only if: (*) there is a max-
imal element in every set of atoms X ⊆ PX which is directed and uniformly
supported.

Exercise 67. Show that the following statement is true in the equality atoms
but not in (Q, <). A set X is orbit-finite if and only if: (***) for every set
with atoms X ⊆ PX which is totally ordered by inclusion, there is a maximal
element.

Exercise 68. Assume that the atoms are oligomorphic. Show the following
variant of König’s lemma. If a tree has orbit-finite branching and arbitrarily
long branches, then it has an infinite branch.



4
Representing orbit-finite sets

How does one represent an orbit-finite set X so that it can be processed by
algorithms? One idea is to choose a support ā, and elements

x1, . . . , xn ∈ X

which represent all ā-orbits, and then write X as

X =
⋃

i∈{1,...,n}

ā-orbit of xi,

with x1, . . . , xn being represented by induction assumption. This representa-
tion works – assuming that the atoms can be represented in a finite way – for
hereditarily orbit-finite sets, which are sets that are orbit-finite, their elements
are orbit-finite, and so on recursively until atoms are reached. Two drawbacks
of this representation are: (a) it is not immediately clear how to work with it,
e.g. how to test two representations for equality; and (b) a lot of space is re-
quired to represent simple sets, e.g. representing An requires enumerating all
of the exponentially many orbits. In Section 9.2 we will revisit this representa-
tion, but in this chapter we work with a different idea.

We propose a representation, using set builder expressions, which avoids the
drawbacks (a) and (b), and has the further advantage that it works for models
that are not necessarily oligomorphic, such as Presburger arithmetic (N,+). We
also show how set builder expressions can be transformed by algorithms, with
some transformations (like union) being polynomial time, and some transfor-
mations (like testing equality) being as hard as the first-order theory of the
underlying atom structure. Then, we show that if the atoms are oligomorphic,
then the set builder expressions coincide with hereditarily orbit-finite sets.

64
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4.1 Set builder expressions

Set builder expressions1 are a way of defining sets, which contain sets, which
contain sets, etc. Here is the family of all subsets of A that miss at most one
atom:

{{x : for x ∈ A}} ∪ {{y : for y ∈ A such that y , x} : for x ∈ A}.

Another example, this time in the atoms (Q, <), is the set of all nonempty open
intervals to the left of 1:

{{z : for z ∈ A such that x < z < y} : for x, y ∈ A such that x < y ∧ y < 1}.

Definition 4.1 (Set builder expressions). Fix a logical structure A for the
atoms, not necessarily oligomorphic. Fix an infinite set of variables, which
range over atoms. We write x, y, z for these variables. There are two kinds of
set builder expressions, defined by structural induction:

(1) Set expression. Let α be a variable or an already defined set builder ex-
pression, and let ϕ be a first-order formula over the vocabulary of A with
parameters from the atoms2. Then

{α : for x1, . . . , xn ∈ A such that ϕ}

is a set builder expression, called a set expression. The formula ϕ is called
the guard of the expression. The free variables of the expression are the
variables that are free in α or ϕ, minus x1, . . . , xn.

(2) Union expression. If α1, . . . , αn are already defined set expressions, then
α1∪· · ·∪αn is a set builder expression, called a union expression. A variable
is free in the union if it is free in some αi.

By design (and by name) set builder expressions represent sets and not indi-
vidual atoms. For a set builder expression α and a valuation

ā : free variables of α→ A,

we define the set represented by α under valuation ā, denoted by α(ā), in the
natural way. If α has no free variables, then we simply speak of the set rep-
resented by α. We represent the valuations as tuples of atoms, assuming some
implicit order on the free variables.
1 The idea to use set builder notation as a way of representing hereditarily orbit-finite sets

(Theorem 4.10) originates from the programming language lois (Looping over Infinite
Sets) Kopczyński and Toruńczyk (2016); Kopczyński and Toruńczyk (2017). Earlier papers on
sets with atoms, such as Bojańczyk et al. (2014, 2012), used different representations, based
on least supports.

2 A formula with parameters is one that can use atoms as constants. For example, x = 1 ∨ x = 2
is a formula which uses parameters 1, 2 and has free variable x.



66 Representing orbit-finite sets

Define the parameters of a set builder expression to be the parameters that
appear in its guards. For example, the set builder expression

{{y : for y ∈ A such that y , x ∨ y = z} : for x ∈ A such that x , 2}

has parameter 2 and free variable z. By induction on the size of α one shows
that

ā 7→ set represented by α(ā),

seen as a function from atom tuples (indexed by free variables of α) to sets
with atoms, is supported by the parameters of α. In particular, if α has no pa-
rameters, then the function is equivariant. The distinction between parameters
and variables is rather thin, but it will play a role in the definition of fixed
dimension polynomial time that will be given in Chapter 9.

Before continuing, we discuss some syntactic sugar for set builder expres-
sions. If x̄ is a tuple of variables x1, . . . , xn, then we sometimes write

{α : for x̄ ∈ An such that ϕ} instead of {α : for x1, . . . , xn ∈ A such that ϕ}.

If the number n of bound variables is zero and the guard ϕ is “true”, then we
write {α}. We write {α, β} as syntactic sugar for the union of two singletons.
Likewise, we write (α, β) as syntactic sugar for Kuratowski pairs. Using these
conventions, examples of set builder expressions include finite sets like

{1, 3, 4},

and also hereditarily finite sets like

{{{1, 5}, 1, 3}, {4}}.

Symbol pushing lemmas

Many operations on set builder expressions, such as union or set difference, can
be implemented by straightforward syntactic transformations on formulas of
first-order logic. In many cases, the transformations are even polynomial, if we
define the size of a first-order formula to be the number of distinct subformulas
(even if a subformula is used multiple times, it is counted only once in the
size3). In a similar way, we define the size of a set builder expression to be
the number of distinct subexpressions and subformulas of formulas used in the
guards.

3 This corresponds to viewing formulas as directed acyclic graphs (circuits), rather than trees.
For first-order formulas, this distinction is not very important, because repeated uses of the
same subformula can be eliminated by using quantifiers, see Exercise 70.
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The following straightforward lemma, which makes no assumptions on the
atom structure, even decidability of the first-order theory, says that membership
and inclusion questions for (sets represented by) set builder expressions reduce
to the first-order theory of the atom structure.

Lemma 4.2 (First Symbol Pushing Lemma). Assume that the atoms can be
represented in a finite way. There is polynomial time algorithm which does the
following.

• Input. Set builder expressions α, β, with free variables x̄ and ȳ, respectively.
• Output. A first-order formula ϕ(x̄ȳ) over the vocabulary of the atoms such

that:

A |= ϕ(āb̄) iff α(ā) ⊆ β(b̄) for every atom tuples ā, b̄.

Likewise for ∈ or = instead of ⊆.

Proof See Figure 4.1. Each of the formulas in Figure 4.1 consists of a fixed
part and inductively defined subformulas corresponding to subexpressions of
α and β. It follows that the size of the first-order formula produced in Fig-
ure 4.1 is approximately the number of subexpressions in α times the number
of subexpressions in β. �

In the above lemma, the construction of the formula ϕ based on α and β

is a simple syntactic transformation, which requires no computation on the
atom parameters that appear in the input set builder expression. Therefore, the
assumption that the atoms can be represented in a finite way is stronger than
necessary, and the lemma would be true without any assumptions on the atoms,
but with a computation model where atoms can be moved around (without
actually checking any of their properties) at unit cost. The same will hold for
the remaining Symbol Pushing Lemmas below.

A corollary of the First Symbol Pushing Lemma is that if the atoms have
decidable first-order theory, then membership, inclusion and equality are de-
cidable for sets represented by set builder expressions.

Corollary 4.3. Assume that the atoms can be represented in a finite way so
that the following problem is decidable:

• Input. A sentence of first-order logic ϕ over the vocabulary4 of the atoms,
which is allowed to contain parameters from the atoms.

• Output. Is ϕ true in the atom structure?

4 This assumes that the vocabulary is either finite, or infinite but can be represented in some way.
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α ∈ β
def
= false if β represents an atom

α ∈ (β1 ∪ · · · ∪ βn) def
=

∨
i

α ∈ βi

α ∈ {β : for x1, . . . , xn ∈ A such that ϕ} def
= ∃x1 . . .∃xn ϕ ∧ α = β

α ⊆ β
def
= false if α represents an atom

(α1 ∪ · · · ∪ αn) ⊆ β def
=

∧
i

αi ⊆ β

{α : for x1, . . . , xn ∈ A such that ϕ} ⊆ β def
= ∀x1 . . .∀xn ϕ⇒ α ∈ β

α = β
def
= α = β if α, β represent atoms

α = β
def
= α ⊆ β ∧ β ⊆ α if α, β represent sets

α = β
def
= false otherwise

Figure 4.1 In the figure, α and β are either set builder expressions (in which case
they represent sets), or variables and atoms constants (in which case they repre-
sent atoms). For each relationship, e.g. membership α ∈ β, the figure shows a
corresponding first-order formula, which is denoted using underlines, e.g. α ∈ β.

Then membership, equality and inclusion are decidable for sets represented by
set builder expressions.

While the formulas in the conclusion of the First Symbol Pushing Lemma
are produced in polynomial time, checking if these formulas are true in the
atom structure is a different story. In fact, first-order model checking is PSpace-
hard for any structure with at least two elements, because it first-order logic
generalises quantified Boolean formulas. This hardness is intrinsic to the orig-
inal problem (checking if set builder expressions represent the same set, like-
wise for membership and inclusion), and not just the solution presented in the
First Symbol Pushing Lemma, because first-order formulas are built into the
syntax of set builder expressions. For example, checking

∅ = {x̄ : for x̄ ∈ An such that ϕ(x̄)}

is the same as checking if the first-order guard ϕ(x̄) is true for at least one atom
tuple. Furthermore, the quantifiers guards can be simulated using the nesting
of set brackets, see Exercise 69.

Example 4.4. Examples of structures which satisfy the assumptions of Corol-
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lary 4.3 include:

(N,=), (Q, <), (N,+),︸ ︷︷ ︸
Presburger arithmetic

(N,×).︸ ︷︷ ︸
Skolem arithmetic

For the first two structures, decidability follows from quantifier elimination,
see Chapter 7. For Presburger and Skolem arithmetic, decidability is easily
proved using monadic second-order logic on words and trees5. Presburger
and Skolem arithmetic are not oligomorphic. A non-example is the real field
(R,+,×), which has decidable first-order theory, but fails the assumption on
representing elements6.

All oligomorphic structures in this book satisfy the assumptions of Corol-
lary 4.3.

Lemma 4.5 (Second Symbol Pushing Lemma). Assume that the atoms can be
represented in a finite way. There is polynomial time algorithm which does the
following.

• Input. Sets X and Y, given by set builder expressions.
• Output. Set builder expressions representing the sets

X ∪ Y, X ∩ Y, X − Y, {X},
⋃

X, X × Y.

Proof All cases are straightforward, with intersection X ∩ Y and difference
X −Y using the Symbol Pushing Lemma. We only do one of the cases, namely
intersection X∩Y . By distributing intersection across union, we assume that X
and Y are represented by set expressions

{α : for x1, . . . , xn ∈ A such that ϕ},︸                                         ︷︷                                         ︸
X

{β : for y1, . . . , ym ∈ A such that ψ}.︸                                         ︷︷                                         ︸
Y

Apply the Symbol Pushing Lemma, yielding a polynomial size formula α = β

which characterises those valuations of the free variables which make the ex-
pressions α and β equal. The expression for intersection is then

{α : for x1, . . . , xn ∈ A such that ϕ ∧ ∃y1 . . .∃ym ψ ∧ α = β}.

�

5 Presburger’s original proof Presburger (1929), used quantifier elimination. For an approach
that uses automata, see (Thomas, 1997, page 399) for Presburger arithmetic and Blumensath
and Gradel (2000) for Skolem arithmetic.

6 This problem would be solved by considering the field of real algebraic numbers, which has
the same first-order theory as the field of reals, and allows finite representation of its elements.
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The Second Symbol Pushing Lemma does not cover some operations, such
as composition of binary relations, or the projection operations on products.
Instead of treating each such operation separately, we give a generic result,
which deals with every operation that can be defined in the language of set
theory.

Definition 4.6 (Set Structure). Let X be a set. Define X∗ to be the set which
contains X, the elements of X, their elements, and so on. In other words,

X∗
def
= {X} ∪

⋃
x∈X

x∗.

Define the set structure of X to be the logical structure which has universe X∗,
one binary relation ∈ and one constant ∅.

Many natural constructions can be described using first-order logic on the set
structure. The following example discusses projection from a Cartesian prod-
uct. Other examples, such as composition of binary relations, can be found in
the exercises.

Example 4.7. The projection function

X × Y → X

can be defined by a first-order formula interpreted in the set structure of X ×Y .
Recall that pairs are defined using Kuratowski pairing

(x, y) = {{x}, {x, y}}.

Note that if x ∈ X and y ∈ Y , then

x y {x} {x, y}

are all in the universe of the set structure of X × Y . The point of Kuratowski
pairing is that pairing and projections can be done in the language of set theory.
The following formula expresses that p is the (set representing the) ordered
pair (x, y):

∀z z ∈ p ⇒ (

x is the unique
element of z︷ ︸︸ ︷
z = {x} ∨

z is the smallest set that
contains {x} and {y}︷         ︸︸         ︷
z = {x} ∪ {y} ). (4.1)

The projection of X ×Y to the first coordinate is the set of elements x in the set
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structure of X × Y that satisfy the following formula ϕ(x):

∃y

X × Y is the only
element of the

set structure that
does not belong to
any other element︷     ︸︸     ︷

y ∈ X × Y ∧

expressed in (4.1)︷     ︸︸     ︷
p = (x, y) . (4.2)

The Third Symbol Pushing Lemma says that one can compute in polynomial
time all operations which can be formalised using first-order logic over the set
structure, such as the projection operation given in the above example.

Lemma 4.8 (Third Symbol Pushing Lemma). Assume that the atoms can be
represented in a finite way, and let ϕ(x1, . . . , xn) be a formula of first-order
logic using a binary relation ∈ and a constant ∅. There is polynomial time
algorithm7 which does the following.

• Input. A set X, represented by a set builder expression.
• Output. A set builder expression which representing the set

{(x1, . . . , xn) ∈ (X∗)n : X∗ |= ϕ(x1, . . . , xn)}.

Proof The set X∗ is obtained from X using

(X,Y) 7→ X ∪ Y X 7→
⋃

X,

which were treated in the Second Symbol Pushing Lemma, and therefore one
can compute in polynomial time a set builder expression α∗ which describes
X∗. Like any set builder expression, α∗ is a finite union of set expression:⋃

i∈I

{αi(ȳi) : for ȳi ∈ Aki such that ϕi(ȳi)}.

In the above, ȳi is a tuple of ki variables. (These variables range over atoms,
while the variables x1, . . . , xn of the formula in the statement the lemma range
over elements of X∗.) Note that some of the expressions αi might be atom
constants or variables representing individual atoms, in which case they are
not formally speaking set builder expressions (because the latter necessarily
contain set brackets). The statement of the lemma follows immediately from
the following claim.

Claim 4.9. Let ϕ(x1, . . . , xn) be a first-order formula (whose free variables are
contained in, but not necessarily equal to, {x1, . . . , xn}) that uses ∈ and ∅ only,
and let i1, . . . , in ∈ I. There is a first-order formula, denoted by

ϕ(x1, . . . , xn) : i1, . . . , in, (4.3)

7 The degree of the polynomial depends on ϕ.
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y j ∈ yk : αi1 , . . . , αin
def
=

First Symbol
Pushing Lemma︷   ︸︸   ︷
αi j ∈ αik

y j = yk : αi1 , . . . , αin
def
=

First Symbol
Pushing Lemma︷    ︸︸    ︷
αi j = αik

(ϕ1 ∧ ϕ2) : αi1 , . . . , αin
def
= ϕ1 : αi1 , . . . , αin ∧ ϕ2 : αi1 , . . . , αin

¬ϕ : αi1 , . . . , αin
def
= ¬ϕ1 : αi1 , . . . , αin

∃xn ϕ : αi1 , . . . , αin−1

def
=

∨
in∈I

∃ȳin αin (ȳin ) ∈ α∗︸         ︷︷         ︸
First Symbol

Pushing Lemma

∧ ϕ(x1, . . . , xn) : αi1 , . . . , αin .

Figure 4.2 Proof of Claim 4.9. The connectives ∨ and ∃ are treated the same way
as ∧ and ∀, respectively. For the quantifier ∀, we assume for notational simplicity
that the quantified variable is the last one.

which uses the vocabulary of the atoms and atom parameters and has

ki1 + · · · + kin

free variables, such that a tuple of atoms

ā1 · · · ān ∈ Aki1 × · · · × Akin

satisfies (4.3) if and only if

(X∗, ∈, ∅) |= ϕ(αi1 (ā1), . . . , αin (ān)).

Proof Induction on formula size, see Figure 4.2.
�

Using the claim, we complete the proof of the lemma. The set builder ex-
pression defining the interpretation of ϕ(x1, . . . , xn) is the union, ranging over
all i1, . . . , in ∈ I, of set builder expressions of the form

{(αi1 , . . . , αin ) : for ȳi1 , . . . , ȳin ∈ A such that ϕ(x1, . . . , xn) : αi1 , . . . , αin }.

All the constructions in the above proof are clearly computable. Furthermore,
if we fix the formula ϕ, then the final set builder expression has size polynomial
in α. The exponent of the polynomial depends on the maximal number of free
variables used by subformulas of ϕ, because a formula with n free variables
will require ranging over In. �
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Exercises

Exercise 69. Show that if the atoms have at least two elements, then the fol-
lowing problem is PSpace hard: given two set builder expressions where all
guards are quantifier-free, decide if they represent the same set.

Exercise 70. Let A be a structure with at least two elements. Consider two
measures of size for first-order formulas:

(1) circuit size (number of distinct subformulas);
(2) tree size (number of nodes in the syntax tree).

Circuit size is the notion of size we use in this book. Show that for every
formula of first-order logic ϕ one can compute an equivalent formula whose
tree size is polynomial in the circuit size of ϕ.

Exercise 71. Use the Third Symbol Pushing Lemma to show that composi-
tion of binary relations (given by set builder expressions) can be computed in
polynomial time.

Exercise 72. Assume the atoms are Presburger arithmetic (N,+). For which
k ∈ {0, 1, . . .} is the following problem decidable:

• Input. A set builder expression representing R ⊆ A2k and x, y ∈ Ak.
• Output. Is (x, y) in the transitive closure of R, where R is viewed as a binary

relation on k-tuples?

4.2 Hereditarily orbit-finite sets

In this section, we show that if the atoms are oligomorphic, then the hereditar-
ily orbit-finite sets (orbit-finite, the elements are orbit-finite, their elements are
orbit-finite, and so on) described at the beginning of this chapter are the same
as those defined by set builder expressions.

Theorem 4.10. Assume that the atoms are countable and oligomorphic. A set
can be defined by a set builder expression if and only if it is hereditarily orbit-
finite.
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The key part of the above theorem is the following lemma, which is based on
the proof of Ryll-Nardzewski, Engeler and Svenonius about countable oligo-
morphic being the same thing as ω-categorical.

Lemma 4.11. In a countable oligomorphic model, a subset X ⊆ An is equiv-
ariant if and only if it is first-order definable.

Proof Consider the following game (known as the Ehrenfeucht-Fraı̈ssé game),
which is parametrised by two tuples ā, b̄ ∈ An and a number of rounds k ∈
{0, 1, 2, . . . , ω}. The game is played by two players, called Spoiler and Dupli-
cator. In each round:

• Spoiler chooses one of the tuples and extends it with one atom.
• Duplicator responds by extending the other tuple with one atom.

Spoiler wins the game if, for some finite i ≤ k, the (extended) tuples after play-
ing i rounds can be distinguished by some quantifier-free formula, otherwise
Duplicator wins.

The lemma follows immediately from the equivalence of items 1 and 4 in
the following claim.

Claim 4.12. In a countable oligomorphic structureA, the following conditions
are equivalent for every tuples ā, b̄ ∈ An:

(1) the tuples satisfy the same formulas of first-order logic8;
(2) Duplicator has a winning strategy in the k-round game for every k < ω;
(3) Duplicator has a winning strategy in the ω-round game;
(4) the tuples are in the same equivariant orbit.

Proof

• 1 implies 2. This is (half of) the classical Ehrenfeucht-Fraı̈ssé theorem9,
which says that if two tuples satisfy the same formulas of quantifier rank at
most k, then Duplicator has a winning strategy in the k-round game.

• 2 implies 3. In this step, we use oligomorphism. We need to show that if
Duplicator has a winning strategy for every k < ω, then Duplicator also
has a winning strategy in the ω-round game. Consider the situation in the
ω-round game when Spoiler is about to extend a tuple ā by a new atom,
and the other tuple is b̄. If atoms a and a′ are in the same āb̄-orbit, then
extending the tuple ā by a or extending it by a′ will give the same results
for Spoiler as far as winning the game is concerned. Since there are finitely

8 These are formulas that use the vocabulary of A. They cannot use constants (parameters) other
than those which are explicitly present in the vocabulary of A.

9 See (Hodges, 1993, Section 3.2)
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many āb̄-orbits, Spoiler has essentially finitely many different choices. The
same holds for Duplicator. Therefore, one can use the same argument as in
König’s lemma to show that if Spoiler wins the ω-round game, then Spoiler
already wins the k-round game for some k < ω.

• 3 implies 4. In this step, we use countability. We need to show that if Dupli-
cator has a winning strategy in the ω-round game for tuples

(a1, . . . , an) (b1, . . . , bn),

then there is an automorphism that maps one tuple to the other. This is
proved using a back-and-forth argument. Fix some enumeration of the model
A, which exists by assumption on countability. Consider a play in the ω-
round game, where Spoiler uses the following strategy:

– in even-numbered rounds, extend the ā tuple with the least (according to
the enumeration) atom that does not appear in it;

– in odd-numbered rounds, do the same for the b̄ tuple.

Suppose that Duplicator responds to the above strategy with a winning strat-
egy. In the resulting play, we get two infinite sequences

a1, a2, . . . b1, b2, . . .

of atoms such that for every i ∈ N, the tuples (a1, . . . , ai) and (b1, . . . , bi)
satisfy the same quantifier-free formulas. By the choice of Spoiler’s strategy,
every atom appears in the sequence a1, a2, . . . and every atom appears in the
sequence b1, b2, . . .. Therefore, the function ai 7→ bi is an automorphism of
the atoms.

• 4 implies 1. By induction on the quantifier rank k, one shows that tuples
in the same equivariant orbit must satisfy the same first-order formulas of
quantifier rank k.

This completes the proof of the claim, and therefore also of the lemma. �

�

Corollary 4.13. Suppose that the atoms are a countable oligomorphic struc-
ture. If X ⊆ Ak is supported by a tuple of atoms ā ∈ An, then it is definable by
a first-order formula with k free variables and parameters from ā.

Proof Define

Y = {π(āb̄) : π is an atom automorphism and b̄ ∈ X}.

This is an equivariant set, and therefore by Lemma 4.11 it is defined by a
formula of first-order logic ϕ with n + k free variables. A tuple b̄ belongs to X
if and only if it satisfies ϕ(āb̄). �
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As discussed in Example 3.7, in the equality atoms the finitely supported
subsets of Ak coincide with those that can be defined using quantifier-free for-
mulas, which is a stronger statement than first-order definability as per Corol-
lary 4.13. The same is true for (Q, <), see Example 3.8. The reason is that
these atom structures are homogeneous, see Chapter 7. Not all oligomorphic
structures are homogeneous, and therefore sometimes quantifiers are needed
to define finitely supported relations on the atoms, as shown in the following
example.

Example 6. Let A be the undirected graph which consists of a countably
infinite disjoint union of cycles of length 4:

. . .

This is an oligomorphic structure. Consider the equivariant set

{(a, b) : a, b ∈ A are antipodal, i.e. a , b ∧ ∃c E(a, c) ∧ E(c, b)}.

The set is definable in first-order logic, but not without quantifiers. �

Before proving Theorem 4.10, let us note a further corollary of Corollary 4.13.
Recall Theorem 3.23 which represented orbit-finite sets using tuples of atoms
modulo partial equivalence relations. If we view a partial equivalence relation
on n-tuples of atoms as a set of 2n-tuples of atoms, and apply Corollary 4.13,
we see that the partial equivalence can be defined by a formula of first-order
logic with 2n free variables, possibly using parameters from the atoms. Putting
this together with Theorem 3.23, we see that every ā-supported orbit-finite set
admits an ā-supported bijection with a finite union of sets, each one of which
is quotients of atom tuples modulo a partial equivalence relation that can be
defined in first-order logic with parameters from ā.

Proof of Theorem 4.10 We begin with the left-to-right implication. By induc-
tion on the size of a set builder expression α, we show that

ā 7→ set represented by α(ā)

is a function that inputs tuples of atoms and outputs hereditarily orbit-finite
sets. Also, this function is supported by the parameters that appear in α. Con-
sider the interesting case in the induction step, which is when α is a set expres-
sion of the form

α(x̄) = {β(x̄ȳ) : for ȳ ∈ An such that ϕ(x̄ȳ)}.
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By definition, the set represented by α(ā) is the image of the set

{b̄ ∈ An : ϕ(āb̄)}, (4.4)

under the function

b̄ 7→ set represented by β(āb̄). (4.5)

The set (4.4) is orbit-finite as a finitely supported subset of the orbit-finite
set An. Finitely supported functions map orbit-finite sets to orbit-finite sets,
and therefore α(ā) is orbit-finite. Its elements are hereditarily orbit-finite by
induction assumption.

We now turn to the right-to-left implication in Theorem 4.10. The proof is
by induction on the rank in the cumulative hierarchy, i.e. the nesting depth of
set brackets. Let then X be a hereditarily orbit-finite set supported by ā. Since
set builder expressions have union in the syntax, it suffices to consider the case
when X consists of a single ā-orbit. Choose some x ∈ X, with support b̄. In
particular, x is also supported by āb̄. By induction assumption, x is represented
by some set builder expression α(āb̄). The set X is therefore equal to

{π(α(āb̄)) : π is ā-automorphism}.

Since āb̄ 7→ α(āb̄) is an equivariant function, it commutes with atom automor-
phisms, and thus

X = {α(āc̄) : c̄ ∈ Y} (4.6)

where Y is the ā-orbit of the tuples b̄. By Corollary 4.13, the set Y is defined by
a formula of first-order logic which uses parameters from ā. Substituting this
formula for Y in 4.6 gives a set builder expression defining X. �

Exercises

Exercise 73. Assume that there are at least two atoms, but the atoms are not
necessarily oligomorphic. Show the following variant of Theorem 3.23 for sets
represented by set builder expressions: for every set X represented by a set
builder expression there is some n ∈ {0, 1, . . .}, a first-order definable partial
equivalence ∼ on An (which can use atom parameters) and a bijection

f : An
/∼ → X

that is represented by a set builder expression.
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Exercise 74. Assume that the atoms are oligomorphic. Show that for every
orbit-finite set X there is a finitely supported function

f : A∗ → (finitely supported subsets of X)∗

such that for every ā ∈ A∗, f (ā) is a list of all ā-orbits that are contained in X.



5
Case studies

In this section, we show how natural algorithms on finite objects can be gener-
alised to orbit-finite sets. This is illustrated with case studies for: graph reach-
ability, automaton emptiness and minimisation, equivalence of pushdown au-
tomata with context-free grammars, and graph homomorphisms. The point of
these case studies is to explain why:

• orbit-finiteness has some of the advantages of finiteness, in particular how
such sets can be transformed and searched by algorithms;

• combining the semantic approach (orbit-finite sets) and the syntactic ap-
proach (set builder expressions) can be useful;

• orbit-finite automata generalise the automata models from Part I, and why
this generalisation is useful;

• it is useful to make an additional decidability assumption about the atoms:
computability of the Ryll-Nardzewski function.

5.1 Graph reachability

We begin our case studies with directed graph reachability.

Theorem 5.1. Assume that the atoms are oligomorphic and have decidable
first-order theory as in the assumptions of Corollary 4.3. The following prob-
lem is decidable:

• Input. A directed graph (V, E), and source and target subsets S ,T ⊆ V, all
given by set builder expressions.

• Output. Is there a directed path from some source to some target?

Proof For n ∈ {1, 2, . . .}, let Vn be the vertices that are reachable in at most n

79
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steps from some source. These sets are defined by

Vn =

S n = 0

Vn−1 ∪ Vn−1E n > 0.

By the Third Symbol Pushing Lemma, a set builder expression describing the
set Vn can be computed, given a set builder expression for Vn−1. For each
n = 0, 1, 2, . . ., compute the expression for Vn, until a fixpoint is reached,
i.e. some n such that Vn = Vn+1. Whether or not a fixpoint is reached can be
checked using Corollary 4.3. The algorithm returns true or false, depending on
whether the fixpoint intersects the target vertices. The following claim shows
that the fixpoint is always reached in a finite number of steps, and therefore the
algorithm terminates.

Claim 5.2. There is some n such that Vn = Vn+1.

Proof Let ā be a tuple of atoms that supports S ,V and E. (For example, one
can take ā to be all of the atoms that appear in the set builder expressions that
define these sets.) One can show by induction that this tuple also supports Vn

for every n. Later in this section, we give a more general explanation for such
results (a tuple that supports one thing must also support other related things),
using a principle called the equivariance principle. Therefore, all the sets

V0 ⊆ V1 ⊆ · · · ⊆ V

are unions of ā-orbits. Because V is defined by a set builder expression, it is
orbit-finite by Theorem 4.10. By Theorem 3.16, V is a finite union of ā-orbits
It follows that for some n, there are no more ā-orbits to add when going from
Vn to Vn+1. �

�

The above proof illustrates how it is useful to have both syntactic descrip-
tions (set builder expressions) and semantic ones (hereditarily orbit-finite sets).
The semantic description is used to show that the fixpoint is reached in a finite
number of steps, while the syntactic description is used to compute this fix-
point.

Equivariance principle. In the proof above, we said that any tuple of atoms
which supports the graph and its source vertices will also support the vertices
that can be reached in at most n steps. Other examples of such statements are:
“a tuple that supports an automaton will also support the language recognised
by the automaton” or “a tuple that supports system of equations with a unique
solution will also support that solution”. We describe below a result, called the



5.1 Graph reachability 81

equivariance principle, which implies all such statements. The principle says
that, if a function (e.g. the function that maps an automaton to its recognised
language, or the partial function that maps a system of equations to its unique
solution if it exists) can be defined in the language of set theory, then that
function is equivariant. In particular, any tuple supporting the input to that
function will also support the output of that function, because for equivariant
functions, any support of the input is also a support of the output.

Lemma 5.3 (Equivariance principle). Let A be a structure, not necessarily
oligomorphic, and consider the structure

setA def
= (atoms and sets with atoms over A, ∈, ∅).

Suppose that ϕ(x, y) is a formula of first-order logic which uses only ∈ and ∅,
and whose interpretation in the above structure is a function

f : atoms and sets with atoms over A→ atoms and sets with atoms over A.

Then f is an equivariant function. In particular, if an atom tuple supports a set
with atoms X, then the same atom tuple also supports f (X).

Proof Take an automorphism π ofA. It is not hard to see that π, when lifted to
sets with atoms over A, is an automorphism of the structure setA. First-order
logic is invariant under automorphism, i.e. if a pair (X,Y) of elements in the
universe of the structure setA satisfies the formula defining f , then the same
will be true for (π(X), π(Y)). �

The language of first-order logic is rich enough to cover most constructions
used in this book, e.g. pairing and unpairing as described in Example 4.7. For
such constructions, we can use the equivariance principle to prove equivari-
ance. Later in the book, we will no longer do detailed analysis as in Exam-
ple 4.7, and we will simply refer to the equivariance principle when making
statements such as “if an automaton is supported by an atom tuple ā, then its
recognised language is also supported by ā”.

Example 5.4. When applying the Equivariance Principle, one needs to remem-
ber that the structure setA only talks about finitely supported sets (because sets
with atoms are, by definition, finitely supported). To illustrate the potential for
mistakes, consider the statement:

(*) If a graph is nonempty and has at least one outgoing edge for each vertex,
then it has an infinite path.

The statement can easily be formalised using set theory, but such a formali-
sation turns out to be false in setA for some choices of atoms. To see this,
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consider the atoms (Q, <), and the graph where the vertices are the atoms and
the edge relation is {(a, b) : a < b}. Every vertex has at least one outgoing edge,
and indeed the graph contains an infinite path, but it does not contain any in-
finite finitely supported path, because such a path would need to use infinitely
many atoms. Hence, (*) is not true in setA. In the equality atoms, (*) is true for
orbit-finite graphs (see Exercise 76) but it is false in general (see Exercise 75).

Exercises

Exercise 75. Assume the equality atoms. Show a graph which has an infinite
path, but does not have any infinite finitely supported path.

Exercise 76. Consider the following two conditions for a directed graph with
a distinguished source s ∈ V and set of target vertices T ⊆ V .

(1) there is an infinite directed path which starts in s and visits T infinitely often;
(2) for some t ∈ T , there is a path from s to t and a path from t to t.

Find an atom structure where the two conditions are equivalent, and also an
atom structure where only the implication (1)⇐ (2) is true.

Exercise 77. Show that under the assumptions of Theorem 5.1, there is an
algorithm that checks if condition (1) of Exercise 76 is satisfied, assuming
that the graph, source and targets are all hereditarily orbit-finite. Likewise for
condition (2).

Exercise 78. An instance of alternating reachability is defined the same way
as an instance of graph reachability, except that there is an additional func-
tion V → {0, 1} which assigns an owner to each vertex. A yes-instance of
alternating reachability is one where player 0 wins the following game, played
by players 0 and 1. The game begins in the initial vertex s. In each round,
the player who owns the current vertex picks an outgoing edge; if there is no
outgoing edge, then the picking player loses immediately. If the play reaches
a vertex in T , player 0 wins1; otherwise the play goes on forever and player
1 wins. In the game, we do not assume that the strategies of the players are
finitely supported. Show that under the assumptions of Theorem 5.1, alternat-
ing reachability is decidable for instances that are hereditarily orbit-finite.

1 This type of game is called a reachability game. More general games, namely parity games,
are studied in (Klin and Łełyk, 2017, Section 5.2)
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Exercise 79. Consider the atoms (N,+1), which are not oligomorphic. Show
that graph reachability is undecidable.

Exercise 80. Show a structure that is not oligomorphic, but where graph reach-
ability is decidable.

Exercise 81. Do the same as in Exercise 80, but using a finite vocabulary.

5.2 Orbit-finite automata

In this section, we discuss the atom versions of nondeterministic and determin-
istic finite automata. The general idea is that these are a mild generalisation of
the register automata from Chapter 1.

Orbit-finite automata. The definition of the orbit-finite automata is the same
as in the finite case, except that the word “finite set” is replaced by “orbit-finite
set with atoms”.

Definition 5.7. A nondeterministic orbit-finite automaton (over an oligomor-
phic atom structure A) is a tuple

A =
(

Q,︸︷︷︸
states

Σ,︸︷︷︸
input alphabet

I ⊆ Q,︸ ︷︷ ︸
initial states

F ⊆ Q,︸  ︷︷  ︸
accepting states

δ ⊆ Q × Σ × Q︸            ︷︷            ︸
transitions

)
.

where all components are orbit-finite sets with atoms over A.

The semantics of the automaton are defined as for nondeterministic finite
automata, i.e. the positions of the input word can be labelled by transitions so
that (1) in the first position, the source state is initial; (2) in the last position,
the target state is accepting; and (3) for each position except the last one, the
target state agrees with the source state of the next position. The only difference
is that in an orbit-finite automaton, the states and input letters are from sets
that are not necessarily finite but orbit-finite. The language recognised by an
automaton is the set of words it accepts. By the equivariance principle, the
language recognised by an automaton is supported by whatever supports the
automaton, in particular it is finitely supported.

An automaton is called deterministic if it has one initial state, and δ is a
function from Q × Σ to Q.



84 Case studies

Example 5.8. Register automata, as defined in Chapter 1, are a special case of
orbit-finite automata, under the equality atoms. The input alphabet is finitely
many copies of the atoms – and therefore orbit-finite – while the state space is
of the form

Loc × (A ∪ {⊥})k,

and therefore also orbit-finite. Register automata are equivariant, because atom
parameters cannot be used in their definitions, although allowing atom param-
eters in register automata would still lead to a special case of orbit-finite au-
tomata.

For orbit-finite automata, the input alphabet does not need to consist of pairs
(colour from a finite set, atom), as illustrated in the following example.

Example 5.9. Consider the equality atoms. Let the input alphabet be

Σ = {{a, b} : a , b ∈ A},

i.e. each letter is an unordered set of two distinct atoms. Consider the language
“the word is empty, or some atom appears in all letters”, i.e.

L = ε ∪ {a1 · · · an ∈ Σ∗ : a1 ∩ · · · ∩ an , ∅}.

A nondeterministic orbit-finite automaton which recognises this language has
states

Q = A.

All states are both initial and accepting. (This does not mean that the automaton
accepts all words, because sometimes no transition will be enabled.) The idea
is that the automaton guesses which atom will appear in all letters, and then
scans the word to see if its guess was correct. Therefore, the transition relation
is

δ = {(a, {a, b}, a) : a , b ∈ A}.

Example 5.10. The automaton from Example 5.9 can be determinised. The
deterministic automaton stores in its state the intersection of all letters it has
read so far; with a special initial state indicating that it has read no letters. The
initial state can be modelled as the set of all atoms, there is a rejecting sink
state, and the other states as nonempty sets of atoms of size at most two.

Q =

initial︷︸︸︷
{A} ∪ {{a, b} : for a, b ∈ A} ∪

rejecting sink︷︸︸︷
{∅} .
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The transition function is defined by

δ(X, {a, b}) = X ∩ {a, b}.

The accepting states are all states except ∅.

Hereditarily orbit-finite automata. In Definition 5.7, we use orbit-finite sets.
We now explain why not much would change by restricting to hereditarily
orbit-finite sets. Define an isomorphism between two automata to be two bi-
jections – one for the states and one for the input letters – which are consistent
with the transition relations and accepting/final states in the natural way. By
Theorem 3.23, every orbit-finite set admits a finitely supported bijection to a
hereditarily orbit-finite set (even of a very simple form, namely tuples of atoms
modulo some equivalence relation). Therefore, every orbit-finite automaton is
isomorphic to one that is hereditarily orbit-finite via a finitely supported iso-
morphism. Since isomorphism does not affect the notions for automata that we
study, like determinism, minimality, emptiness or universality, we will freely
confuse orbit-finite and hereditarily orbit-finite automata.

Relationship with register automata. Consider the equality atoms. As dis-
cussed in Example 5.8, register automata from Chapter 1 are a special case of
orbit-finite automata. The following theorem shows that, as far as expressive
power is concerned, nondeterministic orbit-finite automata do not add any new
expressive power to register automata, subject to two restrictions: equivariance,
and the input alphabet consists of pairs (colour from a finite set, atom). A sim-
ilar result, Theorem 6.6, is true for deterministic automata, but it will only be
proved in Section 6.2, when the necessary tools are available.

Theorem 5.11. Consider the equality atoms. For every finite set Σfin and every
language L ⊆ (Σfin × A)∗, the following conditions are equivalent:

(1) L is recognised by a nondeterministic register automaton;
(2) L is recognised by an equivariant nondeterministic orbit-finite automaton.

Proof The implication (1) ⇒ (2) was discussed in Example 5.8. We are left
with the implication (1)⇐ (2). Suppose that L is recognised by an equivariant
orbit-finite automaton with states Q. By Theorem 3.23, there is a surjective
partial equivariant function

f : An → Q

for some n ∈ {0, 1, . . .}. The domain of f , which is an equivariant subset of
An, can be viewed as an equivariant subset of the state space of an n-register



86 Case studies

automaton with one location. Note how this subset does not use undefined
registers ⊥. The transitions (likewise the initial and final states) are defined by
taking inverse images under f of the transitions inA. �

Exercise 84 shows that the conditions in the above theorem are also equiva-
lent to: (3) the language L is equivariant and is recognised by a (not necessarily
equivariant) nondeterministic orbit-finite automaton.

Here are some benefits of the more general setting of orbit-finite automata.

• The definition is more similar to the usual definition of orbit-finite automata,
thus justifying the choice of the register automata model as a generalisation
of nondeterministic automata to infinite alphabets;

• Using the language of orbit-finite sets, it is clear how to generalise automata
to atoms other than the equality atoms. In Section 7, we will see some in-
teresting examples of atoms, which describe data structures such as trees or
graphs.

• Deterministic orbit-finite automata can be minimised, unlike register au-
tomata. We discuss minimisation later in this section.

• Orbit-finite automata can consider unusual input alphabets, e.g. unordered
pairs of atoms as considered in Example 5.9. The importance of such alpha-
bets will be described in Chapter 10.

Also there is little or no price to pay for the added generality of orbit-finite
sets. For example, the emptiness problem is decidable for orbit-finite automata:

Theorem 5.12. Assume that the atoms are oligomorphic and have decidable
first-order theory as in the assumptions of Corollary 4.3. Then emptiness is
decidable for hereditarily orbit-finite automata, represented by set builder ex-
pressions.

Proof The emptiness problem for nondeterministic automata reduces to graph
reachability from Theorem 5.1. In the reduction, we need to compute the one-
step reachability relation on states

E = {(p, q) : there is a transition (p, a, q) for some input letter a},

which is done using the Third Symbol Pushing Lemma. �

Other examples of positive results that generalise easily to orbit-finite au-
tomata are: elimination of ε-transitions (Exercise 82) or deciding if a nonde-
terministic automaton is deterministic/unambiguous (Exercise 83)

The negative results about register automata transfer to orbit-finite automata.
A corollary of Theorem 5.11 is that languages recognised by nondeterministic
orbit-finite automata are not closed under complementation, because the same
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is true for register automata, see Example 1.6. Also, universality is undecid-
able for nondeterministic orbit-finite automata because it is undecidable for
nondeterministic register automata, see Theorem 1.8.

Minimization of deterministic automata Orbit-finite automata can have state
spaces such as “unordered sets of atoms” which do not arise in register au-
tomata. An advantage of these new state spaces is that they allow minimisation
via a Myhill-Nerode construction2, unlike deterministic register automata. To
see the problems with minimization for register automata, consider the follow-
ing example, which is based on Exercise 3.

Example 5.13 (Automata with registers do not minimise). Consider the equal-
ity atoms. Let the input alphabet be the atoms, and consider the language of
words where at most two atoms appear, possibly with repetitions. To recognise
this language, we can use a deterministic automaton with two registers. If we
view this deterministic automaton as an orbit-finite automaton, then its state
space is

(A ∪ {⊥})︸     ︷︷     ︸
possible values

of register 1

× (A ∪ {⊥})︸     ︷︷     ︸
possible values

of register 2

∪ {reject}.

The automaton begins in the state (⊥,⊥). When it sees an atom which is not in
the registers, it loads it into the first undefined register, if both registers are full
it rejects. In particular, states of the form (⊥, a) are unreachable.

We have just described a deterministic automaton, which recognises the
language, and which uses registers. The problem with this automaton is that
it does not store the minimal amount of information. Because the registers
are ordered, the states (a, b) and (b, a) are different, but they are equivalent in
the sense that they accept the same words. To get the minimal automaton, we
should have states which are unordered sets, i.e. the state space should be

{{a, b} : for a, b ∈ A} ∪ {∅,⊥}.

2 Orbit-finite sets were originally introduced to model language recognisers, such as automata
or monoids, in a machine independent way, i.e. via a theorem in the style of Myhill-Nerode
(Theorem 5.14). To do this, one needs a representation of the state space which would: a) be
simple enough to allow finite representations; b) generalise the configuration space of a
register automaton; and c) allow quotienting as required in the Myhill-Nerode theorem.
Orbit-finite sets are a solution to these requirements. The Myhill-Nerode theorem for
orbit-finite sets was originally proved in (Bojańczyk, 2013, Lemma 3.3) for monoids and then
in (Bojańczyk et al., 2014, Theorem 3.8) for automata; these respective papers are the ones
which introduced orbit-finite monoids (and orbit-finiteness in general) and orbit-finite
automata. A variant of the Myhill-Nerode theorem for timed automata is presented
in Bojańczyk and Lasota (2012b); the difficulty there is to deal with atoms which are not
oligomorphic.
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The above state space is orbit-finite, but it cannot be represented as the state
space of any register automaton. This example shows that in order to store the
minimal amount of information, registers – as opposed to orbit-finite sets – are
not always the right choice.

We now show that the above example is not an accident, and in fact all
deterministic orbit-finite automata can be minimised. Suppose that L ⊆ Σ∗ is
a language. Its Myhill-Nerode equivalence is the equivalence relation on Σ∗

defined by

w ∼ w′ if ∀v ∈ Σ∗ wv ∈ L⇔ w′v ∈ L.

By the principle of equivariance, the Myhill-Nerode equivalence relation is
finitely supported, assuming that the language itself was finitely supported. A
classical result of automata theory says that (even if the alphabet is infinite and
the language is not necessarily regular) the Myhill-Nerode equivalence relation
is a congruence with respect to appending letters:

w ∼ w′ implies wa ∼ wa′ for every a ∈ Σ,

and therefore it makes sense to consider an automaton where the states are the
equivalence classes, and where the transition function is defined by

(equivalence class of w, a) 7→ equivalence class of wa.

This automaton is called the syntactic automaton of L.

Theorem 5.14. A language is recognised by a deterministic orbit-finite au-
tomaton if and only if its syntactic automaton has an orbit-finite state space.

Proof The right-to-left implication is immediate. For the left-to-right impli-
cation, we observe that states of the syntactic automaton can be obtained from
the states of an arbitrary deterministic automaton recognising the language, by
quotienting under the finitely supported equivalence relation defined by

q ∼ q′ if q and q′ accept the same words.

Since quotienting under finitely supported equivalence relations preserves orbit-
finiteness, it follows that the syntactic automaton must have an orbit-finite state
space, if the original automaton did. �

The proof of the above theorem also yields a minimisation algorithm3, which
is the atom generalisation of the Moore algorithm. We will revisit this algo-
rithm in Example 8.9. Minimisation will even fall under the scope of “tractable
computation”, as described in Chapter 9.
3 The computational complexity of automata minimisation is studied in Murawski et al. (2015).
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Exercises

Exercise 82. Show that adding ε-transitions does not change the expressive
power of nondeterministic orbit-finite automata.

Exercise 83. Assume that the atoms are oligomorphic and have decidable first-
order theory with constants. Show that one can check if a nondeterministic
orbit-finite automaton is deterministic. Likewise for unambiguous (each input
admits at most one accepting run).

Exercise 84. Assume that the atoms are oligomorphic. Consider a language
that is recognised by an orbit-finite nondeterministic automaton. Show that if
the language is supported by a tuple of atoms ā, then it is also recognised by
an orbit-finite nondeterministic automaton which is supported by ā.

Exercise 85. Same as Exercise 84, but for deterministic automata.

Exercise 86. Consider the following weakening of Minsky machines. The
automaton has a finite set of states, as well as a finite set of counters, which
store natural numbers. The automaton can test a counter for zero. Instead of
the increment and decrement operations in Minsky machines, the automaton
can execute operations of the form “make counter c strictly bigger” and “make
counter c strictly smaller”. The model is nondeterministic, since the automaton
does not control the aumount by which the counter is increased or decreased.
The automaton accepts by reaching an accepting state. Show that emptiness is
decidable.

Exercise 87. Assume that the atoms are oligomorphic. Show that the class of
languages recognised by nondeterministic orbit-finite automata is closed under
orbit-finite union, in the sense of Exercise 62.

Exercise 88. Assume the equality atoms. Show that languages recognised by
nondeterministic orbit-finite automata (same for deterministic) are not closed
under orbit-finite intersection.

Exercise 89. Assume the equality atoms. Show that languages recognised by
nondeterministic orbit-finite automata are not closed under orbit-finite inter-
section, in the sense defined in Exercise 62.
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Exercise 90. Consider the following extension of deterministic register au-
tomata to arbitrary orbit-finite alphabets: the state space is of the form

Loc × ({⊥} ∪ A)R

for some finite (not just orbit-finite) sets Loc and R. (The input alphabet, how-
ever, can be any orbit-finite set.) Show that such an automaton cannot recognise
the language from Example 5.9.

Exercise 91. For a language L ⊆ Σ∗, consider the two-sided Myhill-Nerode
equivalence relation which identifies words w,w′ ∈ Σ∗ if

uwv ∈ L iff uw′v ∈ L for every u, v ∈ Σ∗.

The quotient of Σ∗ under this equivalence relation is called the syntactic monoid
of L. Show that if the syntactic monoid is orbit-finite, then the syntactic au-
tomaton is orbit-finite, but the converse implication fails.

Exercise 92. Let L ⊆ Σ∗ be a language, and let Q be the states of its syntactic
automaton. Show that the syntactic monoid defined in the previous exercise is
isomorphic to the sub-monoid of functions Q → Q which is generated by the
state transition functions {q 7→ qa}a∈Σ of the syntactic automaton.

Exercise 93. Let L ⊆ Σ∗ and let h : Σ∗ → M be its syntactic homomorphism,
i.e. the function which maps a word to its equivalence class under two-sided
Myhill-Nerode equivalence. Show that M is orbit-finite if and only if the syn-
tactic automaton of L is orbit-finite and there is some k ∈ {0, 1, . . .} such that
all elements of M have support of size at most k.

Exercise 94. We say that a monoid M is aperiodic if for every m ∈ M there
is some k ∈ {0, 1, . . .} such that mk = mk+1. Let L be a language with an orbit-
finite syntactic automaton. Show that the syntactic monoid of L is aperiodic if
and only if for every state q of the syntactic automaton and every w ∈ Σ∗ there
is some k ∈ {0, 1, . . .} such that qwk = qwk+1.

Exercise 95. Suppose that M is an orbit-finite monoid. Can one find an infinite
sequence

M ) M1 ) M2 ) M3 ) · · ·

such that each Mi is a submonoid?
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5.3 Pushdown automata and context-free grammars

In this section, we discuss orbit-finite variants of pushdown automata4 and
context-free grammars. We show that basic results, such as equivalence of
pushdown automata and context-free grammars, or decidability of emptiness,
transfer easily to the orbit-finite setting. We also motivate the models by giving
examples of automata and grammars that use atoms.

Definition 5.15. An orbit-finite pushdown automaton consists of

Q︸︷︷︸
states

Σ︸︷︷︸
input

alphabet

Γ︸︷︷︸
stack

alphabet

q0 ∈ Q︸ ︷︷ ︸
initial state

γ0 ∈ Γ︸ ︷︷ ︸
initial stack

and a transition relation

δ ⊆ Q ×

popped︷︸︸︷
Γ∗ ×

input︷ ︸︸ ︷
(Σ ∪ ε) × Q ×

pushed︷︸︸︷
Γ∗

where all components are orbit-finite.

The language recognised by such an automaton is defined in the usual way.
We assume that the automaton accepts via empty stack, i.e. a run is accepting
if the last configuration (state, stack contents) has an empty stack.

Similarly, we can define an orbit-finite pushdown grammar.

Definition 5.16. An orbit-finite context-free grammar consists of

N︸︷︷︸
nonterminals

Σ︸︷︷︸
input

alphabet

R ⊆ N × (N + Σ)∗︸                ︷︷                ︸
rules

where all components are orbit-finite.

The language generated by a grammar is defined in the usual way.
By the equivariance principle, the languages corresponding to pushdown

automata and grammars inherit the supports of their respective devices.

Example 5.17. [Pushdown automaton for palindromes.] For an orbit-finite al-
phabet Σ, consider the language of palindromes, i.e. words which are equal
to their reverse. This language is recognised by an orbit-finite pushdown au-
tomaton which works exactly the same way as the usual automaton for palin-
dromes, with the only difference that the stack alphabet Γ is now an orbit-finite

4 Context-free languages for infinite alphabets were originally introduced by Cheng and
Kaminski (1998), whose proved equivalence for register extensions of context-free grammars
and pushdown automata. The generalisation to orbit-finite pushdown automata and
context-free grammars is from Bojańczyk et al. (2014). See also Murawski et al. (2014);
Clemente and Lasota (2015a,b).
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set, namely Σ. For instance, in the case when Σ = A, the automaton keeps a
stack of atoms during its computation. The automaton has two control states:
one for the first half of the input word, and one for the second half of the in-
put word. As in the standard automaton for palindromes, this automaton uses
nondeterminism to guess the middle of the word.

Example 5.18. [Pushdown automaton for modified palindromes.] The au-
tomaton in Example 5.17 had two control states. In some cases, it might be
useful to have a set Q of control states that is orbit-finite. Consider the set of
odd-length palindromes where the middle letter is equal to the first letter. A
natural automaton recognising this language would be similar to the automa-
ton for palindromes, except that it would store the first letter a1 in its control
state.

Another solution would be an automaton which keeps the first letter in every
token on the stack. This automaton has a stack alphabet of Γ = Σ×Σ, and after
reading letters a1 · · · an its stack is

(a1, a1), (a1, a2), . . . , (a1, an).

This automaton needs only two control states. Actually, using the standard
construction, one can show that every orbit-finite pushdown automaton can be
converted into one that has one control state, but a larger stack alphabet.

The following example gives some motivation for studying orbit-finite push-
down automata.

Example 5.19 (Modelling recursive programs). Pushdown automata without
atoms are sometimes used to model the behaviour of recursive programs with
Boolean variables. By adding atoms, we can also model programs that have
variables ranging over orbit-finite sets. Consider the atoms (Q, <) and a recur-
sive function such as the following one (this program does not do anything
smart):

function f(a: atom)

begin

b:=read() // read an atom from the input

if b = a then

return b

else if b > a then // the program can use the order on atoms

return f(b) // do a recursive call

else

fail() // terminate the computation

end
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The behaviour of this program can be modelled by an orbit-finite pushdown au-
tomaton. The input tape corresponds to the read() functions. The stack corre-
sponds to the call stack of the recursive functions; the stack stores atoms since
the functions take atoms as parameters. Since the only variables are atoms, the
set of possible call frames is orbit-finite, and therefore the stack alphabet is
orbit-finite.

Orbit-finite pushdown automata could also be used to model more sophis-
ticated examples: many mutually recursive functions, boolean variables, other
homogeneous data types for the atoms.

In the above examples, we considered the oligomorphic atoms, where (hered-
itarily) orbit-finite sets are exactly those defined by set builder expressions. As
for automata, when the atoms are oligomorphic, we make little distinction be-
tween orbit-finite pushdown automata and hereditarily orbit-finite pushdown
automata (and therefore also pushdown automata defined by set builder ex-
pressions) these are the same up to finitely supported isomorphisms. When the
atoms are not oligomorphic, set builder expressions can still be used, unlike
orbit-finite sets. The following theorem shows that, even without oligomor-
phism, context-free grammars and pushdown automata are equivalent, assum-
ing that the devices are described using set builder expressions.

Theorem 5.20. Consider atoms that are not necessarily oligomorphic, and do
not necessarily have decidable first-order theory. The following models recog-
nise the same languages:

• Pushdown automata represented by set builder expressions;
• Context-free grammars represented by set builder expressions.

The constructions are effective5 and in polynomial time.

Proof We just redo the classical constructions, which are so natural that they
easily go through with sets represented by set builder expressions.

• From a pushdown automaton to a context-free grammar. Without loss of
generality, we assume that each transition either: pops nothing and pushes
one symbol; or pops one symbol and pushes nothing. We also assume that
in every accepting run, the stack is nonempty until the last configuration.
Every pushdown automaton can be transformed into one of this form, with-
out changing the recognised language, by using additional states and ε-
transitions. The transformation can be done in polynomial time, using the
Symbol Pushing Lemma.

5 Here we use the same computation model as in the Symbol Pushing Lemmas, namely that an
algorithm can copy, at unit cost, atom parameters that appear in set builder expressions.
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Assuming that the pushdown automaton has the form discussed above,
the corresponding grammar is defined as follows. The nonterminals are

N = {S }︸︷︷︸
an initial nonterminal

+ Q × Γ × Q.

A set builder expression for this set can easily be computed, based on the set
builder expression for the pushdown automaton. The language generated by
a nonterminal (p, γ, q) is going to be the set of words which label runs of the
following form:

begins with state p  
and     on the top of
the stack (but possi-
bly other symbols 
below)

ends with state q
and initial stack

the initial part of the stack remains unchanged through the run

... ... ... ... ... ... ... ... ...

To describe these runs, we use the following grammar rules. All of the sets
below can be described by set builder expressions using the Symbol Pushing
Lemmas:

(1) Transitive closure. For every p, q, r ∈ Q and γ ∈ Γ, there is a rule

(p, γ, q)→ (p, γ, r)(r, γ, q).

(2) Push-pop. For every transitions

(p, ε, a, p′, γ′)︸           ︷︷           ︸
push

(q′, γ′, b, q, ε)︸          ︷︷          ︸
pop

there is a rule in the grammar of the form:

(p, γ, q)→ a(p′, γ′, q′)b.
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(3) Starting. For every transition that pops the initial stack symbol γ0

(p, γ0, a, q, ε)︸          ︷︷          ︸
pop

there is a rule in the grammar of the form:

S → (q0, γ0, p)a.

• From a context-free grammar to a pushdown automaton. The automaton
keeps a stack of nonterminals. It begins with just the starting nonterminal,
and accepts when all nonterminals have been used up. In a single transition,
it replaces the nonterminal on top of the stack by the result of applying a
rule. This automaton has one state (if we disregard the restriction that all
transitions have to be either push or pop).

�

When the atoms are furthermore oligomorphic and have decidable first-
order theory as in the assumptions of Corollary 4.3, then emptiness is decidable
for context-free grammars. The idea is to use the same kind of fixpoint algo-
rithm as in Theorem 5.1 about graph reachability. In Chapter 9, we show that
the fixpoint algorithm is even “polynomial time”, under a suitable definition.

Exercises

Exercise 96. Consider the equality atoms. We say that two sets with atoms
X,Y are fresh with respect to each other if they can be supported by disjoint
tuples of atoms. Assume that the input alphabet is the atoms. Consider the
extension6 of orbit-finite pushdown automata, as per Definition 5.15, where a
new kind of transition is allowed:

q
fresh(a)
→ p for states p, q and an input letter a.

When executing this transition, the automaton reads letter a and changes state
from q to p, but only under the condition that a is fresh with respect to every
letter on the stack and the current state q. Show that emptiness is decidable.

Exercise 97. Consider the equality atoms and the following higher-order vari-
ant of orbit-finite pushdown automata7. The automaton has a stack of stacks
(one could also consider stacks of stacks of stacks, etc., but this exercise is

6 This extension is based on Murawski et al. (2014).
7 This exercise is based on (Murawski et al., 2014, Section 6).
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about stacks of stacks). There are operations as in a usual pushdown automa-
ton, which apply to the topmost stack. There is also an operation “duplicate the
topmost stack” and an operation “delete the topmost stack”. Show that empti-
ness is undecidable.

Exercise 98. Show a language that is orbit-finite context-free, but is not gener-
ated by any orbit-finite context-free grammar with a finite (not just orbit-finite)
set of nonterminals.

5.4 Graph homomorphisms

In this case study, we consider graph homomorphisms8. One of the purposes
of this case study is to use the following effectivity assumption on the atoms.

Definition 5.22. An oligomorphic structure A is said to have a computable
Ryll-Nardzewski function if given n ∈ {1, 2, . . .} one can compute the number
equivariant orbits in An.

Example 5.23. In the equality atoms, the number of equivariant orbits is the
number of equality types, which is the Bell number, and can be computed.
Likewise for (Q, <), except using order types. Therefore, each of these struc-
tures has a computable Ryll-Nardzewski function.

All oligomorphic structures discussed in this book have a computable Ryll-
Nardzewski function. It is hard to come up with a natural structure that is oligo-
morphic, has a decidable first-order theory, but has a non-computable Ryll-
Nardzewski function. Nevertheless, using forcing, this is possible, see Schmerl
(1978).

The assumption on a computable Ryll-Nardzewski function turns out to be
useful when we want to compute the partition of an orbit-finite set into orbits,
e.g. for the purpose of enumerating all subsets with a given support. This will
be the case below, when studying a decision problem about homomorphisms.

We begin by defining the problem.

Definition 5.24 (Graph homomorphism). A homomorphism

h : G1 → G2

between directed graphs is a function from vertices in G1 to vertices in G2

8 This case study is based on Klin et al. (2016).
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which takes edges to edges, in the sense that the following implication holds:

G1 has an edge from v to w implies G2 has an edge from h(v) to h(w).

We consider the decision problem of checking if a homomorphism exists,
given two hereditarily orbit-finite graphs. There are three variants of this deci-
sion problem – see (1), (2) and (3) below – depending on the requirements for
the support of the homomorphism.

• Input. Two hereditarily orbit-finite directed graphs G1 and G2.
• Output. Is there a homomorphism from G1 to G2 which is:

(1) supported by a given tuple ā?
(2) finitely supported?
(3) not necessarily finitely supported?

The three variants are indeed different, as illustrated in the following exam-
ples. We show in this section that variant (1) is decidable. Variants (2) and (3)
are undecidable9, but we do not show this. If we modify variant (3) to ask for
a not necessarily finitely supported isomorphism, we get an open problem.

Example 5.25 (Variants (1) and (2) have different answers). Consider the
equality atoms. By the equivariance principle, any tuple of atoms that sup-
ports a homomorphism must also support its domain. In particular, if a tuple
ā does not support the vertices of the input graph, then there cannot be a ā-
supported homomorphism from G1 to G2. Therefore, if we take G1 = G2 to be
some graph that is finitely supported but not supported by ā, then there exists
a homomorphism, but not any homomorphism that is supported by ā. We now
give a slightly more interesting example, where

• ā supports both graphs G1 and G2; and
• there is a finitely supported homomorphism; and
• there is no homomorphism that is supported by ā.

Let ā be the empty tuple. Both graphs G1 and G2 have no edges. The graph
G1 has exactly one vertex v which is equivariant, while the vertices of G2 are
the atoms A. The homomorphisms between these two graphs are exactly the
functions

h : {v} → A.

Clearly, there is such a function if we allow finite support, e.g. v 7→ 1, but there
is no such function with empty support.
9 (Klin et al., 2016, Theorems 14 and 12, respectively)
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Example 5.26 (Variants (2) and (3) have different answers). We now show
that there might be a homomorphism, but none that is finitely supported. Con-
sider the equality atoms. Both graphs G1 and G2 are cliques without self-loops,
i.e. vertices are connected by an edge if and only if they are different. The ver-
tices of G1 are A2 and the vertices of G2 are A. The homomorphisms between
these two graphs are exactly the injective functions

h : A2 → A

because mapping two vertices in G1 to the same vertex in G2 would require a
self-loop. Since both sets are countable, there is clearly a homomorphism h, if
we do not require finite supports. We claim that there is no finitely supported
homomorphisms. To see this, suppose h is finitely supported and injective.
Take distinct atoms a, b that are not in the support of h. Assume that h(a, b) ,
a, the case of h(a, b) , b is treated the same way. Take π to be the atom
automorphism which swaps a with some atom a′ that is also not in the support
of h, which yields

h(a, b) = π(h(a, b)) = h(a′, b)

contradicting injectivity.

The rest of this section is devoted to showing that variant (1) of the homo-
morphism decision problem – where we are explicitly given a support of the
homomorphism – is decidable, assuming that the atoms are oligomorphic, have
decidable first-order theory with constants, and a computable Ryll-Nardzewski
function.

We are given hereditarily orbit-finite directed graphs G1,G2 and a tuple of
atoms ā. We want to decide if there exists a homomorphism from G1 to G2 that
is supported by ā. The algorithm is very straightforward: enumerate through all
ā-supported functions, and check if one of them is a homomorphism. It remains
to explain how, under the assumptions on the atom structure, this algorithm can
be implemented.

When seen as a set of pairs, a homomorphism from G1 to G2 is a subset of

h ⊆ V1 × V2 where Vi are the vertices of Gi.

If h is supported by ā, then it is a union of ā-orbits. By oligomorphism, the
union is finite. The subtle point is that we also need to compute these orbits.
This is done using the following lemma.

Lemma 5.27. Assume that the atoms are oligomorphic, have decidable first-
order theory with constants, and a computable Ryll-Nardzewski function. Given
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a hereditarily orbit-finite set X and a tuple of atoms ā, one can compute the list
of all ā-orbits which intersect X.

Before proving the lemma, we finish the algorithm for Question 1. Apply
the lemma to V1 × V2, yielding a list of ā-orbits. For every h which is a union
of these orbits, use the Symbol Pushing Lemmas to check if h is a homomor-
phism. It remains to prove the lemma.

Proof of Lemma 5.27 The idea is to first consider sets of tuples, and then lift
that result to hereditarily orbit-finite sets. The case of sets of tuples is treated
in the following claim, which uses the assumption on the Ryll-Nardzewski
function.

Claim 5.28. Given a tuple of atoms ā and n ∈ N, one can compute the partition

An = Y1 ∪ · · · ∪ Yk

into ā-orbits, with each ā-orbit Yi represented by a formula of first-order logic
that uses constants from ā.

Proof

• Consider first the case when ā is empty. The number k of orbits is given by
the Ryll-Nardzewski function, and thus can be computed. It remains to find
the first-order formulas. By Lemma 4.11, such formulas exist. Therefore, we
can use exhaustive enumeration until we find k formulas without constants,
each one with n free variables, such that the corresponding subsets of An are
nonempty and pairwise disjoint.

• Consider the general case. Let m be the length of the tuple ā in the assump-
tion of the claim. Apply the previous case to Am+n, yielding the partition

Am+n = Y1 ∪ · · · ∪ Yk.

For each part Yi, define Zi to be the tuples z̄ ∈ An such that āz̄ ∈ Yi. Two
tuples in An are in the same ā-orbit if and only if they belong to the same Zi.
Therefore, the formulas defining the nonempty sets Zi are the ones required
by the statement of the lemma.

This completes the proof of the claim. �

We now use the claim to compute the partition into orbits for sets that are not
necessarily subsets of An. Let X be a hereditarily orbit-finite set. If X is given
by a union set-builder expression, then we can compute the lists of orbits for
each component of the union, and then put them together. (If we want the list
of orbits to avoid repetitions, we can use the Symbol Pushing Lemma to check
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which sets in the list are equal.) We can therefore assume that X is defined by
a set builder expression of the form

{β(ȳ) : for ȳ ∈ An such that ϕ(ȳ)}.

Define Y ⊆ An to be the set of tuples ȳ which satisfy ϕ(ȳ). The set X is the
image of Y under the function

ȳ 7→ β(ȳ). (5.3)

Apply the special case of the lemma for atom tuples to Y yielding a list

Y1, . . . ,Yn ⊆ An

of all the ā-orbits that intersect Y , each one described by a formula of first-order
logic possibly using constants from ā. Here is a picture:

The ā-orbits that intersect X are exactly the images of these orbits under the
function (5.3). These are clearly represented by set builder expressions. �

Exercises

Exercise 99. Let A be a countable oligomorphic structure with a computable
Ryll-Nardzewski function. Show that if A has a decidable first-order theory
without constants, then the same is true with constants.

Exercise 100. Assume that A is oligomorphic and has decidable first-order
theory with constants. Show that the following conditions are equivalent:

(1) given n ∈ N, one can compute a first-order formula with 2n free variables
that defines the “same equivariant orbit” on An;

(2) the Ryll-Nardzewski function is computable.
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Exercise 101. Assume the equality atoms. A Büchi game has the same syntax
as alternating reachability from Exercise 78. The game is played similarly,
except that the objective of player 0 is to see vertices from T infinitely often.
Give an algorithm that decides the winner in a Büchi game represented by a set
builder expression. Hint: use memoryless determinacy of Büchi games without
atoms, see (Thomas, 1990, Theorem 6.4).

5.5 Systems of equations

Consider a system of equations10 in the two element field Z2, like this one:

x + y = 1

x + z = 1

y + z = 1

The system above does not have a solution, because some two variables would
need to get the same value, violating the equations. The system has finitely
many equations. In this section, we consider systems where the set of equations
is orbit-finite, but each individual equation is finite.

Example 5.30. Consider the equality atoms. The variables are pairs of distinct
atoms, and the set of equations is

(a, b)︸︷︷︸
one variable

+ (b, a)︸︷︷︸
one variable

= 1 for all a , b ∈ A.

A solution in Z2 to this system amounts to choice function, which chooses for
every two atoms a , b ∈ A exactly one of the pairs (a, b) or (b, a). It follows
by Example 3.5 that the above system has a solution, but no finitely supported
solution.

The above example shows that, under the equality atoms, an equivariant
system of equations might have a solution, but it might not have an equivariant
solution. If we use the ordered atoms, then the problem goes away, as shown
in the following theorem.

Theorem 5.31. Assume the atoms (Q, <). Let E be an equivariant orbit-finite
set of equations. If E has any solution in Z2, then it has a solution in Z2 that is
equivariant.

Proof
10 This section is based on Klin et al. (2015)
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(1) In the first step, we show that without loss of generality we can assume that
the variables are tuples of atoms. Let X be the orbit-finite set of variables that
appear in the equations E. By the representation result from Theorem 3.23,
there is some k ∈ {0, 1, 2 . . .} and an equivariant surjective function

f : Ak → X.

Define F to be the following set of equations over variables Ak:

x = y︸︷︷︸
when f (x) = f (y)

y1 + · · · + yn = i.︸               ︷︷               ︸
when E contains an equation

x1+···+xn=i
where f (y1) = x1, . . . , f (yn) = xn

It is easy to see that if E has a solution if and only if F has a solution.
Likewise for equivariant solutions.

(2) Let F be the system of equations produced in the previous item. To prove
the theorem, it remains to show that if F has a solution

s : Ak → Z2

then it also has an equivariant one. We prove this using the Ramsey Theo-
rem. By the Ramsey Theorem, there is an infinite set A ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds for all ā and b̄ which are strictly growing tuples from A. Again by the
Ramsey Theorem, there is an infinite set B ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds for all ā and b̄ which are strictly decreasing tuples from B. Repeating
this argument for all finitely many order types, i.e. for all orbits in Ak, we
get an infinite set Z ⊆ A such that

s(a1, . . . , an) = s(b1, . . . , bn)

holds whenever ā and b̄ are tuples from Zk with the same order type (in other
words, in the same equivariant orbit of Ak). Define

s′ : Ak → Z2

to be the function that maps ā to s(b̄) where b̄ is some tuple from Zk in
the same equivariant orbit as ā. Such a tuple b̄ exists, and furthermore s(b̄)
does not depend on the choice of b̄ by construction. Because s′(ā) depends
only on the equivariant orbit of ā, the function s′ is equivariant. It is also
a solution to F . This is because every equation from F can be mapped to
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some equation in F which uses only variables from Z, and s′ satisfies those
equations.

�

Corollary 5.32. Assume that the atoms are (Q, <). Given an equivariant orbit-
finite system of equations, one can decide if the system has a solution in Z2.
Likewise for the equality atoms.

Proof Assume the atoms are (Q, <). By Theorem 5.31, it is enough to check
if the system has an equivariant solution. By Lemma 5.27, we can compute all
equivariant orbits of the variables, and therefore we can check all equivariant
functions from the variables to Z2, to see if there is any solution.

Consider now the equality atoms. We reduce to (Q, <). Every equivariant
orbit-finite set over the equality atoms can be viewed as an equivariant orbit-
finite set over (Q, <), by using the same set builder expressions. This transfor-
mation does not affect the existence of solutions, and for systems of equations
over atoms (Q, <) we already know how to answer the question. �

Exercises

Exercise 102. Assume that the atoms are Presburger arithmetic (N,+). Con-
sider sets of equations over the field Z2, where both the variables and the set
of equations are represented by set builder expressions. Show that having a
solution is undecidable.

Exercise 103. What is the effect on the decidability of the problem in Exer-
cise 102 if we assume that the set of variables is A, i.e. the natural numbers?
What if the variables are atoms and every equation has at most two variables?

Exercise 104. Consider the following atoms11. The universe is the set of bit
strings {0, 1}ω which have finitely many 1’s. The structure on the atoms is given
by the following relation of arity four:

a + b = c + d,

where addition is coordinatewise. This structure is oligomorphic. Show two
sets that are equivariant and orbit-finite, such that there is a finitely supported
bijection between them, but there is no equivariant bijection.

11 Suggested by Szymon Toruńczyk.
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Least supports

In this chapter, we show that in the equality atoms, one can always find a least
support, i.e. a support that is contained in all other supports. This result is also
true for some other types of atoms, but we only prove it for the equality atoms.
We use least supports to get a representation theorem for orbit-finite sets in the
equality atoms, which is stronger than the representation theorem from The-
orem 3.23 about atom tuples modulo partial equivalence. Using the stronger
representation theorem, we prove that deterministic register automata have the
same expressive power as deterministic orbit-finite automata, assuming that
the input letters are pairs of the form (label from a finite set, atom).

For the rest of this chapter, we assume the equality atoms.

6.1 Least supports

In this book, we generally use tuples of atoms as supports. An alternative is
to use finite sets of atoms, because whether or not a tuple (a1, . . . , an) supports
a set with atoms does not depend on the ordering and repetitions in the tuple.
Therefore, it makes sense talking about one support being contained in some
other support. The following theorem shows that there is a least finite support1.

Theorem 6.1 (Least Support Theorem). Assume the equality atoms. For every
x which is an atom or a set with atoms, there is a finite support that is contained
in all finite supports of x.

Another way of stating the above theorem is that finite supports are closed
under intersection. It is important that we consider finite supports. For example,

1 The Least Support Theorem was first proved in (Gabbay and Pitts, 2002, Proposition 3.4). A
generalisation of this theorem, for other kinds of atoms, can be found in (Bojańczyk et al.,
2014, Section 10).

104
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the atom 1 is supported by the infinite set A − {1}, since fixing this set is the
same as fixing 1. The intersection of the two supports {1} and A− {1} is empty,
but 1 does not have empty support.

Let us write A(n) for the set of non-repeating n-tuples of atoms. This is an
equivariant single-orbit set. The key observation is the following lemma, which
says that one can represent every equivariant single-orbit set as non-repeating
tuples modulo an equivalence relation, such that equivalent tuples must neces-
sarily agree as sets.

Lemma 6.2. For every equivariant single-orbit set X there is an equivariant
surjective function

f : A(n) → X for some n ∈ {0, 1, 2, . . .}

such that tuples with the same value under f are equal as sets:

f (a1, . . . , an) = f (b1, . . . , bn) implies {a1, . . . , an} = {b1, . . . , bn}.

Proof By Lemma 3.20 there is an equivariant surjective function

f : Y → X for some equivariant Y ⊆ An.

Take some equivariant orbit of f , with f viewed as a subset of Y×X. This orbit
is still an equivariant function whose image is also X. In other words, we can
assume without loss of generality that Y is a single equivariant orbit inAn. Such
an orbit is an equality type. By projecting away the duplicated coordinates in
the equality type, we can assume that Y contains only nonrepeating tuples.
Summing up, we know that there is a surjective equivariant function

f : A(n) → X.

We show below that the function either satisfies the condition in the statement
of the lemma, or the dimension n can be made smaller. If the condition in the
statement of the lemma is not satisfied, then

f (a1, . . . , an) = f (b1, . . . , bn) (6.1)

holds for some tuples ā, b̄ which are not equal as sets. Without loss of gen-
erality we assume that an does not appear in the tuple b̄. Choose some atom
automorphism π which fixes a1, . . . , an−1, b1, . . . , bn but does not fix an. We
have

f (ā)
(6.1)
= f (b̄) π fixes b̄

= f (π(b̄))
equivariance

= π( f (b̄))
(6.1)
= π( f (ā))

equivariance
= f (π(ā)).

Therefore, we have shown that

f (a1, . . . , an−1, an) = f (a1, . . . , an−1, a) for some distinct a, a1, . . . , an.
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The set of tuples a, a1, . . . , an which satisfies the condition above is an equiv-
ariant subset of A(n+1), by equivariance of f . Therefore, if some tuple satisfies
the condition, then all tuples in A(n+1) satisfy it as well, i.e. we could also write
“for all distinct” in the above condition. In other words, the value of f depends
only on the first n − 1 coordinates. Therefore,

{((a1, . . . , an−1), f (a1, . . . , an)) : a1, . . . , an ∈ A(n)}

is an equivariant surjective function from A(n−1) to X, and we can use the in-
duction assumption. �

Proof of the Least Support Theorem. Let x be an atom or a set with atoms.
Apply Lemma 6.2 to the equivariant orbit of x:

X = {π(x) : π is an atom automorphism}

yielding some equivariant function

f : A(n) → X

where tuples with equal images must be equal as sets. Choose some tuple
(a1, . . . , an) which is mapped by f to x. To prove the Least Support Theo-
rem, we will show that the atoms a1, . . . , an appear in every support of x. Let
then b̄ be some atom tuple which supports x. Toward a contradiction, suppose
that b̄ is not a permutation of a1, . . . , an, and therefore one can choose some
b̄-automorphism which does not preserve the set {a1, . . . , an}. We have

x = (π fixes the support of x)

π(x) = (choice of a1, . . . , an)

π( f (a1, . . . , an)) = (equivariance of f )

f (π(a1, . . . , an)).

Since the tuple π(a1, . . . , an) is not equal to (a1, . . . , an) as a set, it must have a
different value than x, by assumption on the function f . �

A representation theorem for equality atoms

Apart from the Least Support Theorem, another application of Lemma 6.2
is the following representation theorem for equivariant orbit-finite sets in the
equality atoms. Let X be an equivariant single-orbit set. Apply Lemma 6.2,
yielding an equivariant function

f : A(n) → X.
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Because f is equivariant and permutations of coordinates commute with atom
automorphisms, the following conditions are equivalent for every permutation
g of {1, . . . , n}:

f (a1, . . . , an) = f (ag(1), . . . , ag(n)) for some (a1, . . . , an) ∈ A(n) (6.2)

f (a1, . . . , an) = f (ag(1), . . . , ag(n)) for every (a1, . . . , an) ∈ A(n). (6.3)

Permutations g which satisfy condition (6.3) form a group, call it G. We claim:

f (a1, . . . , an) = f (b1, . . . , bn)

iff

∃g ∈ G (a1, . . . , an) = (bg(1), . . . , bg(n)).

The bottom-up implication is by definition. For the top-down implication, re-
call that Lemma 6.2 asserted that tuples with the image under f must contain
the same atoms, and therefore some g ∈ G must take one tuple to the other.

Let us write

A(n)/G

to be A(n) for the set of non-repeating atom tuples modulo coordinate permu-
tations from the group G. Since quotienting by G is exactly the kernel of the
function f , we have just proved the following theorem2:

Theorem 6.3 (Representation for orbit-finite sets in the equality atoms). As-
sume the equality atoms. Every equivariant single-orbit set admits an equiv-
ariant bijection to a set of the form

A(n)/G

for some n ∈ N and some subgroup G of permutations of the set {1, . . . , n}.

Example 6.4. Let n ∈ {1, 2, . . .} and let G be the group of all permutations
of {1, . . . , n}. In this case, A(n)/G is the same as unordered sets of atoms with
exactly n elements (recall that A(n) contains only non-repeating tuples). If G
is the group of cyclic shifts, then A(n)/G is n-tuples of distinct atoms modulo
cyclic shifts.

Exercises

Exercise 105. Show an oligomorphic atom structure which fails the Least
Support Theorem, as stated in Theorem 7.27.

2 This result is from (Bojańczyk et al., 2014, Theorem 10.17), although a similar construction
can already be found in (Ferrari et al., 2002, Definition 2).
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Exercise 106. Assume the equality atoms. Let S ,T be finite sets of atoms.
Show that every atom automorphism π which fixes S ∩ T can be presented as
a composition

π = π1 ◦ · · · ◦ πn

such that each πi is an atom automorphism that fixes either S or T .

Exercise 107. For a set with atoms X, let us write sup(X) for the set of atoms
in its least support. Let X be an orbit-finite set, and let

X = X1 ∪ · · · ∪ Xn

be its partition into orbits with respect to the least support (i.e. with respect to
atom automorphisms that are the identity on the least support). Show that

sup(X) = sup(X1) ∪ · · · ∪ sup(Xn).

Exercise 108. Show that the atoms (Q, <) also have least supports.

Exercise 109. Show an example of oligomorphic atoms without least supports.

Exercise 110. Assume the equality atoms. Show that if a group is orbit-finite,
then it is finite.

Exercise 111. Does Exercise 110 generalise to all oligomorphic choices of the
atoms?

Exercise 112. Assume that the atoms are oligomorphic and admit least sup-
ports. Let X be an orbit-finite set and let f : Xn → X be a finitely supported
function. Show that there exists k ∈ N and finitely supported functions

g : Ak → X f ′ : An·k → Ak

which make the following diagram commute:

An·k

f ′

��

(g,...,g) // Xn

f

��
Ak

g
// X
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Exercise 113. Assume the equality atoms. Show that if f : X → X is a finitely
supported surjective function and X is orbit-finite, then f is a bijection.

6.2 Extended example: deterministic automata

In the case study on orbit-finite automata from Section 5.2, we showed in The-
orem 5.11 that nondeterministic register automata have the same expressive
power as nondeterministic orbit-finite automata, for alphabets where the two
notions can be compared. Using the representation result from Theorem 6.3,
we prove a similar result for deterministic automata.

Theorem 6.6. Assume the equality atoms. For every finite set Σfin and every
language L ⊆ (Σfin × A)∗, the following conditions are equivalent:

(1) L is recognised by a deterministic register automaton;
(2) L is recognised by an equivariant deterministic orbit-finite automaton.

By Exercise 85, the conditions in the above theorem are also equivalent to:
(3) the language L is equivariant, and it is recognised by a (not necessarily
equivariant) deterministic orbit-finite automaton.

The rest of Section 6.2 is devoted to proving the above theorem. In the proof,
we use an intermediate automaton model, based on the following definition
(which can be used for any atoms, not just the equality atoms that are consid-
ered in this chapter).

Definition 6.7 (Straight set). A straight set is a set which admits a finitely
supported bijection with a set of the form

An1 + · · · + Ank for some k, n1, . . . , nk ∈ {0, 1, . . .}.

If the bijection is equivariant, then we talk about an equivariant straight set3.

Examples of straight sets are: input alphabets of register automata; state
spaces of register automata, and sets of the form A(n) used in Theorem 6.3. A
non-example is the set of unordered pairs of atoms {{a, b} : a , b ∈ A}, which
created problems for choice in Example 3.5.

We prove Theorem 6.6 in two steps:

deterministic orbit-finite
equivariant automata

Lemma 6.9
=

deterministic orbit-finite
equivariant automata

with straight state spaces

Lemma 6.8
= deterministic

register automata

3 These sets are also known as strong nominal sets.
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In the proofs, we use categorical notation for automata, i.e. an automatonA
over an input alphabet Σ consists of a state space Q and three functions

ιA : 1→ Q︸       ︷︷       ︸
initial state

δA : Q × Σ→ Q︸               ︷︷               ︸
transition function

FA : Q→ {yes,no}︸                  ︷︷                  ︸
accepting states

,

where 1 stands for a set which has a unique equivariant element, e.g. 1 =

{∅}. We care about automata which are equivariant, i.e. all of the functions
described above and the sets that they use are equivariant. A homomorphism
of automata with the same input alphabet

B
h // A

is a function from the states of B (call them P) to the states ofA (call them Q)
which makes the following diagrams commute:

1
ιB //

ιA ��

P

h
��

Q

P × Σ

(h,id)
��

δB // P

h
��

Q × Σ
δA

// Q

P

h
��

FB

##
Q

FA
// {yes,no}

.

It is not hard to see that if there is a homomorphism fromA to B, then the two
automata recognise the same language. We use homomorphisms to prove that
deterministic automata recognise the same languages in Lemmas 6.8 and 6.9
below, which will complete the proof of Theorem 6.6.

Lemma 6.8. Deterministic register automata recognise the same languages
as equivariant deterministic orbit-finite automata with straight state spaces.

Proof The state space of a deterministic register automaton is clearly straight,
which gives the left-to-right inclusion in the lemma. For the converse inclusion,
consider a deterministic orbit-finite automaton with a straight state space Q.
Let k be the number of orbits in Q and let n be the maximal dimension of
tuples used in Q. It is easy to see that there is an equivariant injective function

h : Q→ {1, . . . , k} × (A ∪ {⊥})n︸                       ︷︷                       ︸
P

.

Using h and its (one-sided) inverse, one can impose an automaton structure on
P which turns h into an automaton homomorphism. The target of this homo-
morphism is a register automaton with k locations and n registers. �

The more difficult step is turning the state space of a deterministic orbit-
finite automaton into a straight set. This is done using the representation theo-
rem from the previous section.
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Lemma 6.9. For every equivariant deterministic orbit-finite automaton, there
is an equivalent one with a straight state space.

Proof Consider an equivariant deterministic orbit-finite automaton A with
state space Q that is not necessarily straight. Apply Theorem 6.3, yielding a
representation of Q as

A(n1)/G1 + · · · + A(nk)/Gk

for some dimensions ni and groups Gi. Define P to be the straight set

A(n1) + · · · + A(nk)

and define h : P→ Q to be the surjective function which quotients a tuple with
respect to the appropriate group action. The function h is surjective and equiv-
ariant. To prove the lemma, we will show that one can define an automaton
structure on P which turns h into a homomorphism of automata.

In Lemma 6.8, defining the homomorphism was easy because h had a (one-
sided) inverse. This is no longer true in our case. Nevertheless, a weaker prop-
erty holds, namely h reflects supports in the sense that if a tuple of atoms sup-
ports h(p) ∈ Q, then it also supports p (the opposite implication is also true,
thanks to equivariance). The following claim shows that support-reflecting
functions with straight domains admit a certain form of choice.

Claim 6.10.

A P

Q

straight

g

f

h
all arrows 

and sets
equivariant

straight

re�ects supports

Proof Take some ā ∈ A, which is a tuple of atoms because A is straight. By
surjectivity of h, there is some b̄ ∈ P such that

g(ā) = h(b̄).

Because g preserves supports and h reflects supports, it follows that ā supports
b̄. It follows that ā 7→ b̄ can be extended to an equivariant function from the
equivariant orbit of ā to the equivariant orbit of b̄. By doing this for all orbits
in A, we get the result. �

We now define an equivariant automaton structureB on P which turns h into
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a homomorphism of automata, i.e. it makes the following diagrams commute:

1
ιB //

ιA ��

P

h
��

Q

P × Σ

(h,id)
��

δB // P

h
��

Q × Σ
δA

// Q

P

h
��

FB

##
Q

FA
// {yes,no}

.

The initial state ιB and the transition function δB is defined using Claim 6.10,
while acceptance is defined as the composition FA ◦ h. �

Exercises

Exercise 114. Assume the equality atoms. Let X be a straight set with atoms.
Show that for every set with atoms Y and every finitely supported

F : X → nonempty finitely supported subsets of Y

there exists a finitely supported function f : X → Y such that

f (x) ∈ F(x) for every x ∈ X.

Exercise 115. Show that Exercise 114 fails in the atoms (Q, <).

Exercise 116. Assume the equality atoms. Show that an equivariant orbit-finite
set X is straight if and only if it is projective in the sense of category theory:

X P

Q
g

f

all arrows 
and sets

equivariant

Exercise 117. Show an example of a function which preserves and reflects
supports, but which is not equivariant.



7
Homogeneous atoms

To define orbit-finiteness, we need atoms that are oligomorphic. How does one
get oligomorphic structures?

This chapter is devoted to a method of producing oligomorphic structures,
which is called the Fraı̈ssé limit1. The idea behind the Fraı̈ssé limit is that it
inputs a class of finite structures, sufficiently well behaved, and outputs a single
countably infinite structure which embeds all of the finite structures, and does
so in a certain homogeneous way. The Fraı̈ssé limit can be applied to classes
of finite structures such as all finite total orders, all finite directed graphs, all
equivalence relations on finite sets, etc.

7.1 Homogeneous structures

Consider two structures A,B over the same vocabulary, which may include
function symbols. An embedding f : A→ B is any injective function from the
universe of A to the universe of B which preserves and reflects the relations in
the following sense

R(a1, . . . , an)︸          ︷︷          ︸
in A

iff R( f (a1), . . . , f (an))︸                  ︷︷                  ︸
in B

.

(If the vocabulary contains functions, then they should be preserved and re-
flected when viewed as relations.) An embedded substructure of a structure
is defined to be any structure that embeds into it. A substructure is the spe-
cial case where the embedding is simply an inclusion map. For a structure, the
substructure generated by a subset of the universe is defined by restricting the

1 This is a basic notion in model theory. For further information, see e.g. (Hodges, 1993,
Section 7).

113
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universe to the smallest subset which contains the generators and is closed un-
der applying functions from the vocabulary. If there are no functions, then the
generated subset is simply the generators. A finitely generated substructure is
one that is generated by a finite subset of the universe.

Definition 7.1 (Homogeneous structure). A structure is called homogeneous
if every isomorphism between finitely generated substructures extends to a full
automorphism of the structure.

Example 7.2. The equality atoms and (Q, <) are homogeneous structures over
finite vocabularies. The proof for (Q, <) is in this picture:

a finitely generated substructure

an isomorphism between finitely generated substructures

an extension of the isomorphism

another finitely generated substructure

In Theorem 7.6 below, we will show that if a structure is homogeneous, and
satisfies a further condition which is true whenever the vocabulary has no
functions, then it is oligomorphic. This explains why the structures mentioned
above are oligomorphic.

Example 7.3. Consider the family of finite sets of natural numbers

(Pfin(N),∪),

equipped with a binary union function. This structure is not homogeneous,
because ∅ 7→ {1} is a finite partial automorphism which does not extend to a
full automorphism.

Example 7.4 (Integers are or are not homogeneous, depending on the choice
of functions and relations). Unlike oligomorphism, homoegeneity depends not
just on the automorphism group, but also on the choice of functions and rela-
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tions. Consider the structures

(Z, <),︸ ︷︷ ︸
integers with an order relation

(Z,+1).︸   ︷︷   ︸
integers with a unary successor function

The two structures have the same automorphism group, namely the transla-
tions. The first structure is not homogeneous, because the partial function

0 7→ 0 1 7→ 2.

is an isomorphism between finitely generated substructures, which does not
extend to an automorphism. The second structure is homogeneous, because
finitely generated substructures are half-intervals of the form {i, i + 1, . . .}. This
example shows that a homogeneous structure need not be oligomorphic, since
(Z,+1) is not oligomorphic for the same reasons as (Z, <), see Example 3.6.

Quantifier elimination. In an oligomorphic structure, equivariant sets of tu-
ples of atoms are necessarily definable in first-order logic, see Lemma 4.11.
For homogeneous structures, quantifier-free formulas are enough.

Lemma 7.5. Let A be homogeneous, but not necessarily oligomorphic. Two
tuples in An satisfy the same quantifier-free formulas with constants from ā if
and only if they are in the same ā-orbit.

Proof For the right-to-left implication, the truth-value of quantifier-free for-
mulas with constants from ā is preserved under ā-automorphisms. Conversely,
if two tuples of atoms satisfy the same quantifier-free formulas with constants
from ā, then one can build an isomorphism between the substructures gener-
ated by them, which extends the identity on ā. By definition of homogeneous
structures, this extends to a full automorphism, and therefore the tuples are in
the same ā-orbit. �

If the vocabulary is infinite, or if there are functions in the vocabulary, then
there might be infinitely many quantifier-free formulas which are not equiva-
lent. For example, in the homogeneous structure (Z,+1), the formulas

a = b a = b + 1 a = b + 1 + 1 · · ·

are all quantifier-free but pairwise non-equivalent. This gives further illustra-
tion of the phenomenon that homogeneous structures are not necessarily oligo-
morphic. The following theorem explains which homogeneous structures are
oligomorphic, at least under the assumption that the vocabulary is finite.

Theorem 7.6. Let A be a homogeneous structure over a finite vocabulary,
possibly including functions. Then A is oligomorphic if and only if
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(*) ∀n ∈ N ∃k ∈ N all substructures with n generators have size at most k.

Furthermore, assuming (*), a subset of An is ā-supported if and only if it is
definable by a quantifier-free formula with constants from ā.

Proof We first show that (*) implies oligomorphism. By a pumping argu-
ment, if an atom is generated from n other atoms using function symbols, then
it is generated by a term of some height, call it k, which is obtained by applying
the assumption (*) to n. Since the vocabulary is finite, there are finitely many
terms of height at most k. It follows that, up to logical equivalence, there are
only finitely many quantifier-free formulas with n variables, because the terms
appearing in them can be assumed to be small. This, together with Lemma 7.5,
implies that there are finitely many equivariant orbits of n-tuples, which proves
oligomorphism.

We now show that oligomorphism implies (*). Suppose that ā is a tuple of
atoms. If an atom is generated by ā, i.e. it can be obtained from ā by applying
functions from the vocabulary of the structure, then that atom is a singleton
ā-orbit. By oligomorphism, there are finitely many ā orbits, and therefore the
substructure generated by ā is finite. The final step is finding a uniform upper
bound on the size of this finite substructure. Consider the function

f : A∗ → N

which maps a tuple of atoms to the size of the substructure generated by the
tuple (this size is necessarily finite by the above observations). This function
is clearly equivariant. It follows from oligomorphism that for every n there are
finitely many values of f for arguments from An, thus proving (*).

Consider now the “Furthermore” part. The right-to-left implication is im-
mediate. For the left-to-right implication, we use oligomorphism to show that
an ā-supported set of n-tuples of atoms must necessarily contain finitely many
ā-orbits, and each such orbit can be defined using by a quantifier free formula
thanks to Lemma 7.5. �

Example 7.7. The structure (Z,+1) violates condition (*) from Theorem 7.6
because every integer generates an infinite set. In the powerset of the natural
numbers from Example 7.3, condition (*) is satisfied because n elements gen-
erate at most 2n sets (however, the structure is not homogeneous, and therefore
Theorem 7.6 cannot be applied).

A corollary of Theorem 7.6 is that, in structures satisfying its assumptions,
every formula of first-order logic is equivalent to a quantifier-free formula. The
same is true for richer logics, such as higher-order logics, and for formulas
which contain atoms as constants.
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7.2 The Fraı̈ssé limit

Before defining the Fraı̈ssé limit, consider the following weaker notion of limit:
the limit of a class A of finite structures over a common vocabulary is any
structure whose finitely generated embedded substructures are exactly A . In
this sense, the equality atoms are the limit of the class of finite structures with
equality only, and the ordered rational numbers are the limit of the class of
finite total orders. The limit, in the sense defined above, is not necessarily
unique. For example, any infinite totally ordered set will also be a limit of
the class of finite orders. However, it turns out that if we require the limit to be
countable and homogeneous, then it is unique up to isomorphism (if it exists).
Furthermore, a countable homogeneous limit exists if and only if the class A

is closed under embedded substructures and amalgamation. This result will be
stated in Theorem 7.10, which is the main result of this section. Before stating
the theorem, we explain amalgamation.

Definition 7.8 (Amalgamation). An instance of amalgamation is two embed-
dings with a common source:

A
f1

zz
f2

$$
B1 B2

(7.1)

A solution of the instance is a structure C and two embeddings g1, g2 such that
the following diagram commutes:

A
f1

zz
f2

$$
B1

g1

$$

B2
g2

zz
C

(7.2)

Definition 7.9 (Fraı̈ssé class). A Fraı̈ssé class is a class of finitely generated
structures (over a common vocabulary) that:

• is closed under amalgamation, which means that for every instance of amal-
gamation which uses structures from the class, there is a solution which also
uses a structure from the class;

• has the joint embedding property, which means that for every two structures
from the class, there is some A in the class such that each of the two struc-
tures embeds into A;

• is closed under taking embedded substructures.
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A Fraı̈ssé class is called countable if it has countably many elements, up to
isomorphism.

If the vocabulary does not contain functions, then the joint embedding prop-
erty follows from closure under amalgamation, by using an instance of amalga-
mation where the common substructure is empty. In the presence of functions,
the joint embedding property does not follow from closure under amalgama-
tion. An example is the class of finite fields: fields of different characteristic
cannot be jointly embedded, but the class is closed under amalgamation be-
cause instances of amalgamation can only involve fields of the same charac-
teristic. We are now ready to state the Fraı̈ssé theorem, which says that Fraı̈ssé
classes are in one-to-one correspondence with countable homogeneous struc-
tures.

Theorem 7.10 (Fraı̈ssé Theorem). The map

countable structure 7→ its finitely generated embedded substructures︸                                                      ︷︷                                                      ︸
this is called the age of the structure

is a bijection between countable homogeneous structures (modulo isomor-
phism) and countable Fraı̈ssé classes. In other words:

(1) the age of every countable homogeneous structure is a countable Fraı̈ssé
class; and

(2) every countable Fraı̈ssé class is obtained this way; and
(3) if two countable homogeneous structures have the same age, then they are

isomorphic.

The inverse of the age operation, i.e. the map which inputs a Fraı̈ssé class
and outputs the corresponding countable homogeneous structure (which is
unique up to isomorphism thanks to the above theorem), is called the Fraı̈ssé
limit. Before proving Theorem 7.10, we give some examples and non-examples
of Fraı̈ssé classes. In all these examples, closure under embedded substructures
is immediate, and only amalgamation need be discussed. Also, none of the ex-
amples use functions, and for such examples the joint embedding property
follows from closure under amalgamation.

Example 7.11. Consider the class of finite structures over an empty vocab-
ulary (in which case first-order formulas can talk only about equality). This
class is closed under amalgamation, by taking the disjoint union of two sets
with a common subset. Here is an example of an instance of amalgamation
and its solution:
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When drawing amalgamation diagrams, we use the red colour for elements
of A. In general, the same instance might have several solutions. Here is an
example of a different solution to the instance above:

In fact, the above instance has infinitely many solutions (because the solution
can be arbitrarily large). Note how the second solution uses the same black
element as the target of both black nodes in the second row.

Example 7.12. Consider the class of finite undirected graphs. In other words,
this is the class of all finite structures over a vocabulary which has one binary
relation that is required to be symmetric. This class is closed under amalga-
mation (the same argument works for directed graphs), by taking the disjoint
union of two directed graphs with a common induced subgraph. Here is an
example:

As in Example 7.11, there are also other solutions to the above instance. More
generally, for every relational vocabulary, the class of all finite structures over
this vocabulary is closed under amalgamation. In particular, by Theorem 7.10,
each of these classes has a Fraı̈ssé limit. The limit for undirected graphs will
be discussed in more detail in Section 7.3.1.
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Example 7.13. Consider the class of finite planar graphs. To simplify this
example, we assume that a graph is modelled (unlike in Example 7.12) as a
structure where the universe is vertices and edges, and there is a binary in-
cidence relation between edges and vertices. (This way of modelling a graph
means that an embedding can add edges without adding vertices.) The class is
not closed under amalgamation. Here is an instance without a solution:

Any hypothetical solution would have the 5-clique as a minor, and would there-
fore not be planar. A similar but more elaborate example would show failure
of amalgamation for planar graphs under the modelling of graphs used by Ex-
ample 7.12, where the universe of the structure is the vertices and there is a
binary relation for the edges.

Example 7.14. Consider directed graphs where the edge relation is a partial
successor, i.e. vertices have out-degree and in-degree at most one, and no loops.
The class is not closed under amalgamation, here is an instance without a so-
lution:

Example 7.15. Consider the class of finite total orders. This class is closed
under amalgamation. Here is an example of an instance of amalgamation and
its solution:

We now begin the proof of the Fraı̈ssé Theorem. We first show item (1),
which says that the age of a countable homogeneous structure is a Fraı̈ssé
class. We prove a slightly stronger result, which does not assume countability.
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Lemma 7.16. For every homogeneous structure, not necessarily countable, its
embedded finitely generated substructures form a Fraı̈ssé class.

Proof The only nontrivial part is amalgamation. Let H be a homogeneous
structure. Consider an instance of amalgamation which uses structures that
embed into H, as in the following diagram (all arrows are embeddings):

A
f1

zz
f2

$$
B1

h1��

B2

h2��
H H

The diagram distinguishes the targets of h1 and h2 because the embeddings h1◦

f1 and h2 ◦ f2 need not be the same embedding of A inH. However, the images
of both of these embeddings are isomorphic finitely generated substructures of
H. Therefore, by homogeneity there is an automorphism π which extends this
partial automorphism. In other words, the following diagram commutes:

A
f1

zz
f2

$$
B1

h1��

B2

h2��
H π // H

If we restrict the right copy of H to the image of the maps h2 and π ◦ h1, then
we get a solution of amalgamation. �

If a homogeneous structure is countable, then it has countably many em-
bedded finitely generated substructures (because the generators can be chosen
in countably many ways). Therefore, by the above lemma, the age of a count-
able homogeneous structures is a countable Fraı̈ssé classes. We now establish
item (3) in the theorem, which says that the age uniquely identifies a countable
homogeneous structure.

Lemma 7.17. A countable structure H is homogeneous if and only if:

(*) If A,B are finitely generated substructures of H then

∀∃ B

f ��

g // A

h
��
H

Furthermore, countable homogeneous structures with the same age are iso-
morphic.
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Proof

• Homogeneous structures satisfy (*). Let g, f be as in (*). We assume without
loss of generality that g is an inclusion. Let f ′ be an embedding of A intoH,
which exists by the assumption that A is a substructure. Here is a picture:

f

f ’

By following the inverse of f and then f ′, we get a partial automorphism be-
tween two finitely generated substructures ofH, namely the two red parts on
the right. By homogeneity, this partial automorphism extends to a full auto-
morphism. The function f ′ composed with the inverse of that automorphism
is the desired embedding.

• Structures satisfying (*) are homogeneous. Here we use countability. The
following claim, in the special case of H = H1 = H2, shows that H is
homogeneous.

Claim 7.18. Let H1,H2 be countable structures with the same age. If both
satisfy (*), then every partial isomorphism between finitely generated sub-
structures of H1 and H2 extends to a full isomorphism.

Proof Let f be an isomorphism between structures in the ages of H1 and
H2, respectively, and let a be an element of H1. Let A be the substructure of
H1 generated by a plus the domain of f . Here is a picture:

The structure A is in the age of H1, and therefore by the assumption of the
claim it embeds into H2. By (*), f extends to an embedding of A into H2.
This argument, and a symmetric one where a is in H2, establishes that:
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(**) For every isomorphism between structures in the ages of H1 and H2, re-
spectively, and every element a of either H1 or H2, the partial isomor-
phism can be extended to be defined also on a.

The conclusion of the claim follows from (**) using a back-and-forth con-
struction. Define inductively a sequence of partial isomorphisms between
finitely generated substructures ofH1 andH2, such that the next one extends
the previous one, and every element of both structures appears eventually in
the source or target of a partial isomorphism from the sequence. The full
isomorphism is then the limit of these partial isomorphisms. �

• Homogeneous structures are uniquely determined by their finitely gener-
ated substructures. By Claim 7.18 applied to the empty partial isomorphism
between H1 and H2, we see that countable homogeneous structures are
uniquely determined – up to isomorphism – by their age.

�

To finish the proof of Fraı̈ssé Theorem, we need to show item (2).

Lemma 7.19. Every countable Fraı̈ssé class arises as the age of some count-
able homogeneous structure.

Proof Choose some countable subset

A0 = {A1,A2, . . .} ⊆ A

which represents all structures in A up to isomorphism. Let

f1, f2, . . .

be an enumeration of all embeddings between structures in A0. Such an enu-
merations can be found because an embedding of a finitely generated structure
is uniquely defined by its values on the generators, which can be chosen in
countably many ways). Define a sequence

H1 ⊆ H2 ⊆ · · ·

of structures in A0 as follows. Choose H1 arbitrarily, say A1. Suppose that Hn

has already been defined. Consider all instances of amalgamation

A

zz $$
B1 B2

(7.3)

where both of the embeddings are in { f1, . . . , fn} and B1 is one of the structures
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H1, . . . ,Hn. There are finitely many such instances. By doing successive amal-
gamation steps for each such instance, we can find a structure in A0 – this is
going to be the structureHn+1 – which can be used as a solution for all of these
instances. Using the joint embedding property, we can also assume without
loss of generality that Hn+1 contains An+1 as an embedded substructure.

Define H to be the limit (i.e. union) of the sequence H1,H2, . . .. Every
finitely generated structure that embeds into the limit must embed into some
Hn, and is therefore in A . Furthermore, for every n, the structure An embeds
intoHn, and therefore all structures from A embed intoH. By construction,H
satisfies condition (*) from Lemma 7.17, and is therefore homogeneous. �

This completes the proof of Fraı̈ssé Theorem.

Computability. We finish this section by giving a sufficient condition which
ensures that the limit of a Fraı̈ssé satisfies the assumptions used by the algo-
rithms on orbit-finite sets that were described in Chapters 4 and 5.

Theorem 7.20. Let A be a Fraı̈ssé class over a finite vocabulary such that
for every k ∈ {1, 2, . . .} there are (up to isomorphism) finitely many structures
in A with at most k generators, and a list of these structures can be computed
given k (in particular, the Fraı̈ssé class is countable). Then the Fraı̈ssé limit:

(1) is oligomorphic; and
(2) has a computable Ryll-Nardzewski function; and
(3) has a decidable first-order theory with parameters.

Proof Oligomorphism of the Fraı̈ssé limit follows from Theorem 7.6.
Consider the Ryll-Nardzewski function. By homogeneity, two tuples in the

Fraı̈ssé limit are in the same orbit if and only if their generated substructures
are the same. It follows that the number of orbits of k-tuples is the same as the
number of isomorphism types of structures in A with k generators. The latter
number can be computed by the assumption on A .

We are left with deciding the first-order theory with parameters.
We begin by explaining how elements of the Fraı̈ssé limit, call it H, can

be represented in a finite way. Recall that the Fraı̈ssé limit is constructed, in
Lemma 7.19, as the limit of a sequence of structures

H1 ⊆ H2 ⊆ · · · .

We now argue that this construction is effective.

Claim 7.21. Given n, one can compute Hn.
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Proof An inspection of the proof in Lemma 7.19 shows that, in order to com-
pute the structureHn, one needs the following assumptions on A : (a) the class
A is recursively enumerable; and (b) given an instance of amalgamation, one
can compute a solution. To prove the claim, we show that both (a) and (b) fol-
low from our assumption on A . For (a), we first enumerate all structures with
1 generator, then all structures with 2 generators, and so on. For (b), we ob-
serve that if an instance of amalgamation uses structures of size at most k, then
the solution is generated by at most 2k elements, and therefore the solution can
be found by exhaustive search. �

Thanks to the above claim, we can use the following finite representation
for elements in the Fraı̈ssé limit: each element is represented as a pair (n, a)
where n ∈ {1, 2, . . .} is such that a appears in Hn for the first time. For ele-
ments represented this way, we can evaluate quantifier-free formulas, since a
quantifier-free formula can be evaluated in Hn with n chosen large enough so
that it covers all arguments.

It remains to show that the first-order theory is decidable. To do this, we
show that for every first-order formula not only an equivalent quantifier-free
formula exists (which follows from Theorem 7.6), but also this formula can be
computed. It is enough to eliminate one quantifier

∃xϕ(x1, . . . , xn, x)︸            ︷︷            ︸
quantifier free

.

Consider the structures in A , along with distinguished elements corresponding
to the free variables, which satisfy the formula ϕ:

Aϕ = {(A,
ā︷     ︸︸     ︷

a1, . . . , an, a) : A ∈ A is generated by āa and A |= ϕ(āa)}.

Up to isomorphism, the above set is finite and can be computed thanks to the
assumption on A . Because the Fraı̈ssé limit is homogeneous, a tuple āa in the
Fraı̈ssé limit satisfies ϕ if and only if Aϕ contains the substructure generated
by ā (together with the distinguished ā). Define A∃xϕ to be the following pro-
jection of Aϕ: for each (A, āa) ∈ Aϕ, remove the last component a from the
valuation and keep only those elements of A that are generated by ā. A tuple
ā in the Fraı̈ssé limit satisfies the quantified formula ∃xϕ if and only if A∃xϕ

contains the substructure generated by ā (together with the distinguished ā).
This property can be expressed using a quantifier-free formula. �

All Fraı̈ssé classes discussed in this chapter satisfy the assumptions of the
above theorem, in particular:

(1) finite sets with equality only (Example 7.11);
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(2) finite directed and undirected graphs (Example 7.12);
(3) finite total orders (Example 7.15);
(4) finite partial orders (Exercise 118);
(5) finite trees (Section 7.3.3);
(6) finite vector spaces over the two element field (Section 7.3.2).

In particular, for each of the classes above, the Fraı̈ssé limit can be used as
atoms, leading to algorithms for problems such as graph reachability, automa-
ton emptiness, or automaton minimisation.

Exercises

Exercise 118. Consider the class of all finite partial orders, i.e. binary relations
that are reflexive and transitive. Show that this class is closed under amalga-
mation.

Exercise 119. Are series parallel graphs closed under amalgamation?

Exercise 120. Show a Fraı̈ssé class where solutions to amalgamation neces-
sarily violate the following condition:

(*) the intersection of the images of g1 and g2, as per diagram (7.2), is exactly
the image of A.

Exercise 121. Assume a finite relational vocabulary. Suppose that A is a class
of structures that satisfies the assumptions of Theorem 7.10, and let A be its
Fraı̈ssé limit. Show that if membership in A is decidable, A is an effective
structure.

Exercise 122. Let A be a class of structures over a finite vocabulary, possibly
including functions, which:

(1) has decidable membership;
(2) is closed under substructures, isomorphism and amalgamation;
(3) given k ∈ N one can compute some n ∈ N such that structures in A with k

generators have size at most n.

Show that the Fraı̈ssé limit of A has a decidable first-order theory with con-
stants and a computable Ryll-Nardzewski function.



7.3 Examples of homogeneous atoms 127

Exercise 123. Define monadic second-order logic (mso) to be the extension of
first-order logic where one can also quantify over sets of vertices. A famous re-
sult on mso is Rabin’s Theorem2, which says that the structure {0, 1}∗ equipped
with functions x 7→ x0 and x 7→ x1 has decidable mso theory, i.e. one can
decide if a sentence of mso is true in it. Show that (Q, <) has decidable mso
theory.

Exercise 124. If Σ is a finite alphabet. We model a word w ∈ Σ∗ as a struc-
ture, where the universe is positions in w, there is a binary predicate < for the
order relation, and for every label a ∈ Σ there is a unary predicate a(x). We de-
note the vocabulary used for this structure by Σ<. Show that for every regular
language L ⊆ Σ∗ there is a homogeneous structure A over a vocabulary con-
taining Σ< such that the age of A after restricting to Σ< is exactly the structures
corresponding to L.

7.3 Examples of homogeneous atoms

We end this chapter with three extended examples of homogeneous structures.
We use these examples to illustrate the theory developed in the Chapters 3–6.

7.3.1 The random graph

In this section, we consider the Fraı̈ssé limit of all finite undirected graphs. As
shown in Example 7.12, this is a Fraı̈ssé class, and therefore it has a Fraı̈ssé
limit by the Fraı̈ssé Theorem. Call this limit the random graph. The name is
justified by the following observation.

Theorem 7.22. Consider a countably infinite undirected graph, where each
the presence/absence of an edge is chosen independently with equal probability
one half3. Almost surely (i.e. with probability one) this graph is isomorphic to
the random graph.

Proof Let us writeH for the graph that is chosen randomly. For a finite graph
G, and a function h from vertices of an induced subgraph F ⊆ G to vertices
of H, consider the event: “either h is not an embedding, or it can be extended
to an embedding of G”. This event happens almost surely because failing the

2 For an introduction to mso and Rabin’s Theorem, see (Thomas, 1990, Theorem 6.8).
3 The conclusion of the theorem would not change if we used a different distribution, e.g. there

would be an edge with probability 0.99.
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event would require infinitely many independent random events that go wrong.
Since there are countably many choices of F ⊆ G and functions h, up to iso-
morphism, it follows that almost surely the graph H satisfies condition (*) of
Lemma 7.17, and therefore it is isomorphic to the random graph. �

Since the class of finite undirected graphs is clearly enumerable, its Fraı̈ssé
limit is oligomorphic and has all of the computability properties in the con-
clusion of Theorem 7.20. It follows that problems such as graph reachability,
automaton emptiness, checking graph homomorphism with a given support,
etc. are decidable, assuming that the inputs are represented by set builder ex-
pressions over the random graph.

Example 7.23. Assume that the atoms are the random graph. The set of paths
in the random graph can be viewed as a language

{a1 · · · an ∈ A : for every i < n there is an edge from ai to ai+1} ⊆ A∗.

This language is recognised by a deterministic orbit-finite automaton, which
uses its state to stores the last seen vertex. Automata for other properties of
vertex sequences are discussed in the exercises.

Path decompositions. The graph atoms are a natural setting to talk about
path and tree decompositions of graphs, as used in the graph minor project
of Robertson and Seymour. To make notation lighter, we only discuss path
decompositions.

Definition 7.24 (Path decomposition). For k ∈ {1, 2, . . .}, define a width k path
decomposition to be a sequence V1, . . . ,Vn of sets of at most k atoms (in the
random graph), called bags, such that

(1) if atoms appear in the decomposition (possibly in different bags) and are
connected by an edge, then they appear together in some bag; and

(2) for every atom, the indexes of bags where it appears is a connected interval
in {1, . . . , n}.

The underlying graph of a path decomposition is defined to be the subgraph of
A that is induced by the union of all bags.

The graphs of pathwidth at most k are defined the underlying graphs of width
k path decompositions, or graphs isomorphic to them. The family of sets of at
most k atoms is orbit-finite: each orbit is an isomorphism types of graphs of
size at most k. Therefore, a width k path decomposition can be seen as a word
over an orbit-finite alphabet – namely the bags – and therefore it can be used as
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the input to an orbit-finite automaton. We now show that interesting properties
of the underlying graph can be recognised by such automata.

Proposition 7.25. There is a deterministic orbit-finite automatonA such that

A accepts V1 · · ·Vn iff the underlying graph V1 ∪ · · · ∪ Vn is connected

holds for every width k path decomposition4.

Proof After reading a path decomposition V1, . . . ,Vn the automaton stores in
its state the last bag Vn together with the equivalence relation ∼n on it which
identifies vertices from the last bag if they are in the same connected compo-
nent of the underlying graph V1 ∪ · · · ∪ Vn. We make no claims about the state
of the automaton if the input is not a path decomposition.

The states of the automaton are pairs (set of at most k atoms, an equivalence
relation on this set); this state space is orbit-finite. The initial state is the empty
set equipped with an empty equivalence relation, and the accepting states are
those where the equivalence relation has one equivalence class. The transition
function is defined as follows. Suppose that the current state is (Vn,∼n) and
the input letter is Vn+1. Let ∼ be the smallest equivalence relation on Vn ∪Vn+1

which contains both ∼n and the edges on Vn+1 (as defined by the graph structure
of the atoms). If there is an equivalence class of ∼ which is disjoint with Vn+1,
then this equivalence class will remain forever disconnected, and therefore the
automaton rejects immediately. Otherwise, the new state is set to Vn+1 with the
equivalence relation ∼n+1 being ∼ restricted to Vn+1. �

Similar constructions as in the above proposition can be done for any prop-
erty of graphs of bounded pathwidth that is recognisable in the sense of Cour-
celle, this covers all graph properties which can be defined in monadic second-
order logic5. Using tree automata instead of word automata, one can also cover
tree decompositions.

Exercises

Exercise 125. Assume that the atoms are the random graph. Is the language

{a1 · · · an ∈ A : the subgraph induced by a1, . . . , an is connected}

recognised by a nondeterministic orbit-finite automaton?

4 The automaton does not check if the input is a path decomposition, in fact this cannot be done,
see Exercise 128.

5 For more on recognisability, pathwidth, and monadic second-order logic, see (Courcelle and
Engelfriet, 2012, Chapter 5.3).
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Exercise 126. Assume that the atoms are the random graph. Give examples
and non-examples of graph properties X such that the following language is
recognised by a nondeterministic orbit-finite automaton:

LX = {a1 · · · an : the subgraph induced by a1, . . . , an satisfies X}.

To recognise LX , the automaton should be prepared for an arbitrary enumera-
tion of the vertices of the graph, possibly with repetitions.

Exercise 127. Assume that the atoms are the random graph. Show that there
is no finitely supported total order on the random graph.

Exercise 128. Show that there is no orbit-finite automaton, even nondetermin-
istic, which recognises the language of width k path decompositions.

Exercise 129. Assume that the atoms are the random graph. Show that for
every mso formula ϕ(x1, . . . , xn) with free variables that represent vertices (not
sets of vertices) there is formula of first-order logic which is equivalent on
the random graph. Nevertheless, there is no algorithm which computes such
equivalent formulas.

Exercise 130. Assume that the atoms are the random graph. Show that solving
equations, as discussed in Section 5.5, is undecidable.

7.3.2 Bit vectors

This section is about the Fraı̈ssé limit of finite vector spaces over the two el-
ement field. These atoms will also be discussed in Chapter 10, where we will
show that, over these atoms, deterministic polynomial time orbit-finite Turing
machines are weaker than the nondeterministic ones.

For the rest of this section, we only study vector spaces over the two element
field, so we say vector space with the implicit assumption that the underlying
field is the two element field. We model a vector space as a structure where
the universe is the vector space, and there is a binary function + for vector
addition. Every finite vector space is isomorphic to

({0, 1}n,+) for some n ∈ {1, 2, . . .}

where addition is modulo two. There is no need to have a constant for the zero
vector because adding any vector to itself gives the zero vector.
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It is not hard to see that finite vector spaces are a Fraı̈ssé class. Embed-
dings are the same thing as injective linear maps. To amalgamate two vector
spaces, of dimensions say n1 and n2, one needs a vector space of dimension
max(n1, n2). Therefore, there is a Fraı̈ssé limit of the finite vector spaces; and
thanks to Theorem 7.20 this limit is oligomorphic, has a computable Ryll-
Nardzewski function, and a decidable first-order theory with parameters.

One can also construct the Fraı̈ssé limit explicitly. The Fraı̈ssé limit must be
a vector space, since any violation of the vector space axioms would need to
happen already in a finitely generated substructure. Since the Fraı̈ssé limit is
countable, its dimension must be countable, and since the Fraı̈ssé limit embeds
all finite vector spaces, its dimension must be infinite. Therefore, the Fraı̈ssé
limit is a vector space of countably infinite dimension. Up to isomorphism,
there is a unique vector space like this. One way of representing this unique
vector space is as follows. The elements are bit vectors, which are defined to be
ω-sequences of zeroes and ones which have finitely many ones (if we allowed
infinitely many ones, the resulting vector spaces would have uncountable di-
mension). By ignoring trailing zeroes, a bit vector can be represented as a finite
sequence, such as 00101001. Define the bit vector atoms to be the bit vectors
equipped with a function for coordinatewise addition modulo two:

0101 + 11001 = 10011.

An example basis consists of bit vectors which have a 1 on the n-th coordinate:
1, 01, 001, 0001, . . .. Another example of a basis is 1, 11, 111, 1111, . . ..

Least supports. We prove below that for the bit vector atoms, a version of the
Least Support Theorem is true. (A similar result is also true for the random
graph discussed in Section 7.3.1, but the proof for bit vectors is more interest-
ing, and will also be used in Section 10.2.) For bit vectors, least supports are
not unique as sets, but as spanned subspaces. For example, the pair of atoms
(01, 10) is supported by itself, but it is also supported by (11, 01). More gen-
erally, the following lemma shows that supporting and spanning are the same
concepts, when talking about tuples of atoms.

Lemma 7.26. Assume the bit vector atoms. An atom tuple ā supports an atom
tuple b̄ if and only if all atoms in b̄ are spanned by ā.

Proof The right-to-left implication is immediate. For the converse implica-
tion, suppose that some atom in b̄ is not spanned by ā. By the Steinitz exchange
lemma, this atom can be mapped to some other atom by a ā-automorphism. �

We are now ready to state the Least Support Theorem for bit vector atoms.
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Theorem 7.27 (Least Support Theorem). Assume the bit vector atoms. Let x
be an atom or a set with atoms. There exists a tuple ā of atoms which supports
x, and which is least in the sense that if b̄ supports x, then ā supports b̄.

The proof idea is similar to the proof of the Least Support Theorem for
equality atoms in Chapter 6. The key is a representation result, Lemma 7.28
below, which says that orbit-finite sets can be represented by tuples of atoms,
along a function which preserves and reflects supports. To state this representa-
tion result, we need to recall two definitions from Chapter 6. Recall the notion
of straight sets from Definition 6.7, these are disjoint unions of finitely sup-
ported sets of atom tuples. A function f between two sets with atoms is said to
preserve and reflect supports if for every input x satisfies

ā supports x iff ā supports f (x) for every atom tuple ā.

Preserving supports, i.e. the left-to-right implication above, is true for all equiv-
ariant functions.

Lemma 7.28. Assume the bit vector atoms. For every equivariant orbit-finite
set X there is an equivariant straight set Y and a surjective equivariant function

f : Y → X

which preserves (this follows from equivariance) and reflects supports.

Before proving the lemma, we use it to prove the Least Support Theorem.
Let x be an atom or a set with atoms, and let X 3 x be its equivariant orbit.
Apply Lemma 7.28 to X, yielding an equivariant surjective function

f : Y → X

which preserves and reflects supports. Because f preserves and reflects sup-
ports, it is enough to show that elements of Y have least supports, in the sense
of Theorem 7.27. This follows from Lemma 7.28. The above argument uses no
assumptions about the bit vector atoms, except that they satisfy Lemma 7.28,
and therefore any atoms which satisfy the lemma will also have the Least Sup-
port Theorem. It remains to prove the lemma.

Proof of Lemma 7.28. Without loss of generality, we assume that X has one
orbit. The proof follows the same lines as the proof of Lemma 6.2, except that
vector independence plays the role of equality. We first show that there is a
surjective equivariant function f : Y → X from a straight set which satisfies a
weaker property, see (7.4) below, and then we show that this condition implies
that f preserves and reflects supports.
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(1) Let us write A〈n〉 for the set of n-tuples of nonzero atoms which are linearly
independent. This is a one orbit set. By eliminating vectors that are linearly
dependent, every equivariant one orbit set admits an equivariant bijection
with A〈n〉 for some n. By Theorem 3.23, there is a surjective equivariant
function

f : A〈n〉 → X for some n.

We will show that, either f satisfies the following condition6

f (ā) = f (b̄) implies ā and b̄ span the same spaces, (7.4)

or the dimension n can be made smaller. By iterating this argument at most
n times, we arrive at a function f that satisfies (7.4).

Suppose that f violates condition (7.4), as witnessed by tuples

ā︷       ︸︸       ︷
(a1, . . . , an)

b̄︷       ︸︸       ︷
(b1, . . . , bn)

which have the same image under f but span different spaces. Without loss
of generality, we assume that the first i coordinates a1, . . . , ai of the tuple ā
are not spanned by b̄, and the remaining coordinates are spanned. In other
words, the tuple

(a1, . . . , ai, b1, . . . , bn)

is linearly independent. Since the vector space A has infinite dimension, one
can choose a′1, . . . , a

′
i ∈ A such that adding them to the above tuple retains

independence. It follows that

(a1, . . . , ai, b1, . . . , bn) (a′1, . . . , a
′
i , b1, . . . , bn)

are in the same equivariant orbit, namely the equivariant orbit of linearly
independent tuples. This means that

(a1, . . . , ai) (a′1, . . . , a
′
i)

are in the same b̄-orbit. Since ai+1 . . . , an are supported by b̄, it follows that

(a1, . . . , an) (a′1, . . . , a
′
i , ai+1, . . . , an)

are in the same b̄-orbit. Having the same value under f as b̄ is a b̄-supported

6 Condition (7.4), as well as the related condition from Lemma 6.2, is equivalent to saying that
ā and b̄ have the same algebraic closure, in the model theory sense, see (Hodges, 1993,
Chapter 4).
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property, and since the first tuple above has the same value under f as b̄, the
same must be true for the second tuple, i.e.

f (a1, . . . , an) = f (a′1, . . . , a
′
i , ai+1, . . . , an). (7.5)

In other words, there exists a tuple

(a1, . . . , an, a′1, . . . , a
′
i) ∈ A

〈n+i〉,

which satisfies equality (7.5). By equivariance, all tuples in A〈n+i〉 satisfy
the equality. In other words, the first i coordinates in a tuple from A〈n〉 can
be replaced by fresh independent atoms without affecting the value of f . It
follows that f does not depend on the first i coordinates, and hence we can
lower the dimension n.

(2) By the previous item, there is some equivariant f : A〈n〉 → X which sat-
isfies condition (7.4). By virtue of equivariance, f preserves supports. We
show that condition (7.4) implies that f reflects supports, i.e. any tuple that
supports the output also supports the input. To prove this, suppose that b̄
supports f (ā), for some ā ∈ A〈n〉. This means that every b̄-automorphism π

satisfies

f (ā) = π( f (ā)) = f (π(ā)).

Because f was obtained from Lemma 7.28, the second equality above im-
plies that ā and π(ā) span the same spaces. Therefore, applying any b̄-
automorphism to ā results in a tuple π(ā) which spans the same space. This
implies that b̄ must span ā (and therefore support it).

�

Register automata. Recall Theorem 6.6, which said that, under the equality
atoms, deterministic register automata were expressively complete for abstract
deterministic orbit-finite automata, assuming alphabets where the register au-
tomata could be used. We conclude Section 10.2 with an extension of this result
to the bit vector atoms.

We begin by describing the bit vector versions of straight automata and reg-
ister automata, which were used in Theorem 6.6. Call a deterministic orbit-
finite automaton straight if its state space is straight. This implies that all re-
maining components (the accepting states and the transition function) of the
automaton are straight, since the remaining components are obtained from the
state space using products and finitely supported subsets, and such operations
preserve straightness. Define a register automaton to be an automaton where



7.3 Examples of homogeneous atoms 135

the state space is of the form

Loc × (A + {⊥})n for some n ∈ {0, 1, . . .} and finite equivariant set Loc.

Actually, the undefined value ⊥ is not needed, since in the bit vector atoms,
the role of ⊥ can be played by the zero vector. In the spirit of Lemma 1.3, one
can give a more syntactic description of equivariant register automata. In the
syntactic description, the transition function tests the register contents and the
input letter for linear dependencies, and conditional on the linear dependen-
cies that are satisfied, it updates the registers using linear combinations of the
previous register contents and the input letter.

Theorem 7.29. Assume the bit vector atoms. For languages over straight input
alphabets, the following models have the same expressive power:

(1) deterministic orbit-finite automata;
(2) straight deterministic orbit-finite automata;
(3) register automata.

The inclusion (3) ⊆ (1) is immediate. The inclusions

(2) ⊆ (3) (1) ⊆ (2)

are proved the same way as in Section 6.2, where the only property of the
equality atoms that was used was the existence of functions from straight sets
that preserved and reflected supports, as in Lemma 7.28.

Exercises

Exercise 131. Let B be the structure where the universe is the same as in
the bit vector atoms, but where the binary addition function is replaced by the
ternary predicate “the atoms a, b, c are linearly independent”. Show that B has
the same automorphisms as the bit vector atoms.

Exercise 132. Show that the structure B from Exercise 131 is not homoge-
neous. Show that the structure becomes homogeneous if we add linear inde-
pendence predicates for every arity, i.e. for every n there is an n-ary predicate
which says that atoms a1, . . . , an are linearly independent.

Exercise 133. Consider vector spaces over the field of rational numbers (as
opposed to the two-element field as considered in this section). We model a
vector space as a structure with one binary function for addition. Is the class
of finite-dimensional vector spaces a Fraı̈ssé class? If yes, is its Fraı̈ssé limit
oligomorphic?
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7.3.3 Trees and forests

In this section, we study the Fraı̈ssé limit of trees and forests7. The trees and
forests we study are rooted, unlabelled, and unordered, as explained in the
following picture:

there are distinguished roots

no order on the children, 
and no restrictions on their 

number

A tree is the special case of a forest when there is exactly one root.
The purpose of this section is to show that care is needed when choosing

predicates and functions to model a combinatorial object, like a tree or forest,
if we want to have a Fraı̈ssé limit. The following list shows three ways of
modelling trees as logical structures; only the third way will admit a Fraı̈ssé
limit. In all cases, the universe of the structure is the nodes of the tree.

(1) There is a binary predicate for the parent relation. A finite forest is charac-
terised by the requirement that each node has at most one parent. This way
of modelling forests leads to a class that is not closed under amalgamation.
Here is an instance of amalgamation that has no solution:

(2) There is a binary predicate for the ancestor relation. A finite forest is char-
acterised by the requirement that for every node, its ancestors are totally or-
dered. This way of modelling forests also leads to a class that is not closed
under amalgamation. Here is an instance of amalgamation that has no solu-
tion:

7 This section is based on Bojańczyk et al. (2013b).
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(3) In this item, we assume that we want to model trees, i.e. there is exactly one
root. To model the tree structure, we have a function cca(x, y) which inputs
two nodes and returns their closest common ancestor, as explained in the
following picture:

1 2

3cca(1, 2) = 3

cca(1, 3) = 3

The class of trees modelled this way is closed under amalgamation, as il-
lustrated in Figure 7.1. Therefore, it has a Fraı̈ssé limit, which we call the
universal tree.

Exercises

Exercise 134. Assume the universal tree atoms. Find a finitely supported
equivalence relation on the atoms which has infinitely many infinite equiva-
lence classes.

Exercise 135. Assume the universal tree atoms. Show that one cannot find
an infinite equivariant set X and an equivariant relation on it which is a total
dense order. Equivariance is important here, since if we only want a finitely
supported one then this is easily accomplished by taking the path connecting
some two atoms a < b, and using the order inherited from the atoms.

Exercise 136. Show that the universal tree has decidable mso theory.



138 Homogeneous atoms

an instance of amalgamation

its solution

Figure 7.1 Amalgamation for trees with the closest common ancestor function.



PART THREE

COMPUTATION WITH ATOMS
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In Part II, we defined orbit-finite sets, and showed how orbit-finite sets be-
have similarly to finite ones. We also discussed algorithms that operated on
orbit-finite sets. This part discusses computation in more depth. We show that
there are robust notions of computability for orbit-finite sets, and even a notion
similar to “polynomial time”.



8
Computable functions on sets with atoms

What is a computable function on (hereditarily) orbit-finite sets, or more gener-
ally, sets represented by set builder expressions? One idea is to use algorithms
that manipulate set builder expressions representing the sets. A drawback of
this idea is that it is closely based on a syntactic representation; one could
imagine that different choices of representation would lead to different notions
of computability.

In this chapter, we present a programming language, called while programs
with atoms, which works directly with sets, and not with set builder expres-
sions that represent them. The programs store sets in variables and can loop all
elements of such a set. The programming language has two goals:

(1) to identify a robust notion of computability; and
(2) to write algorithms without going into representation details.

To illustrate the programming language, consider the following program, based
on the case study in Section 5.1, which computes the vertices of a graph (V, E)
that can be reached from a designated set S ⊆ V .

Reach := S

New := ∅

while New ( Reach do
Reach := New

for v in Reach do

for w in V do

if (v,w) ∈ E then

New := New ∪ {w}

The program is simply a naive implementation of breadth-first search. The
catch is that the variables store sets that are not necessarily finite. The key pro-
gramming construct is the for loop, which ranges over elements of a possibly

142
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infinite set. The general idea is that the for loop is executed in parallel. It
will turn out that, if the initial program state uses only sets represented by set
builder expressions, then this will remain the case during program execution.

The language simplifies a lot of the bookkeeping work involved with sets
represented by set builder expressions, but it does not magically solve all prob-
lems. The programmer still has work to do. For example, in the graph reacha-
bility program described above, the programmer needs to justify that the while
loop will do a finite number of iterations for every input, which is true for
oligomorphic atoms but false in general.

In Section 8.1, we define the programming language and explain its seman-
tics. In Section 8.2, we show that, under reasonable assumptions on the atoms,
the outputs of programs can be computed in finite time, despite the ostensibly
infinite for loops. We also show that the programming language is complete,
in the sense that it implements all operations on sets represented by set builder
expressions that can be implemented using, say, Turing machines. This shows
that sets represented by set builder expressions have a robust notion of com-
putability.

8.1 While programs with atoms

In this section, we introduce the programming language1, explain its semantics,
and give example programs. We make no assumptions on the atoms: they need
not be oligomorphic, and their first-order theory might be undecidable.

Syntax. Fix some countably infinite set of variable names. The programming
language is untyped: every variable stores a set (represented by a set builder
expression) or an atom2. As discussed in Chapter 3, one can encode other data
structures using sets. For example, natural numbers can be encoded using Von
Neumann ordinals, where 0 is the empty set and n + 1 is the set {0, . . . , n}.
Using the Von Neumann representation, operations on natural numbers, such
as addition or multiplication, can be programmed in the language. For example,
addition x+y is implemented as follows:

1 The programming language is based on the language from Bojańczyk and Toruńczyk (2012),
which is an imperative version of the functional programming language Bojańczyk et al.
(2012). The functional language was further developed in Moerman et al. (2017), and an
implementation can be found at https://www.mimuw.edu.pl/∼szynwelski/nlambda/.
The imperative language further developed in Kopczyński and Toruńczyk (2016)
and Kopczyński and Toruńczyk (2017), including a generalisation to atom structures which
are not necessarily oligomorphic (this generalisation is used in this section), and an
implementation https://www.mimuw.edu.pl/∼erykk/lois.

2 In this sense, we build on set based programming languages such as setl.
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z := x

i := ∅

while i ( y do
z := {z} ∪ z

i := {i} ∪ i

A usable variant of the programming language would have more features, such
as booleans, integers, and recursive functions. We present the language using
a minimal syntax, concentrating on the aspects that deal with atoms.

Definition 8.1 (Syntax of while programs with atoms). Fix a structure A. A
while program with atoms over A is constructed using the following syntax:

• Assignment. The following assignments are programs:

x := A︸  ︷︷  ︸
load the set

of atoms into x

x := R︸ ︷︷ ︸
load a relation R
from the atom
structure into x

x := y ∪ z︸         ︷︷         ︸
set union

x := {y}.︸     ︷︷     ︸
singleton

The relation R is taken from the vocabulary of the atoms, with functions
being treated as a special case of relations3. In set union, the program aborts
with failure if one of the variables y or z stores an atom.

• Sequential composition. If I and J are already defined programs, then the
sequential composition I;J is also a program, which first executes I and
then J.

• Control flow. Suppose that x and y are variables, I is an already defined
program, and δ is one of ∈,⊆,( or =. Then

if x δ y then I while x δ y do I for x in y do I

are all programs. The semantics for if and while are as expected. In case of
for, the idea is that the instruction I is executed, in parallel, with one thread
for every element x of the set y, see below for a more detailed description.

Semantics. We show below an operational semantics for the language. A pro-
gram state over a finite set of variables X is defined to be a function which
maps each variable to either an atom or a set. (We will be interested in the
case when the sets are represented by set builder expressions, but the seman-
tics makes sense for other sets as well.) The semantics of a while program I
is a partial function, denoted by γ 7→ γI, which maps one program state to

3 The above presentation is suited for atoms with a finite vocabulary. If the vocabulary is
countably infinite, one should add an operation “set x to the n-th relation/function in the
vocabulary, where n is the Von Neumann numeral stored in variable y”. The expressive power
of the language depends on the enumeration of the vocabulary.
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another, with the variables of the program states being those that appear in I.
The function is partial because its output is defined if and only if the program
terminates. In the discussion below, we also talk about the running time of a
program, which intuitively stands for the maximal number of sequentially ex-
ecuted instructions, with running times for parallel threads being aggregated
using maximum.

We only explain the semantics of programs of the form

for x in y do I,

the other constructions being handled in the standard way. Suppose we execute
the loop above in a program state γ. If the variable y stores an atom or the
empty set, then the loop does nothing and the input and output program states
are the same. Assume otherwise, that y stores a set. We first explain when the
loop terminates, and then we explain how it affects the program state.

• When the loop terminates. For an element x of this set, define γ[x := x] to be
the program state obtained from γ by setting variable x to x. Depending on
the choice of x, the program I might not terminate on γ[x := x], or it might
terminate in a finite number of steps nx ∈ {1, 2, . . .}. If I does not terminate
on some γ[x := x], or the numbers nx are unbounded, then the for loop does
not terminate. Otherwise, if I terminates for all x in bounded time, then the
for loop itself also terminates, and its running time is one plus the maximal
number nx.

• What is the program state after the loop. The idea is to aggregate the result-
ing program states into a single one, using set union. More formally, for a
set Γ of program states, define its aggregation to be the program state where,
for every variable x, the stored value is:

(1) x if all program states in Γ have x in x;
(2) the union

⋃
γ∈Γ γ(x) otherwise.

Note that in the second case, where union is used, some γ ∈ Γ might store an
atom in x. If that happens, the atom will be lost in the aggregation because
an atom has no elements and therefore it is ignored when taking a union (this
is also why we have the special case in item (1), since otherwise variables
storing atoms would be ignored). Using this aggregation, define the result of
evaluating the for loop to be the aggregation of the set

{(γ[x := x])I : x is an element of the set stored in variable y}.

This completes the definition of the semantics of the for loop.
The aggregation function that we use might seem arbitrary. Why not use

intersection instead of union, or some other commutative operation on sets?
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As we will explain in Section 8.2, the semantics described above lead to a
language that is computationally complete, and therefore other (computable)
choices of aggregation will necessarily give the same (or less) computational
power.

Example programs

The rest of Section 8.1 is devoted to examples of while programs with atoms.
Like in Python, we use indentation to distinguish blocks in programs.

Example 8.2 (Pairing and unpairing). The code

p := {x,{x,y}}

loads the ordered pair (x,y), according to Kuratowski pairing, into the vari-
able p. Formally speaking, the above is syntactic sugar for the following se-
quence of operations:

q := {x}

p := {y}

p := p ∪ q

p := {p}

p := p ∪ q

In the programs below, we write p := (x,y) instead of the above code.
We can also implement unpairing. Here is a program which projects a pair
p into the singleton of its first coordinate, and returns ∅ if its argument is not a
Kuratowski pair of sets.

ret := ∅

for a in p do

for x in a do

for y in p do

if p = (x,y) then

ret:={x};

In Example 8.5 we show how to get rid of the singleton. The test p = (x,y) is
actually syntactic sugar for loading (x,y) into an auxiliary variable and then
checking if p is equal to that auxiliary variable. We use such syntactic sugar
freely in the programs below.

The following example shows how to implement the semantics of set builder
expressions using while programs with atoms.
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Example 8.3. The atoms are (Q, <). Consider the set of bounded open inter-
vals:

X = {{z : for z ∈ A such that x < z < y} : for x, y ∈ A such that x < y}

Here is a program which loads this set into variable X.

X := ∅

for x in A do
for y in A do
if x < y then

Z := ∅

for z in A do
if x < z < y then

Z := Z ∪ {z}

X := X ∪ {Z}

In the program above, the test x < y is syntactic sugar for first loading the
order relation < into some auxiliary variable, and then checking if that relation
contains the pair (x,y).

Using the same idea, any set builder expression without atom parameters
can be loaded into a variable.

Example 8.4. The following program inputs a nonzero natural number in vari-
able n and outputs the set An in variable Y. The number n and operations on it
are implemented using Von Neumann encoding.

Y := A
while n > 1 do

n := n - 1

X := Y

Y := ∅

for a in A do
for x in X do

Y := Y ∪ {(a,x)}

Using similar ideas, one can write a program which inputs a representation of a
first-order formula ϕ(x1, . . . , xn) and outputs the set of atom tuples (a1, . . . , an)
which satisfies the formula.

Example 8.5 (Desingleton). The following program implements the mapping
{x} 7→ x. More precisely, if the variable x stores a singleton {x}, then after
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running the program the variable result will store x, otherwise result will
store the empty set.

result := ∅

for y in x do

y:=y

if x = {y} then

result := y

Example 8.6. Assume that the atoms are Presburger arithmetic, i.e. (Z,+, 0, 1).
One can write a multiplication function, by using a while loop to implement
multiplication in terms of iterated addition. One can also write a primality test.
The following program looks like it computes the set of all primes in finite
time:

P := ∅

for x in N do
if prime(x) then

P := P ∪ {x}

Actually, the program does not terminate, because the body of the for loop has
unbounded running time (because primality tests take more time for bigger
numbers), and the semantics says that such loops do not terminate.

Example 8.7 (Reachability). Consider the program for graph reachability from
the beginning of this chapter. As argued in Section 5.1, if the atoms are oligo-
morphic, then the while loop does finitely many iterations for every input, and
therefore the program always terminates.

The program can also be run for atoms that are not oligomorphic. For some
inputs, the program will even terminate (and thus give the correct result). For
example, if the atoms are Presburger arithmetic (Z,+), and the input is:

• the vertices are natural numbers,
• the edges are all pairs of natural numbers which disagree modulo 3,
• there is one source, namely 0,

then the program will terminate in two iterations of the while loop and return
the set of all natural numbers. However, for other inputs, e.g., when the edges
are the successor relation, then the program does not terminate.

Example 8.8 (Automaton emptiness). Using pairs and projections, we can
extend the language with a pattern-matching construction

for (x,y) in X do I
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which ranges over all pairs in X. We use a similar convention for tuples of
length greater than two. Pattern-matching is convenient if we want to compute
the one-step reachability relation in a nondeterministic automaton:

E := ∅

for (p,a,q) in delta do

E := E ∪ {(p,q)}

After computing this relation, we can use the program for graph reachability
from Example 8.7 to check if an automaton is nonempty.

Example 8.9 (Automaton minimisation). Suppose that we are given a deter-
ministic automaton:

(A,Q,q0,F,delta).

Non-reachable states can be discarded using graph reachability, and therefore
we can assume that all states are reachable. We describe below a standard
implementation of Moore’s minimisation algorithm. The only point of writing
it down is so that the reader can follow the code and see how it works with
atoms.

In the first step, we compute in a variable equiv the equivalence relation
that identifies states which recognise the same languages. This equivalence
relation is stored as a set of pairs. To do this, we compute the complement of
the equivalence relation4. We initialise the non-equivalence relation to states
that are distinguished by the empty word:

nonequiv := (F × (Q-F)) ∪ ((Q-F) × F)

(The code above uses × and −, which are both implemented using for.) Then
iterate the following code using a while loop, until the set R does not grow
any more:

for (p,a,q) ∈ delta do

for (p’,a’,q’) ∈ delta do

if a=a’ and (q,q’) ∈ R then

nonequiv := nonequiv ∪ {(p,p’)}

Once the set nonequiv has stabilised, it contains exactly the pairs of states
which recognise different languages. Therefore, we get the “same language”
relation by doing complementation:

4 The semantics of for loops uses unions, which are better suited for inflationary fixpoints, such
as the one used in the definition of non-equivalence. This is why we do not compute
equivalence directly, but go through non-equivalence.
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equiv := (Q × Q) - nonequiv

For the states of the minimal automaton, we use the equivalence classes of the
relation equiv, which are produced by the following code.

for q in Q do

for (p,r) in equiv do

if q=p then

class := class ∪ {r}

classes := classes ∪ {class}

The remaining part of the minimisation program goes as expected: the states
are the equivalence classes, and the remaining components of the automaton
are defined as usual.

We finish the section with an example of a program where a termination
proof requires a bit of effort.

Example 8.10. Call a semigroup S aperiodic if

∃n ∈ {1, 2, . . .} ∀s ∈ S
n times︷︸︸︷
s · · · s =

n + 1 times︷︸︸︷
s · · · s .

Assume that the atoms are oligomorphic. The following program inputs a
semigroup, given as a set S together with a binary function Product for the
products, and checks if it is aperiodic. The program simply executes the def-
inition of aperiodicity; the semigroup is aperiodic if and only if the variable
counterexamples is empty at the end of the execution.

counterexamples := ∅

for s in S do

X := ∅

power := s

while power < X do

X := X ∪ {power}

power := Product(power,s)

if power , Product(power,s) then

counterexamples := counterexamples ∪ {s}

In the program above, Product(power,s) is actually syntactic sugar for a
subroutine which examines the graph of the product operation, and finds the
unique element x which satisfies (power,s,x) ∈ Product.

In the program, the set X is used to collect consecutive powers s, s2, s3, . . ..
To prove termination, one needs to show that this set is always finite, even if
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the semigroup in question is not aperiodic. Furthermore, there is a fixed upper
bound on the size of such sets. Every power of s is supported by whatever
supports both the element s and the product operation in the semigroup. Since
the carrier of the semigroup is represented by a set builder expression, it is
also orbit-finite, by Theorem 4.10. In an orbit-finite set, there are finitely many
elements with a given support, as shown in Exercise 55. It follows that for
every s, the set of its powers is finite. Furthermore, there is a common upper
bound on the size of these sets because if two elements are in the same orbit,
then the number of their powers is the same.

8.2 Computational completeness of while programs

The point of while programs is that they work directly on sets, and not on their
representations as set builder expressions. In this section, we show that Turing
machines working on set builder expressions would have the same computa-
tional power. This shows that while programs are, in a sense, computationally
complete, and any other computation model which can be evaluated using set
builder expressions would necessarily be subsumed by while programs.

Turing machines with first-order access to the atoms. We begin by formal-
ising computation on set builder expressions. As the underlying model we use
Turing machines. The question is: how does a Turing machine access the atoms
which appear as parameters in a set builder expression? Our design choice is
to equip a Turing machine with an oracle that answers first-order queries about
atoms that appear as parameters in a set builder expression, see below for more
details. An alternative model, which uses bit strings that represent atoms, is
discussed at the end of this chapter.

We now describe in more detail the variant of Turing machines that we use.
The machine has four tapes: a read-only input tape, a work tape, an oracle tape,
and a write-only output tape. The machine is deterministic, but nondetermin-
ism would not make a difference here (although in different circumstances it
will make a difference, see Chapter 10). The set builder expression is given on
the input tape, but the atom parameters are represented as question marks. For
example, the input expression is

{{{x, 5} : for x ∈ A such that x , 2 ∧ x , y} : for y ∈ A such that y , 5}

then the input tape will contain

{{{x, ?} : for x ∈ A such that x ,? ∧ x , y} : for y ∈ A such that y ,?}.
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Thanks to the question marks, the input tape needs only a finite alphabet (as-
suming that the variables are, say, bit strings). Assume that the parameters in
the input set builder expression are a1, . . . , an, listed in order of appearance.
In the example set builder expression above, the parameters are 5, 2, 5. At any
point during its computation, the Turing machine can write on the oracle tape
a first-order formula over the vocabulary of the atoms, which has n free vari-
ables. The oracle then answers, in unit time, whether or not this formula is true
in the atom structure. The oracle can be consulted more than one time, and the
oracle’s answers can influence further computation. The output of the machine
is represented on the output tape, with parameters being defined using first-
order logic in the following way. Each parameter a in the output set builder
expression is represented by a formula ϕ(x, x1, . . . , xn) which has the semantic
property that a is the unique atom which satisfies ϕ(a, a1, . . . , an). If the se-
mantic property is not satisfied, then the computation fails. A (deterministic)
Turing machine in the above model defines a partial function from set builder
expressions to set builder expressions. The function is undefined if the Turing
machine does not terminate, or it poses an ill-formatted query to the oracle, or
if the output parameters are not represented by formulas which define unique
atoms. Any partial function defined this way is called recognised by a Turing
machine with first-order access to the atoms.

Computational completeness. The following theorem shows that while pro-
grams (working directly on sets) define exactly the same functions as Turing
machines with first-order access to the atoms (working on representations via
set builder expressions) . The theorem uses no assumptions on the atoms, such
as oligomorphism or decidable first-order theory, except that they have a finite
vocabulary. The assumption on finite vocabulary could also be lifted, assuming
some enumeration of the vocabulary.

Theorem 8.11 (Computational completeness of while programs5). Assume
that the atoms have a finite vocabulary. For every function

sets represented by
set builder expressions

f // sets represented by
set builder expressions

the following conditions are equivalent:

(1) There is a while program with atoms, with a designated variable, such that
if the program is executed in a program state where the designated variable
is set x, then the program terminates with f (x) in the designated variable.

5 The theorem is based on (Bojańczyk and Toruńczyk, 2018, Theorem 3.9 ), which in turn is
based on (Bojańczyk et al., 2013a, Theorems IV.1 and IV.2).
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(2) There is some g computed by a Turing machine with first-order access to the
atoms which makes the following diagram commute:

set builder expressions

represents
��

g // set builder expressions

represents
��

sets represented by
set builder expressions

f // sets represented by
set builder expressions

The above theorem is formulated for total functions, corresponding to pro-
grams that always terminate. The extension to partial functions, corresponding
to programs that are not required to always terminate, is also true and can be
proved in the same way.

From Turing machines to while programs. We begin by proving the im-
plication (2)⇒(1) in Theorem 8.11. Consider a function g which inputs and
outputs set builder expressions, and which is computed by a Turing machine
with first-order access to the atoms. Our goal is to give a while program with
atoms, which inputs a set represented by a set builder expression α and outputs
the set represented by g(α). By assumption (2), the output does not depend on
the choice of α, i.e. if set builder expressions α and β represent the same set,
then the same will be true for g(α) and g(β).

The difficulty is that the while program has access to the set represented by
α, but not to the expression itself. The general idea is that the while program
will compute the expression, or some expression equivalent to it.

The argument below uses two views on atom parameters appearing in a set
builder expression. The first view is to have no free variables, and inline the
atom parameters directly into the expressions, as in the following example:

α = {{2, x} : for x, y ∈ A such that x = 1 ∨ y , 2}.

The second view, which will be useful below, is to use free variables for the
parameters. For example, to recover the set represented by α above, we could
use the expression

β(a, b) = {{a, y} : for x, y ∈ A such that x = b ∨ y , a}

and then instantiate the free variables (a, b) to the atoms (2, 1). The two views
are clearly equivalent. The following lemma uses the second view.

Lemma 8.12. Let M be a Turing machine with first-order access to the atoms.
There is a while program which does the following:

• Input. A number i ∈ {0, 1, . . .} and set builder expressions α, β without pa-
rameters, but with free variables.
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• Output. A first-order formula ϕ with the same free variables as α, β such
that a tuple ā satisfies ϕ(ā) if and only if M produces output β(ā) on input
α(ā) using at most i computation steps.

Proof By examining the decision tree of a Turing machine with first-order
access to the atoms, and putting all of the oracle calls into the formula ϕ. �

We are now ready to complete the proof of the implication (2)⇒(1). Given
a set x, the simulating while program does the following. It loops through all
candidates for i ∈ {0, 1, . . .} and α, β as in Lemma 8.12. Note that i and α, β
have no atoms, and therefore they can be represented using data structures
without atoms, such as binary strings, and the search space of binary strings
can be enumerated. For each choice of i, α, β the while program loops through
all valuations of the free variables ā, and checks if:

(1) the input x is represented by α(ā); and
(2) the Turing machine computing g takes α(ā) to β(ā) in at most i steps.

The second step is checked using Lemma 8.12. For the first item, the while
program simply implements the semantics of set builder expressions, as illus-
trated in Example 8.3. The first-order formulas in the guards of a set builder
expression are evaluated as illustrated in Example 8.4.

From while programs to Turing machines. We now prove the top-down im-
plication (1)⇒(2) in Theorem 8.11. We show that given:

• a while program I;
• a set builder expression representing a program state γ;

a Turing machine with first-order access to the atoms can compute a set builder
expression representing the program state γI after running I on γ.

In the semantics of while programs, infinitely many threads are executed
in parallel, and therefore it will be easier to work with sets of program states
instead of individual program states. If a program I has n variables, then a
program state can be viewed as an n-tuple of sets or atoms, and therefore it
makes sense to talk about program states, or sets of program states, that are
represented by set builder expressions. We adopt this view in the proof below;
it allows us to talk about set builder expressions that represent program states
or sets of program states.

By applying the following lemma to a singleton set of program states, we
get the implication (1)⇒(2) in Theorem 8.11.

Lemma 8.13. There is a Turing machine with first-order access to the atoms
which inputs:
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• a while program I with atoms;
• a set builder expression representing a set Γ of program states over the vari-

ables of I;

and does the following:

• if there is some n ∈ N such that I terminates in at most n steps for all
program states in Γ, then the Turing machine halts and outputs a set builder
expression representing

{(γ, γI) : γ ∈ Γ};

• otherwise, the Turing machine does not terminate.

Proof Structural induction on the text of the program I. The assignments are
immediate, so we only do the proof for the other constructions.

In the proof, we use the Third Symbol Pushing Lemma, which we now re-
call. Consider a hereditarily definable set X. We write X∗ for the set which con-
tains X, its elements, their elements, etc. For example, if X is a set of program
states, then X∗ will contain, among other elements, all values of all variables
used by those program states. Suppose that an n-ary relation

R ⊆ X∗ × · · · × X∗

can be defined by a first-order formula ϕ interpreted in the structure (X∗, ∈
). For example, if X is a set of program states, then R could be the set of
pairs (x, y) such that some program state from X has x in one variable and
has y in some other variable. The Third Symbol Pushing Lemma says that R
is also represented by a set builder expression, which can be computed (in
polynomial time) based on ϕ and a set builder expression representing X. In
the proof below, any construction using this lemma will be called “symbol
pushing”. Symbol pushing will be enough to formalise all operations used in
the semantics of the programming language, with one exception, which we call
Currying.

Having recalled the Third Symbol Pushing Lemma, we proceed to prove the
lemma.

• Sequential composition. We want to compute the set

{(γ, γ(I1; I2)) : γ ∈ Γ}. (8.1)

By induction, compute an expression representing

R1 = {(γ, γ(I1)) : γ ∈ Γ}.

The projection of a relation R1 onto its second coordinate can be defined in
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the language of set theory, and therefore symbol pushing yields an expres-
sion representing the image of R1:

∆ = {δ : (γ, δ) ∈ R1 for some γ}.

By induction, compute an expression representing

R2 = {(δ, δ(I2)) : δ ∈ ∆}.

Since (relational) composition can be defined using the language of set the-
ory, symbol pushing can be used to compute the composition R1 ◦R2, which
is the desired set from (8.1).

• If. We want to compute a set builder expression representing

{(γ, γ(if x δ y then I)) : γ ∈ Γ} (8.2)

where δ is one of =,⊆,(, ∈. The set of program states

Γtrue
def
= {γ ∈ Γ : γ(x) δ γ(y)}

which satisfy the conditional can be defined using the language of set theory,
and therefore a set builder expression for it can be computed by symbol
pushing. The set in (8.2) is equal to

{(γ, γI) : γ ∈ Γtrue} ∪ {(γ, γ) : γ ∈ Γ − Γtrue},

and symbol pushing can be used to compute the appropriate set builder ex-
pression.

• While loop. Consider a definable program of the form

while x = y do J.

Let Γ be a set of program states on which we want to execute the above
program. For n ∈ {0, 1, . . .}, let Γn ⊆ Γ be those program states which take
at most n iterations to finish the while loop. Using the same approach as in
the previous item, for each n we can compute set builder expressions which
represent Γn and the semantics of the while loop with domain restricted to
Γn. We try all n until Γn = Γ. Checking the equality Γn = Γ reduces to
checking if a first-order sentence is true in the atoms, by the First Symbol
Pushing Lemma, and the truth of this sentence is determined using the first-
order oracle available in our computation model (this is also the only place
where we use the oracle). If no such n exists, then the interpreter does not
terminate.
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• For loop. Our goal is to compute a set builder expression representing

{(γ, γ(for x in X do J︸              ︷︷              ︸
I

)) : γ ∈ Γ}. (8.3)

It is enough to show that for every program variable y, we can compute a set
builder expression representing

{(γ, y) : γ ∈ Γ and y is the value of y in γI}, (8.4)

since the resulting sets of pairs can be rearranged using symbol pushing to
get relation on program states from (8.3).

Fix a variable y. Compute a representation of

∆ = {γ[x := x] : γ ∈ Γ, x ∈ γ(y)}.

and use the induction assumption to compute a representation of

{(δ, δJ) : δ ∈ ∆}.

Using the above, compute a representation of

R = {(γ, y) : γ ∈ Γ and y is the value of y in (γ[x := x])J for some x ∈ γ(X)}.

We now need to aggregate, for each program state γ ∈ Γ, all of the values y
with (γ, y) ∈ R. Recall that aggregation uses two cases: identity for program
states γ which have a unique y, and set union for the remaining program
states. Define Γ∪ ⊆ Γ to the program states where set union is used for
aggregation:

Γ∪ = {γ ∈ Γ : there are at least two y with (γ, y) ∈ R}.

A representation of the above set can be used to compute symbol pushing.
By definition, the set (8.4) is

{(γ, y) ∈ R : γ ∈ Γ − Γ∪} ∪ {(γ, {y : (γ, y) ∈ R)}) : γ ∈ Γ∪}, (8.5)

A representation of the first summand above is computed using symbol
pushing. For the second summand, we need to show that set builder ex-
pressions admit a form of Currying, where a binary relation R ⊆ A × B is
converted into the corresponding function A → PB. This construction is
presented in Exercise 137.

�
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Turing machines that use representations of the atoms

In item (2) of Theorem 8.11, to process set builder expressions we used a com-
putation model where first-order queries about the atoms could be answered in
unit time. This is a questionable assumption. We present below a model with-
out such an assumption, which we call Turing machines with representation
access to the atoms. In this model, we assume that atoms can be represented
as bit strings, and therefore one can use standard Turing machines to process
set builder expressions, assuming that the atom parameters are represented us-
ing bit strings. This model depends on the way atoms are represented as bit
strings, but for most structures (e.g. natural numbers) such a representation is
clear, and even in cases where there are several representations (e.g. for the
random graph), they lead to the same notion of computability.

Turing machines with representation access to the atoms were used implic-
itly in Theorem 5.1. Below we show that the two models of Turing machines
are equivalent (the result below discusses only functions from tuples of atoms
to tuples of atoms, but the extension to set-builder expressions as used in The-
orem 8.11 is straightforward).

Theorem 8.14. Assume:

(1) the atom structure is oligomorphic;
(2) the atom structure has a computable Ryll-Nardzewski function;
(3) each atom can be represented in a finite way so that the first-order theory

with atom parameters is decidable, as in the assumptions of Corollary 4.3.

Then for every equivariant partial function f : A∗ → A∗ the following condi-
tions are equivalent:

(A) is computed by a Turing machine with first-order access to the atoms, as
described in Section 8.2;

(B) is computed by a Turing machine where atoms are represented as in assump-
tion (3).

Proof The implication (A)⇒(B) is clear: run the Turing machine from as-
sumption (A) and use assumption (3) to answer the oracle calls. This implica-
tion does not need the assumptions on oligomorphism or computability of the
Ryll-Nardzewski function.

The more interesting part is (B)⇒(A); here we use all assumptions6. Sup-
pose that the input to the function f is an atom tuple ā ∈ A∗. Our goal is to
compute f (ā) using only first-order access to the atoms ā.

6 I do not have an example which shows that all of the assumptions are needed.
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Claim 8.15. One can compute the representation of an n-tuple of atoms which
is in the same equivariant orbit as ā.

Proof By Claim 5.28, we can compute a finite set of first-order formulas,
each one with n free variables, which define the partition of An into orbits.
Using the oracle, we can find the unique formula ϕ in this set which is true
for ā. We can then enumerate through all representations of n-tuples of atoms,
until we find one which satisfies ϕ, using the assumption on decidable first-
order theory with parameters. �

Let b̄ be the tuple from the above claim. Using assumption (B), compute
a representation of the tuple f (b̄). Using the same argument as in the above
claim, compute a first-order formula ψ which defines the equivariant orbit of
the tuple b̄ f (b̄). By equivariance, the output f (ā) is the unique tuple c̄ such
that āc̄ satisfies ψ. This shows how the output of f can be computed using
first-order access to the atoms. �

Exercise 137. Show that given a set builder expression without parameters
representing a set R ⊆ X×Y , one can compute a set builder expression without
parameters representing the set

S = {(x, {y : (x, y) ∈ R}) : x ∈ X}.
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Fixed dimension polynomial time

In the previous chapter, we discussed computable operations on sets repre-
sented by set builder expressions. In this chapter, we discuss the special case
of computable operations which are “tractable” or “polynomial time”. We are
mainly interested in the equality atoms.

It is not clear what tractability should mean, and the main goal of this chapter
is to propose a definition. Such a definition should cover the usual polynomial
time operations, such as computing the reachable vertices in a graph. At the
very least, it should contain equality tests. For example, the program

if x = y then print "equal"

should be tractable. Another requirement for the definition is that, for inputs
that do not use atoms, such as bit strings, the usual notion of polynomial time
is recovered.

The first idea for a definition of tractable computation is to consider opera-
tions on set builder expressions which can be computed by a Turing machine
in polynomial time. This idea can be formalised in at least three ways – all
of them wrong – depending on how the atoms in a set builder expression are
handled by Turing machines:

(1) Turing machines have an oracle which answers first-order queries to the
atoms, as described in Section 8.2. This model is too strong to be called
“tractable” because the oracle can solve PSpace-hard problems in unit time,
see Exercise 138.

(2) As in the previous item, except that only quantifier-free queries can be sent
to the oracle. This model is too weak because it does not even capture set
equality, assuming that np,p. Indeed, the equality test

∅ = {∅ : for x̄ ∈ Ak such that ϕ(x̄)},

160
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corresponds to checking if some atom tuple satisfies ϕ, which is an np-hard
problem even if we assume that guards in set builder expressions – such as
ϕ(x̄) – are quantifier-free formulas (see Exercises 139 and 140 for a stronger
version of this argument, which gives PSpace lower bound instead of np,
even under the assumption of quantifier-free guards).

(3) The atoms are represented using bit strings, as in the assumptions of Corol-
lary 4.3. This model suffers from the same weakness as the previous one,
i.e. it cannot decide set equality in polynomial time.

In all of the above approaches, the underlying problem is that the first-order
theory of the atoms is computationally hard (it is PSpace hard if there are
at least two atoms, see Exercise 138). The solution proposed in this chapter
is to identify a source of this hardness: the “dimension” of formulas and set
builder expressions, which is roughly speaking the number of variables. The
proposed notion of tractability avoids computational hardness, by using algo-
rithms whose running time is polynomial, but the degree of the polynomial is
allowed to depend on the dimension.

9.1 Fixed dimension polynomial time on set builder
expressions

In this section, we present a syntactic description of fixed dimension polyno-
mial time, which talks about programs that input and output set builder expres-
sions. Later, in Section 9.2, we describe the complexity class in a way which
is less dependent on the representation using set builder expressions.

To motivate the complexity class, consider the graph reachability problem.
Graph reachability will turn out to be in the class, along with other problems
that can be solved using fixpoint algorithms.

Example 9.1. Consider graph reachability in the equality atoms: we are given
a directed graph and a set of source vertices, and we want to compute the
vertices that are reachable from the sources. Recall the algorithm described in
Section 5.1, which computes sets

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ V (9.1)

where Vi stores vertices of the graph that are reachable in at most i steps from
the sources. The sequence stabilises in a finite number of steps because at
each step it adds some orbits of V , with respect to the support of the graph,
and there are finitely many of these orbits. Let us calculate in more detail the
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number of orbits, which gives an upper bound on the number of steps needed
for stabilisation.

To simplify the calculation, assume that the vertex set in the graph is a subset
of

Ak1 + · · · + Akn for some k1, . . . , kn ∈ {0, 1, . . .},

i.e. it is a straight set in the sense of Definition 6.7. Let ā be a tuple of atoms
that supports the graph (its vertices, edges and sources). For every i ∈ {0, 1, . . .},
the vertices in Vi are a union of ā-orbits in the vertices. The number of ā-orbits
in the vertices is at most∑

j∈{1,...,n}

number of ā-orbits in Ak j .

One can describe a ā-orbit in Ak j by a function of type

{1, . . . , k j} → {1, . . . , k j} + atoms in ā (9.2)

which says, for each coordinate, if the coordinate uses an atom from ā or a
fresh atom. The fresh atoms are described using identifiers from {1, . . . , k j}.
Identifiers can be used several times when coordinates are equal to each other.
Different functions can describe the same orbit, by permuting identifiers, and
therefore the number of functions as in (9.2) is only an upper bound on the
number of orbits. Summing up (literally), the number of ā-orbits of vertices is
at most ∑

j∈{1,...,n}

(k j + number of atoms in ā)k j .

The number above is polynomial once we fix an upper bound on the dimen-
sions k1, . . . , kn, but keep the number n of orbits variable. If we think of the ver-
tices as being states of a register automaton, then the dimension is the number
of registers, while the number of orbits is related to the number of locations.

The above example illustrates the idea behind fixed dimension polynomial
time: the algorithm should run in polynomial time once the dimension is fixed.
In the example, we made a simplifying assumption that the vertices are tuples
of atoms, in which case there was a clear notion of dimension. For the general
definition, we need to define dimension for arbitrary sets represented by set
builder expressions. We do this below.

Size and dimension for set builder expressions. We begin by fixing some
terminology. When defining the dimension of a set builder expression, we pay
attention to the distinction between parameters (atoms that are written in the
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guard formulas) and variables (atoms that are bound inside the set builder ex-
pression). This distinction is illustrated in the following picture:

variables

parameters

As in Section 4.1, if α is a set builder expression, then a subexpression is de-
fined to be any set builder expression that appears nested inside α, and a sub-
formula is defined to be any first-order logic formula that appears in a guard.
Here is a picture:

subexpressions subformulas

Definition 9.2 (Size and dimension of set builder expressions). Let α be a set
builder expression. The size of α, denoted by |α| is defined to be the number
of distinct subexpressions and subformulas1. The dimension of α, denoted by
dim(α), is defined to be the least k ∈ {0, 1, . . .} such that every subexpression
has at most k free variables, and every subformula has at most 2k free variables.

Example 9.3. The set builder expression in the picture before Definition 9.2
has dimension 1. This is because each of its subexpressions has at most 1 free
variable, and each of its subformulas has at most 2 free variables, as explained
in the following picture:

free variable x

free variable y free variables x, y free variable x

no free variables

1 This notion of size was already used in Section 4.1.
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If the atoms are homogeneous, then every guard can be made quantifier-free.
When the guards are quantifier-free, and each subexpression has at most k free
variables, then each guard has at most 2k free variables, with the upper bound
of 2k achieved for expressions of the form

α(x̄) = {β(ȳ) : for ȳ ∈ Ak such that ϕ(x̄, ȳ)︸ ︷︷ ︸
2k free

variables

}

where the free variables of the outer and inner expressions are disjoint. There-
fore, if the guards are quantifier-free, the restriction on the variables in the
subformulas becomes superfluous. For similar reasons, if a set builder expres-
sion has dimension k, then its bound variables can be renamed so that at most
2k distinct variables appear in the expression. Therefore, an alternative but es-
sentially equivalent notion of dimension would arise if we simply counted the
number of distinct variables that appear in the expression. For reasons that will
be explained in Section 9.2, we want the expression in Example 9.3 to have
dimension 1 and not 2, which is why we do not use the alternative definition.

Example 9.4. Definition 10.15 gives the expected dimension k for sets of the
form Ak, see Exercise 141. A hereditarily finite set, such as this one

has no variables, and therefore it has dimension 0.

Definition of fixed dimension polynomial time. Having defined size and di-
mension of set builder expressions, we can define the complexity class that is
the topic of this chapter.

Definition 9.5 (Fixed Dimension Polynomial Time). A program which inputs
and outputs set builder expressions2 is said to run in fixed dimension polyno-
mial time if the running time on a set builder expression α is

O(|α| f (dim(α))) for some computable f : N→ N,

and the dimension of the output set builder expression is at most

g(dim(α)) for some computable g : N→ N.
2 The program is modelled as a Turing machine with quantifier-free access to the atoms. This is

the same model as in Section 8.2, except that only quantifier-free formulas can be sent to the
oracle. For example, if the atoms are the equality atoms, then the Turing machine has an
oracle which tests the atoms for equality. An equivalent model would use an oracle which
inputs only formulas of the form R(a1, . . . , an) where a1, . . . , an are atoms and R is either
equality or a relation in the vocabulary of the atoms, instead of quantifier free formulas.



9.1 Fixed dimension polynomial time on set builder expressions 165

The class in Definition 9.5 is similar to the class xp from parameterised
complexity, where the degrees of the polynomials are allowed to depend on
the parameter. An alternative would be to consider “fixed dimension tractable”
algorithms, see Exercises 146 and 147, where the degree of the polynomial is
fixed, but the coefficient in the O notation is allowed to depend on the dimen-
sion.

For the rest of this section, we only consider the equality atoms. We will
show that natural problems, such as graph reachability, can be solved in fixed
dimension polynomial time. The key property of the equality atoms that makes
the theory work is that for every ā ∈ An, the number of ā-orbits in Ak is at most

(n + k)k,

which is polynomial once k is fixed. We assume the equality atoms to make
notation lighter, but as shown in the exercises, similar results can be obtained
for other choices of atoms, e.g. (Q, <), where the key property is also true.
However, there are atom structures, e.g. the graph atoms from Section 7.3.1,
where the key property and the accompanying results fail.

Quantifier elimination. We know that first-order formulas admit quantifier
elimination (Theorem 7.6), and that quantifier elimination is effective (the
proof of Theorem 7.20). We now strengthen the effectivity result, by showing
that quantifier elimination can be done in fixed dimension polynomial time.

Lemma 9.6. Assume the equality atoms. There is an algorithm which inputs
a first-order formula over the vocabulary of the atoms, possibly using atom
parameters, and outputs an equivalent quantifier-free formula, and whose run-
ning time is at most

(k + (number of atom parameters))k︸                                         ︷︷                                         ︸
c

·O(number of subformulas)

where k is the maximum number of free variables, ranging over subformulas
in ϕ. The size of the output quantifier-free formula is at most c.

Proof By induction on the formula size, we convert each subformula of ϕ
into a quantifier-free formula. If the subformula has i ≤ k free variables and
atom parameters ā ∈ An, then the equivalent quantifier-free formula can be
written as a union of ā-orbits in Ai, which has size at most

(number of ā-orbits in Ai)︸                            ︷︷                            ︸
≤(n+k)k

· (size of a formula defining a single ā-orbit)︸                                                   ︷︷                                                   ︸
O(i)

.

�
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The same argument as in the above lemma works also for the atoms (Q, <),
but it does not work for the random graph, see Exercise 142.

Symbol pushing. Recall the three Symbol Pushing Lemmas from Chapter 4,
which showed how operations on set builder expressions (like testing equality
or computing the intersection) boil down to operations on first-order formu-
las (like conjunction or quantification). It turns out that the transformations in
the Symbol Pushing Lemmas do increase the dimensions too much, and there-
fore we can use fixed dimension polynomial time algorithms to process the
resulting first-order formulas and set builder expressions. Here is one exam-
ple of this reasoning, which is a fixed dimension polynomial time version of
Corollary 4.3.

Lemma 9.7. Assume the equality atoms. There is a fixed dimension polynomial
time algorithm which does this:

• Input. Sets X and Y, given by set builder expressions.
• Output. Which of the relationships X ∈ Y, X = Y and X ⊆ Y are true.

Proof Consider the first question X ∈ Y . Using the First Symbol Pushing
Lemma, compute in polynomial time a first-order sentence ϕ, such that X ∈ Y
holds if and only if A |= ϕ. A straightforward analysis of the proof of the First
Symbol Pushing Lemma shows that the number of free variables in subformu-
las of ϕ is bounded by the sum of dimensions in the set builder expressions
representing X and Y . Therefore, Lemma 9.6 can be applied to convert ϕ into
a quantifier-free sentence in fixed dimension polynomial time. A quantifier-
free sentence is simply a Boolean combination of equalities and inequalities
on atom parameters, like this example

1 , 2 ∧ (1 = 1 ∨ 2 = 3),

and its truth value can be checked using the oracle in the Turing machine. �

Fixpoint logic. So far, we have shown that fixed dimension polynomial time
allows basic operations on set builder expressions, such as testing equality,
computing intersection, or quantifier elimination. We now generalise these re-
sults, by showing that every fixpoint algorithm runs in fixed dimension polyno-
mial time. This will imply that many natural problems – such as graph reach-
ability or automaton minimisation – can be solved in fixed dimension polyno-
mial time.

To formalise fixpoint algorithms, we use fixpoint logic, which is the follow-
ing extension of first-order logic. Apart from the usual constructors of first
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order logic (Boolean operations and quantifiers), we allow a fixpoint operator
defined as follows. Suppose that ϕ is an already defined formula of fixpoint
logic, which has free variables x1, . . . , xn. Then for every n-ary relation sym-
bol R in the vocabulary of ϕ, fixpoint logic also has a formula denoted by µR ϕ.
This formula has the same free variables as ϕ, and its vocabulary is the same
as for ϕ but without R. Define the semantics of this formula as follows. For a
structure B over the vocabulary of µR ϕ, consider the following operation on
n-ary relations in B:

R 7→ R ∪ tuples that satisfy ϕ in B extended with R. (9.3)

Define R0 to be the empty n-ary relation on B, and for an ordinal number i > 0
define Ri to be the result of applying the operation (9.3) to the union

⋃
j<i R j.

Since the operation (9.3) is inflationary, i.e. the output contains the input, there
must be some fixpoint, i.e. some ordinal number i such that R j = Ri for all
j > i. The fixpoint Ri is defined to be the semantics of the formula µR ϕ in
the structure B. This completes the definition of the syntax and semantics of
fixpoint logic.

Example 9.8 (Graph reachability). We view a directed graph as a structure
where the universe is the vertices and there is one binary relation E for the
edges. The fixpoint formula

ψ(x1, x2) = µR (x1 = x2 ∨ ∃z E(x1, z) ∧ R(z, x2))

describes the reachability relation in the graph, and therefore a graph is strongly
connected if and only if it satisfies

∀x1∀x2 ψ(x1, x2).

Example 9.9 (Automaton minimisation). We view a nondeterministic finite
automaton as a relational structure, where the universe is the disjoint union
of states and input letters, there are unary predicates for the states (Q), initial
states (I), final states (F) and input letters (I), and there is a ternary predicate
(δ) for the transition relation. Suppose that the automaton is deterministic. The
following fixpoint formula

ψ(q1, q2) = µR ∨


Q(q1) ∧ Q(q2) ∧ (F(q1)⇔ ¬F(q2))︸                                         ︷︷                                         ︸

one of the states accepts the empty word, the other does not

∃a ∃p1 ∃p2 δ(q1, a, p1) ∧ δ(q2, a, p2) ∧ R(p1, p2)︸                                                           ︷︷                                                           ︸
some letter takes (q1, q2) to a pair of states that accept different words

selects pairs of states which accept different words. Therefore, the quotient of
the reachable states (which can also be described in fixpoint logic, as shown in
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Example 9.8) under the equivalence relation defined by the complement of ψ
gives the minimal automaton.

Other examples of algorithms that can be formalised in fixpoint logic include
nonemptiness for nondeterministic automata, or nonemptiness for context-free
grammars. All of these algorithms will run in fixed dimension polynomial time
thanks to the following theorem.

Theorem 9.10. Assume the equality atoms. For every formula ϕ(x1, . . . , xn) of
fixpoint logic there is a fixed dimension polynomial time algorithm which does
this:

• Input. A relational structure over the vocabulary of ϕ.
• Output. The n-ary relation defined by ϕ in the input structure.

Both the input and output are represented by set builder expressions.

Proof Induction on the size of the formula. For the usual operators of first-
order logic, namely

ϕ ∨ ψ ϕ ∧ ψ ∃x ϕ ∀x ϕ ¬ϕ,

we use the Symbol Pushing Lemmas to construct set builder expressions for the
semantics of the bigger formula using the semantics of the smaller formulas.
The interesting case is the fixpoint formula

µR ϕ(x1, . . . , xn). (9.4)

Suppose we want to evaluate the above formula in a relational structure B. Let
ā be the atom parameters that appear in the set builder expression representing
B. The tuple ā supports B and any relation on B that can be defined in first-
order logic. In particular, it supports the finite approximations

∅ = R0 ⊆ R1 ⊆ · · · ⊆ Bn

in the definition of the semantics of the fixpoint operator. For the same reasons
as in the algorithm for graph reachability, each of these subsets is supported by
ā, and therefore the fixpoint will stabilise in a finite number of steps (without
needing infinite ordinal numbers such as ω). The rest of this proof is devoted to
arguing that the finite number of steps is, in fact, fixed dimension polynomial.

By the Second Symbol Pushing Lemma, the Cartesian product of two sets
can be computed in polynomial (and not just fixed dimension polynomial
time), assuming representation by set builder expressions. Therefore, since the
number of variables n in (9.4) is fixed, it follows that taking the n-th power of
a set can be computed in polynomial time. We now show that the partition into
orbits can be computed in fixed dimension polynomial time.
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Claim 9.11. The following can be done in fixed dimension polynomial time:

• Input. A set builder expression α and a tuple of atoms ā which contains all
atom parameters used in α;

• Output. Set builder expressions that represent the partition of (the set rep-
resented by) α into ā-orbits.

Proof If α is a union expression α1 ∪ · · · ∪αn, then apply the algorithm to the
expressions α1, . . . , αn, collect the resulting partitions, and eliminate possible
duplicates using Lemma 9.7. It remains to treat the case when α is of the form

α = {β(x̄) : for x̄ ∈ Ak such that ϕ(x̄)}.

Because the guard ϕ(x̄) uses only atom parameters from ā, it describes an ā-
supported subset of Ak, and it therefore can be rewritten as a disjunction

ϕ(x̄) = ϕ1(x̄) ∨ · · · ∨ ϕm(x̄)

where each ϕi(x) describes a ā-orbit. By Lemma 9.6, the number of these
formulas and the time required to compute them is fixed dimension polyno-
mial. Define α1, . . . , αm to be set builder expressions that are obtained from
α by replacing the guard ϕ with the formulas ϕ1, . . . , ϕm, respectively. Since
ā contains all the atom parameters in β, the function b̄ 7→ β(b̄) maps ā-orbits
contained in Ak to ā-orbits contained in the set represented by α. Therefore,
α1, . . . , αn is the list of ā-orbits contained in α. This list might contain repeti-
tions, since b̄ 7→ β(b̄) need not be injective, but repetitions can be eliminated
using Lemma 9.7. �

Apply the above claim to the n-th power of the universe of B, yielding a list
Φ of set builder expressions which represent the partition of Bn into ā-orbits.
Consider the sequence of n-ary relations {Ri}i used when defining the seman-
tics of fixpoint logic. Since the semantics of fixpoint logic are equivariant, it
follows that each Ri ⊆ Bn is supported by ā, and can therefore be represented
by set a builder expression, call it αi, which is a union of set builder expres-
sions taken from the list Φ. In particular, the number of steps needed to reach
the fixpoint is at most |Φ|, and is therefore also fixed dimension polynomial.
We then compute the fixpoint using the induction assumption, by starting with
the empty set, and applying in each step the formula ϕ to the relation computed
in the previous step. There is a small caveat: at each step in the fixpoint compu-
tation, we need to normalise the set builder expression representing Ri so that
it is a union of expressions from Φ, since otherwise the resulting expressions
might grow too large. �
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Corollary 9.12. The following problems for hereditarily orbit-finite inputs are
in fixed dimension polynomial time:

(1) graph reachability;
(2) emptiness for nondeterministic automata;
(3) minimisation for deterministic automata;
(4) emptiness for context-free grammars.

Exercises

Exercise 138. Assume any atom structure with at least two elements. Show
that the following problem is PSpace-complete: given a sentence of first-order
logic, decide if it is true in the atoms.

Exercise 139. Assume the equality atoms. Show that the following problem is
PSpace-complete: given two set builder expressions without atom parameters,
decide if they represent the same set.

Exercise 140. Show that the problem from Exercise 139 remains PSpace-
complete even if we require the guards in set builder expressions to be quantifier-
free.

Exercise 141. Show that the dimension of Ak, according to Definition 9.2, is
k.

Exercise 142. Consider atoms which are not necessarily the equality atoms.
We say that the atoms have fixed dimension polynomial orbit count if for every
ā ∈ An, the number of ā-orbits in Ak is

O(n f (k)) for some computable f : N→ N.

Which of the following atoms have fixed dimension polynomial orbit count?

(1) The bit vector atoms.
(2) The tree atoms.
(3) The equivalence relation atoms.
(4) A finite atom structure.

Exercise 143. Let A be a homogeneous structure. Show that A has fixed di-
mension polynomial orbit count if and only if there is a fixed dimension poly-
nomial time program which does this:
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• Input. A set builder expression α and an atom tuple ā ∈ A∗;
• Output. A Von Neumann numeral which represents the number of ā-orbits

in the set represented by Ak.

Exercise 144. Assume that the atoms:

(1) are homogeneous over a finite vocabulary;
(2) have a computable Ryll-Nardzewski function;
(3) have fixed dimension polynomial orbit count, as defined in Exercise 142;
(4) admit a polynomial time algorithm which answers questions of the form

A |= ∃x1, . . . , xn ϕ

where ϕ is quantifier-free and in dnf.

Show that there is a fixed dimension polynomial program which inputs a first-
order formula over the vocabulary of the atoms (possibly using constants from
the atoms), and which outputs an equivalent formula that is quantifier-free.

Exercise 145. Let A be a class of finite structures over a finite relational vo-
cabulary, such that membership in A can be tested in polynomial time. Show
that the Fraı̈ssé limit of A satisfies the assumptions in Exercise 144.

Exercise 146. Assume the equality atoms. Consider an algorithm which in-
puts and outputs set builder expressions. We say that the algorithm is fixed
dimension tractable if its running time on a set builder expression is at most

f (dimα) · |α|c

for some computable function f and constant c that does not depend on the
dimension. Show that there is no fixed dimension tractable algorithm for graph
reachability, under the following assumption from the field of fixed parameter
tractable algorithms:

(*) There is no algorithm which inputs a finite graph G and a first-order sentence
ϕ using a binary edge relation, outputs whether or not G |= ϕ, and runs in
time

f (ϕ) · |G|c

for some computable function f and constant c.
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Exercise 147. The issues in Exercise 146 go away if we disallow parameters.
Show that there is a fixed dimension tractable algorithm for graph reachability,
which works for equivariant inputs (i.e. the input is a set builder expression
without atom constants).

9.2 A semantic version

In the previous section, we defined size and dimension for set builder expres-
sions. These notions were based on the syntax of set builder expressions. One
could imagine that different choices of syntax could lead to different notions
of size and dimension, and therefore also to different notions of fixed dimen-
sion polynomial time computation. In this section, we argue that this is not
the case, because size and dimension can be defined without referring to set
builder expressions, as explained in the following definition.

Definition 9.13 (Size and dimension of a set). Assume the equality atoms.
Let X be an atom or a hereditarily orbit-finite set. Define the dimension of X,
denoted by dim X, to be

max
x∈X∗

|

least
support

of x︷︸︸︷
sup(x)−

least
support

of X︷ ︸︸ ︷
sup(X)︸             ︷︷             ︸

difference of two sets

|

where X∗ denotes the set that contains X, its elements, their elements, and so
on (see Definition 4.6). Define the size of X, denoted by |X| to be the number
of orbits in X∗ with respect to atom automorphisms that fix all atoms in the set
sup(X).

The above definition describes dimension and size in purely semantic terms,
without referring to syntactic representations, such as set builder expressions.
We will argue that the above definition agrees with the syntactic notions from
the previous section. The dimension will turn out to be the exact same number,
i.e. the dimension from the above definition will be equal to the least dimension
of set builder expressions defining the give set. For size, the exact numbers will
be different, but they will agree up to fixed dimension polynomial corrections.

Example 9.14. Consider the set X = Ak. This set can be represented by a set
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builder expression of the form

{ (x1, . . . , xk)︸       ︷︷       ︸
syntactic sugar for
iterated application
of Kuratowski pairs

: for (x1, . . . , xk) ∈ Ak}

which has size linear in k. What is the dimension of X, as per Definition 9.13?
The set X is equivariant (i.e. it has empty support), and the maximal support
size for elements of X∗ is k. Therefore, the dimension is k. What is the size? The
number of orbits in X∗ with respect to all automorphisms (because X has empty
support) is at least3 the number of equivariant orbits in Ak, and is therefore
exponential in k.

The above example shows that the size of a set, as per Definition 9.13, can
be exponentially larger than the size of a set builder expression that represents
it. Nevertheless, as we will explain below, the exponential uses the dimension,
and becomes a polynomial once the dimension is fixed.

Canonical expressions. To relate the two kinds of dimension and size, i.e. the
syntactic one from the previous section and the semantic one from Defini-
tion 9.13, we associate to each hereditarily orbit-finite set X a set builder ex-
pression, called its canonical expression, and we show that its size and di-
mension (as defined for set builder expressions) are related to the size and
dimension of the represented set X (as defined for sets in Definition 9.13). A
set might get several canonical expressions, but these will be isomorphic in a
sense that will be defined below.

Definition 9.15 (Canonical expression). Canonical expressions are defined by
induction on rank, i.e. the nesting depth of set brackets.

• For an atom, its canonical expression is the atom itself.
• For the empty set, its canonical expression is the set itself.
• Consider a nonempty hereditarily orbit-finite set X. Let

X = X1 ∪ · · · ∪ Xn

be the partition of X into orbits with respect to its least support. In other
words, each of the sets X1, . . . , Xn is an orbit with respect to atom automor-
phisms that are the identity when restricted to the least support of X. If n ≥ 2,
then define the canonical expression of X to be the union of the canonical ex-
pressions of the orbits X1, . . . , Xn. This expression depends on the ordering

3 We write “at least” because X∗ contains elements that are not k-tuples of atoms, due to the
definition of tuples as sets in Kuratowski encoding.
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of the orbits X1, . . . , Xn and the choices of canonical expressions for these
orbits.

We are left with the case when X has exactly one orbit with respect to
its least support. Choose some x ∈ X, and choose some canonical expres-
sion α of x, obtained by induction assumption. (The resulting expression
will depend on these choices, but all choices will lead to isomorphic expres-
sions.) Consider the atom parameters that appear in α but do not appear in
the least support of X. Order these atom parameters according to their ap-
pearance inα, yielding a list of atoms b1, . . . , bk. In the expression α, replace
the atoms b1, . . . , bk with fresh variables x1, . . . , xk, yielding a set builder
expression β(x1, . . . , xk). The canonical expression for X is defined to be

{β(x1, . . . , xk) : for x1, . . . , xk ∈ A such that ϕ(x1, . . . , xk)}

where ϕ is any quantifier-free formula defining the orbit of the tuple (b1, . . . , bk)
with respect to the least support of X.

Example 9.16. A canonical expression of

(1, 2) = {1, {1, 2}}

is the one given on the right side above. In general, for every set that is hered-
itarily finite (not just orbit-finite), the canonical expression has dimension 0,
i.e. it uses no bound variables.

The canonical expression of A2 is

{(x1, x2) : for (x1, x2) ∈ A2 such that x1 , x2} ∪ {(x, x) : for x ∈ A}.

Call two set builder expressions isomorphic if one can be obtained from the
other by changing the order of unions, renaming bound variables, and replac-
ing guards by equivalent quantifier-free formulas which use the same atom
parameters. For example,

{x : for x ∈ A such that x , 2} ∪ {1}

is isomorphic to

{1} ∪ {y : for y ∈ A such that 2 , y ∧ y = y}.

The following lemma shows that the canonical expression is unique up to iso-
morphism (and therefore it makes sense to talk about the canonical expression
in contexts that do not distinguish between isomorphic expressions), uses only
atoms from the least support, and has optimal dimension and small size.

Lemma 9.17. Let X be a hereditarily orbit-finite set, and let α be a canonical
expression. Then
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(1) all other canonical expressions of X are isomorphic to α:
(2) the atom parameters in α are exactly the least support of X;
(3) the dimension of α is exactly dim X;
(4) there is a constant c that depends only on dim X such that

|α|︸︷︷︸
Definition 9.2

≤ c · |X|.︸︷︷︸
Definition 9.13

Proof The first two items are proved by a straightforward induction on the
rank of X, so we focus only on items (3) and (4). Every subexpression β of the
canonical expression α can be obtained as follows: take a canonical expression
of some x ∈ X∗ and replace all atom constants that are not in the least support
of X with free variables (this can be proved by induction on the rank of x, start-
ing with maximal rank and proceeding down to smaller ranks). The number of
free variables introduced this way is at most dim X, thus proving item (3). The
same argument shows that the number of subexpressions – modulo isomor-
phism – in the canonical expression of X is exactly |X|. Since the size of a set
builder expression is the number of subexpressions not modulo isomorphism,
to prove (4) we additionally observe that one can rename the variables in the
canonical expression so that at most c distinct subexpressions are isomorphic
to each other, where c is a constant that depends only on the dimension k and
does not depend on X. �

The previous lemma showed that the canonical expression is not too big.
The following lemma shows that it is not too small: its dimension is minimal,
and its size is minimal among expressions with the same dimension, up to a
polynomial correction.

Lemma 9.18. Let X be a hereditarily orbit-finite set, and let α be any set
builder expression that represents it. Then the dimension of α is at least dim X.
Furthermore, if the dimension of α has the optimal value4 dim X, then

|X| ≤ |α|2·(dim X).

Proof We begin by showing that α has dimension at least dim X. To show
this, we prove that some subexpression of α has at least dim X free variables.
Let x ∈ X∗ be a witness for dim X, which means that the least support of x
contains atoms b1, . . . , bdim X that are not in the least support of X. Choose an
atom automorphism π which is the identity on the least support of X and which
maps b1, . . . , bdim X to some fresh atoms that do not appear as constants in the
expression α. Since π is the identity on the least support of X (which is also

4 Exercise 148 explains the assumption on optimal value.
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the least support of X∗) it follows that π(x) ∈ X∗. The set π(x) must be obtained
from some subexpression of α by instantiating variables to atom parameters,
and since α does not use the atoms π(b1), . . . , π(bdim X) in its syntax, it follows
that the subexpression must have at least dim X free variables.

It remains to show the upper bound on the size of |X|. Let α be a set builder
expression of optimal dimension dim X which represents X, and let ā be the
atoms that appear in α. The atoms ā support X. Every x ∈ X∗ is obtained by
taking some subexpression β of α and assigning atoms parameters to its free
variables. Because only atoms from ā appear in β, it follows that β maps ā-
orbits to ā-orbits, and therefore every ā-orbit contained in X is of the form
β(Y) where β is a subexpression of α and Y is an ā-orbit of valuations of the
free variables in β. It follows that the number of ā-orbits in X∗ is at most

(number of subexpressions of α) · (number of ā-orbits in Adim X). (9.5)

In the above we use the assumption that α has optimal dimension, and therefore
every subexpression β has at most dim X free variables. The size |X| is defined
to be the number of orbits in X∗ with respect to the least support of X, and this
least support is contained in ā. Since bigger supports lead to more orbits, it
follows (9.5) is an upper bound on |X|. If ā has n atoms, then the number of
ā-orbits in Adim X is at most (n + dim X)dim X , and since n + dim X is at most the
size of α, we get the desired inequality. �

Putting the above two lemmas together, we see that the optimal dimension
for expressions defining a set X is exactly dim X and

d
√
|X|

Lemma 9.18
≤ |α|︸︷︷︸

miminal size of expression
that represents X and
has dimension dim X

Lemma 9.17
≤ c|X|

for constants c, d that depend only on dim X.
By formalising the definition of canonical expressions, one can show that

there is a fixed dimension polynomial time algorithm which inputs a set builder
expression and outputs the canonical expression of the underlying set. A corol-
lary is that a function

f : hereditarily orbit-finite sets→ hereditarily orbit-finite sets

can be computed in fixed dimension polynomial time if and only if there is
an algorithm which inputs a canonical expression of a set X, and outputs the
canonical expression of f (X), and which runs in polynomial time for sets of
fixed dimension dim X. This characterisation is less syntactic than the original
definition. It is still somehow syntactic, since it uses the canonical expression,
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although one could argue that the canonical expression can be defined without
using set builder notation.

Fixed dimension polynomial while programs. To end this chapter, we show
a sufficient condition for fixed dimension polynomial time, which does not
mention any representation of hereditarily orbit-finite sets, such as set builder
expressions. The sufficient condition is defined as a restriction on the while
programs from Chapter 8. The general idea is to bound the time and space
used by a while program so that it is fixed dimension polynomial. To do this,
we need to define the time and space used by a while program. To define time,
we add a new program variable called time, which stores the running time
encoded as a Von Neumann numeral. The variable is initialised to 0. To update
the time variable, we modify the original program by inserting an instruction

time := time ∪ {time}

after every instruction. The above instruction simply increments the numeral
representing the time. For Von Neumann numerals, maximum is the same as set
union, and therefore the running time of a for loop is the same as the maximal
running time of each of its threads. The running time of a program is then
defined to be the value of the time variable at the end of the program.

Example 9.19. Recall the program which projects a Kuratowski pair p to its
first coordinate. Here is its annotation with the time variable:

ret := ∅

time := time ∪ {time}

for a in p do

for x in a do

for y in p do

if p = {x,{x,y}} then

ret:={x};

time := time ∪ {time}

time := time ∪ {time}

time := time ∪ {time}

time := time ∪ {time}

time := time ∪ {time}

The running time of this program is 5 or 6, depending on whether the if is
executed. More generally, every program that does not use while has constant
running time.
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To define the space consumption, we use a similar idea. We add a variable
space, initially set to be the empty set, and modify the original program by
adding

space := space ∪ {x, y, z, ..}

after each instruction, where x, y, . . . are all of the program variables (a finite
list for every program). The space consumption is then defined to be the size
of the variable space at the end of program execution, with size measured
according to Definition 9.13.

Definition 9.20. A fixed dimension polynomial while program is a while pro-
gram5 where the running time and space consumption (both of which are nat-
ural numbers) are fixed dimension polynomial in terms of the input (the size
and dimension of the input are measured according to Definition 9.13). Fur-
thermore, the dimension of the output must be bounded by a function of the
dimension of the input.

A more detailed analysis of the semantics of while programs shows that

fixed dimension polynomial while programs︸                                               ︷︷                                               ︸
Definition 9.20

⊆ fixed dimension polynomial time.︸                                  ︷︷                                  ︸
Definition 9.5

In general, the above inclusion is strict, which follows from similar results
about Choiceless Polynomial Time, see (Rossman, 2010, Section 6). For deci-
sion problems, where the output is just true or false, the above inclusion could
be an equality, for all we know. However, proving equality for decision prob-
lems would imply that Choiceless Polynomial Time captures polynomial time
for decision problems, which is a well-known open problem. All of these re-
sults can be found in Bojańczyk and Toruńczyk (2018).

Exercises

Exercise 148. In Lemma 9.17, the bound |X| ≤ |α|2 dim X assumes that α has
minimal dimension. Show that the assumption on minimal dimension is im-
portant because even for sets of dimension 0, one can make a set builder ex-
pression exponentially smaller at the cost of using dimension > 0.

5 We assume that while programs have a built-in atomic operation X:=|Y| which computes the
size of the set stored in Y, and loads the corresponding Von Neumann numeral into X. This
operation can be computed in exponential time – and is therefore not needed if we do not care
about running time – but it is needed as a primitive if we want to have any hope to capture
polynomial time.
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Exercise 149. In Lemma 9.17, the bound |X| ≤ (size of α)dim X has dim X in
the exponent. Show that one cannot replace the exponent by a constant inde-
pendent of dim X.

Exercise 150. Show that the |X| is not upper bounded by any fixed dimen-
sion polynomial function of the parameter “number of equivariant orbits that
intersect X∗”.
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Turing machines

In Chapters 8 and 9, we used while programs for computation with atoms.
There is a reason why we did not use Turing machines.
The input of a Turing machine is a string over some input alphabet. There-

fore, using Turing machines for objects that are not strings requires represent-
ing those objects as strings. Even without atoms, string representation can be
problematic. For example, representing a graph as a string imposes an order
on the vertices, an order that could potentially be exploited by an algorithm1.
In the presence of atoms, the issues related to string representation get only
harder. This is why Turing machines are not the most natural model to com-
pute on orbit-finite objects, and in Chapters 8 and 9 we used while programs
that worked directly on sets.

Nevertheless, there are interesting things to say about Turing machines with
atoms, and we say some of them in this chapter. The highlights are that, for Tur-
ing machines with atoms, one can prove nontrivial separations for complexity
classes:

• In Section 10.2, we prove that p ( np holds in the bit vector atoms. This is
witnessed by the language

{a1 · · · an ∈ A : a1, . . . , an are not linearly independent},

which is not recognised by any deterministic Turing machine in polynomial
time, but it is recognised in nondeterministic polynomial time (guess the
linear combination that gives zero) or deterministic exponential time (try all
combinations).

• In Section 10.3, we prove a similar separation for the equality atoms. Namely,
there is a language that is recognised by a nondeterministic Turing machine

1 To read more about these issues, see Grohe (2008).

180
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(even in polynomial time), but not recognised by any deterministic Tur-
ing machine (even without restrictions on running time). This separation is
harder than in Section 10.2, and uses the Cai-Fürer-Immerman construction
from finite model theory.

The separations described above are unlikely to be useful in separating com-
plexity classes without atoms. The accompanying proofs are based on the lim-
ited access that Turing machines have to their input and on the symmetries that
result from applying atom automorphisms.

10.1 Orbit-finite Turing machines

Before presenting the separation results about Turing machines, we begin by
introducing Turing machines with atoms, discussing some examples, and ex-
plaining the importance of alternating Turing machines. We assume for this
section that the atoms are oligomorphic.

An orbit-finite Turing machine is defined the same way as a Turing machine,
except that all components (states, input and work alphabets, transitions) are
required to be orbit-finite sets with atoms. For the sake of concreteness, we use
a model which has single tape, infinite to the right, where the transition relation
is a subset of:

(

work alphabet︷︸︸︷
Γ ∪ {blank}) ×

states︷︸︸︷
Q︸                                 ︷︷                                 ︸

what the machine sees

×
(
{accept, reject} ∪ (

write a symbol and move the head︷                          ︸︸                          ︷
Γ × Q × {left, stay, right})

)︸                                                       ︷︷                                                       ︸
what the machine does

.

Recall that every orbit-finite set admits a finitely supported bijection with a
set that is hereditarily orbit-finite. Since the questions about Turing machines
that we study are invariant under renaming state spaces and alphabets, we can
assume without loss of generality that the Turing machines are hereditarily
orbit-finite (and therefore can be represented using set builder expressions by
Theorem 4.10).

Here is a picture of a computation:
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a c d ce c ...b

a c d ce c ...b
p

a c d ce c ...c
r

a c d ce d ...c
q

cell with the head

tim
e

space

cell without the head

Many results for Turing machines remain true for orbit-finite Turing ma-
chines, such as equivalence of single-tape and multi-tape machines, using the
standard proofs. What does not work, however, is determinisation; this will be
discussed in Sections 10.2 and 10.3. For all we know, nondeterministic ma-
chines are weaker than alternating machines; this will be discussed later in this
section.

Example 10.1 (A Turing machine checking that all letters are different). Con-
sider the equality atoms. Assume that the input alphabet isA. We show a deter-
ministic Turing machine which accepts words where all letters are distinct, and
the atom 5 does not appear. The idea is that the machine iterates the following
procedure until the tape contains only blank symbols: if the first non-blank let-
ter on the tape is a , 5, replace it by a blank and load a into the state, scan the
word to check that a does not appear again, and after reading the entire word
go back to the beginning of the tape. If the first non-blank letter on the tape is
5, then reject immediately. The set of states is

{q0}︸︷︷︸
initial state

∪ A − {5}︸  ︷︷  ︸
scan to the right if this atom reappears

∪ {q1}︸︷︷︸
return to the beginning

.

An accepting run of this machine is illustrated in Figure 10.1.

Example 10.2 (Deatomisation). Consider the equality atoms. This example
shows that when the input alphabet is the atoms, then a Turing machine can
begin by removing the atoms from the input, and then carry on its computation
without using atoms.

Define the deatomisation of a sequence of atoms a1 · · · an to be the word

i1#i2# · · · #in ∈ {0, 1, #}∗
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1 2 3
q0

2 3
1

2 3
1

2 3
1

2 3
q1
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3
q1

3
q0
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3
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3

q1

q0 accept

Figure 10.1 An accepting run of the Turing machine from Example 10.1 which
checks if all input letters are distinct and different from 5.
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such that ik is the binary encoding of the number which represents the first
position where atom ak appears. Here is a picture:

2a sequence of atoms 1 1 9 1

1deatomisation 10# # # #10 100 10

1 10 position numbers in binary 11 100 101

The point of deatomisation is that it stores all information about the input word
up to atom automorphisms. It is not difficult to write a deterministic Turing
machine which transforms a sequence of atoms into its deatomisation. The
machine tests letters for equality. Therefore, any decidable and equivariant (or
finitely supported) language L ⊆ A∗ can be computed by a deterministic Tur-
ing machine, which first computes the deatomisation, and then runs a Turing
machine without atoms. Deatomisation works when the input alphabet is A. It
would also work for some other input alphabets, see the next example. As we
will see in Section 10.3, a deterministic deatomisation procedure is not going
to be possible for some orbit-finite alphabets.

Example 10.3 (A more fancy input alphabet). Consider the equality atoms.
Let the input alphabet be sets of atoms of size at most ten. We describe below
a deterministic Turing machine which recognises the language: “there exists
an atom that appears in an odd number of letters”.

The difficulty is indicating the atom that appears in an odd number of letters.
As an example, suppose that the input word is:

{1, 2, 3}{1, 2, 4}{1, 2}{1, 2, 3}{1, 2}{4}.

Both atoms 1 and 2 appear in an odd number of letters, but an equivariant de-
terministic Turing machine cannot see any difference between these two atoms
because every set contains either both or none of the atoms 1 and 2. (Which
means that swapping 1 and 2 is an atom automorphism that does not change
the input word.) Here is a solution to the problem. Suppose that the input word
is

A1 · · · An where A1, . . . , An ⊆ A have size at most 10.

The Turing machine executes the following program:

(1) In a fresh part of the tape, generate a copy of the input word. After this step
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the tape has the form

A1 · · · An︸    ︷︷    ︸
first part

| A1 · · · An︸    ︷︷    ︸
second part

.

(2) As long as possible, iterate these steps on the second part of the tape:

(i) if some set appears multiple times, remove all of the duplicates;
(ii) if A, B are distinct intersecting sets, then remove them and add the nonempty

sets among A − B, B − A, A ∩ B.

(3) At this point, the second part contains equivalence classes of the relation
“appears in the same sets from A1, . . . , An”. Check if some equivalence class
(i.e. some set from the second part) is contained in an even number of sets
from the first part.

All of the above steps can be performed by an orbit-finite Turing machine.
To process sets, the machine can use state space, which can store a set of at
most 10 atoms.

Computational completeness of Turing machines

In Chapter 8, we proved that while programs were computationally complete,
in the sense that they could compute exactly those functions that could be com-
puted using set builder representation. In this section, we revisit computational
completeness for Turing machines.

Assume that the atoms have a decidable first-order theory with parameters,
which means that hereditarily orbit-finite sets can be represented in a finite
way, using set builder expressions. Suppose that the input alphabet Σ in a Tur-
ing machine is hereditarily orbit-finite. This means that letters of the input
alphabet and words over the input alphabet can be represented in a finite way,
and we can ask if orbit-finite Turing machines are equivalent to the usual Tur-
ing machines working on representations:

Question. Are the following conditions equivalent for a finitely supported lan-
guage L ⊆ Σ∗ over a hereditarily orbit-finite alphabet Σ?

(1) Some Turing machine (in the usual, not orbit-finite, sense) decides mem-
bership w ∈ L, assuming that w is represented by a set builder expression.

(2) Some orbit-finite Turing machine decides membership w ∈ L, assuming
that w is given directly, not by its representation.

In the above question, we care about decidable languages, i.e. we require
the Turing machines to give a yes or no answer in finite time, but similar re-
sults will hold for semi-decidable languages. Recall that in Theorem 8.11, we
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proved that condition (1) is equivalent to L being recognised by a while pro-
gram with atoms. Therefore, another way of posing the above question is: for
languages over hereditarily orbit-finite alphabets, are Turing machines equiva-
lent to while programs?

The question above is less fundamental than the one discussed in Section 8.2
about while programs because it only talks about computation over inputs
which are words over a fixed hereditarily orbit-finite alphabet. As discussed
at the beginning of this chapter, such inputs are too restricted to naturally
model objects like orbit-finite graphs or automata. Nevertheless, the question
is interesting, because it has a slightly unexpected answer: (a) for some atoms
(e.g. equality), deterministic orbit-finite Turing machines are not computation-
ally complete; (b) for some atoms (e.g. equality), nondeterministic orbit-finite
Turing machines are computationally complete; and (c) for all atoms, alternat-
ing orbit-finite Turing machines are computationally complete. The positive
results (b) and (c) are given in Theorem 10.4 below, while the negative result
(a) about deterministic machines is presented in Section 10.3.

Alternating machines. Before proving computational completeness of alter-
nating Turing machines, we describe the underlying model. The syntax of an
alternating Turing machine is the same as for normal Turing machines, except
that the control states are partitioned into four groups: existential, universal,
accepting and rejecting. Define a run of an alternating Turing machine to be a
well-founded tree whose nodes are labelled by configurations, such that nodes
that use existential control states have one child with a successor configura-
tion, nodes that use universal control states have all possible successor config-
urations as children, and nodes with accepting or rejecting control states are
leaves. A run is accepting if the root has an initial configuration (i.e. an in-
put word with the head over the first position in the initial state) and where
all leaves are accepting. The language recognised by a definable alternating
Turing machine is those input words which admit at least one accepting run.

The main result in this section is the following theorem about computational
completeness of Turing machines.

Theorem 10.4. Assume that the atoms

• have finite vocabulary;
• are oligomorphic;
• have a computable Ryll-Nardzewski function;
• have a decidable first-order theory with parameters.

Then the following conditions are equivalent for every L ⊆ Σ∗ where Σ is
hereditarily orbit-finite:
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(1) L is finitely supported and there is a Turing machine which decides w ∈ L,
with w represented by a set builder expression;

(2) L is recognised by an orbit-finite alternating Turing machine.

If additionally the atoms have quantifier elimination, then the above conditions
are also equivalent to:

(3) L is recognised by an orbit-finite nondeterministic Turing machine.

The theorem implies that for atoms such as (N,=) or (Q, <), nondeterminis-
tic machines are computationally complete. Actually, the assumption on quan-
tifier elimination can be relaxed, see Exercise 155, and – to the author’s best
knowledge – might not be needed at all.

The rest of Section 10.1 is devoted to proving Theorem 10.4.
We begin with the implications (2) ⇒ (1) and (3) ⇒ (1), which say that

orbit-finite Turing machines can be simulated when inputs are given by repre-
sentations. By Theorem 8.11, it is enough to show that alternating (and there-
fore also nondeterministic) orbit-finite Turing machines can be simulated by
while programs. By Exercise 68, if an alternating orbit-finite Turing machine
has a well-founded run, then it also has one with some finite bound n ∈ N on
the length of all paths; this bound is called the depth of the run. Such runs can
be searched by a while program with atoms.

It remains to show the converse implications.
We begin by describing the reason why alternating machines are used: they

can evaluate formulas of first-order logic. A formula ϕ of first-order logic can
be encoded as a bit string in a natural way, let us write ϕ for this encoding.
Alternating Turing machines are a perfect model for evaluating first-order for-
mulas, as shown in the following lemma.

Lemma 10.5. If the atoms have a finite vocabulary, then the following lan-
guage over alphabetA+{0, 1} is recognised by an alternating Turing machine:

{a1 · · · anϕ : a1, . . . , an ∈ A, ϕ has n free variables, and A |= ϕ(a1, . . . , an) }.

For quantifier-free formulas, a deterministic machine is enough.

Proof The machine simply implements the semantics of first-order logic, us-
ing universal states for the universal quantifiers and existential states for the
existential quantifiers. The assumption that the vocabulary of the atoms is finite
is used in the induction base, for atomic formulas, in which case the relations
of the atoms are simply hard-coded into the Turing machine. �

The above lemma gives an alternative solution to Example 10.2, since hav-
ing only distinct letters can be expressed by a quantifier-free formula. The
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following lemma shows computational completeness in the special case when
the input alphabet is A. A special case of the lemma for the equality atoms is
the deatomisation procedure that was discussed in Example 10.2.

Lemma 10.6. If a language L ⊆ A∗ satisfies (1) from Theorem 10.4, then it
is recognised by an alternating orbit-finite Turing machine. If the atoms have
quantifier elimination, a deterministic machine is enough.

Proof Suppose that the language L satisfies (1), i.e. it is finitely supported,
say by some atom tuple ā, and there is a Turing machine without atoms which
recognises the representations of words in L. Suppose that the input word is

b1 · · · bn ∈ A∗.

By the same reasoning as in the proof of Theorem 8.14, a Turing machine can
compute a finite set of formulas

ϕ1(x1, . . . , xn), . . . , ϕk(x1, . . . , xn)

of first-order logic which define the ā-orbits of An. By Lemma 10.5, an alter-
nating orbit-finite Turing machine can check which formula ϕi is true for the
input word. Since the language is supported by ā, acceptance of the input word
depends only on ϕi. Using the ϕi and the assumption that L can be computed
based on representations, membership in L can then be determined.

In the above argument, we used alternation only to evaluate the formulas
ϕ1, . . . , ϕk in the input word. All the other steps could be done by a determinis-
tic Turing machine. If the atoms have quantifier elimination, then the formulas
can be assumed to be quantifier-free, and therefore only a deterministic orbit-
finite Turing machine is needed. (It is worth pointing out that, in the presence
of a decidable first-order theory with parameters, quantifier elimination must
necessarily be effective: one can enumerate through all quantifier-free formu-
las, and halt when an equivalent one is found, with equivalence being computed
using the first-order theory.) �

We are now ready to complete the proof of Theorem 10.4. Suppose that
L ⊆ Σ∗ satisfies (1). Like for any orbit-finite set Σ, there exists some k and a
finitely supported surjective function

f : Ak → Σ.

Extend this function to a partial function

f ∗ : A∗ → Σ∗

which is defined only on words of length divisible by k and simply applies f to
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every block of k letters. It is not difficult to see that the inverse image of L under
f ∗ also satisfies condition (1). Therefore, by Lemma 10.6, the inverse image
of L under f ∗ is recognised by an alternating Turing machine (and a determin-
istic one in case A admits quantifier elimination). Using nondeterminism, one
can guess a word in A∗ that maps to the input word via f ∗, and then run the
machine from Lemma 10.6 on this guessed word. This completes the proof of
Theorem 10.4.

Exercises

Exercise 151. Assume that the atoms are oligomorphic. Let Σ be an orbit-finite
input alphabet. Show that a language L ⊆ Σ∗ is recognised by a deterministic
Turing machine if and only if:

(*) There is an orbit-finite set A ⊇ Σ, a finite set F of functions (each one being
a finitely supported function Ak → A for some k) and a finitely supported set
F ⊆ A such that for every n ∈ N one can compute a term over the functions
F which has n free variables and satisfies

a1 · · · an ∈ L iff t(a1, . . . , an) ∈ F for every a1, . . . , an ∈ Σ.

Exercise 152. Assume that the atoms are oligomorphic and admit least sup-
ports. Show that a language L ⊆ A∗ is recognised by a deterministic Turing
machine if and only if:

(**) There exists a finite family R of functions (each one being a finitely sup-
ported function Ak → A for some k) and relations (each one being a subset
ofAk for some k) such that for every n ∈ N one can compute a quantifier-free
formula with n free variables over vocabulary R which defines L ∩ An.

Exercise 153. Assume that the atoms are oligomorphic. Show that a language
L ⊆ A∗ is recognised by a nondeterministic Turing machine if and only if:

(***) There exists a finitely supported relation S ⊆ Ak such that for every n ∈ N,
one can compute an existential formula that uses only the relation S and
equality, and defines the L ∩ An. Here an existential formula is one of the
form ∃ȳ ∈ Amϕ(x̄ȳ) where ϕ is quantifier-free.
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Exercise 154. Assume that the atoms admit least supports, and are homoge-
neous over a relational vocabulary. Show that nondeterministic and determin-
istic Turing machines recognise the same languages over input alphabet A.

Exercise 155. Let A be an oligomorphic structure, with decidable first-order
theory with parameters and a computable Ryll-Nardzewski function. Show that
following conditions are equivalent:

(1) nondeterministic Turing machines recognise the same languages as alternat-
ing ones;

(2) A has the same automorphism group as a structure where the vocabulary is
finite, and for every first-order formula (with free variables) one can com-
pute an equivalent existential one (i.e. one which uses only existential quan-
tifiers in prenex normal form).

10.2 For bit vector atoms, P , NP

In this section, we show that p , np holds for the bit vector atoms, which were
introduced in Section 7.3.2. Actually, we prove that even orbit-finite nonde-
terministic automata can go beyond deterministic polynomial time orbit-finite
Turing machines.

We begin by recalling the bit vector atoms. This is the vector space over the
two-element field of countably infinite dimension. More formally, the universe
of the structure is the vectors in {0, 1}ω that have finitely many ones, equipped
with one binary operation for coordinatewise addition modulo 2.

We say that a tuple ā ∈ An is linearly dependent if

0 =
∑
i∈I

ai for some nonempty I ⊆ {1, . . . , n}.

The definition takes into account the tuple and not just the underlying set. If
the tuple contains a repetition, then it is linearly dependent. If a tuple is not
linearly dependent, then it is called independent.

This section is devoted to proving the following separation result.

Theorem 10.9. Assume the bit vector atoms. The language

{ā ∈ A∗ : ā is linearly dependent}

is recognised by a nondeterministic orbit-finite automaton (and therefore also
by a nondeterministic polynomial time orbit-finite Turing machine), but it is not
recognised by any deterministic polynomial time orbit-finite Turing machine.
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To recognise the language using a nondeterministic orbit-finite automaton,
one simply guesses the nonempty subset of positions which leads to a zero
sum2. The partial sum is an atom, and therefore it can be stored in the state of
an orbit-finite automaton.

The rest of this section is devoted to proving the lower bound for determin-
istic Turing machines. Fix some deterministic orbit-finite Turing machine. For
ease of notation, we assume that the machine is equivariant, i.e. its alphabets,
states and transition function are equivariant. The proof can then be easily
extended to work for finitely supported machines. We will show that if the
machine runs in polynomial time and rejects some linearly independent tuple,
then it will also reject some linearly dependent tuple.

We begin by introducing some notation. Let Γ be the work alphabet and
let Q be the state space of the fixed Turing machine. A computation of the
machine can be visualised as a grid, see the picture on page 181. Such a grid
is formalised as a function

ρ : N2︸︷︷︸
cells

→ Γ + Γ × Q︸      ︷︷      ︸
cell contents

,

where labels from Γ × Q are used for cells containing the head, and labels
from Γ are used for the other cells. Not every function ρ of the above type is
a computation, because ρ must also respect the transition function of the ma-
chine. The following straightforward lemma says that respecting the transition
function is a property that depends on at most three cells at a time.

Lemma 10.10. Suppose that

ρ, σ : N2 → Γ + Γ × Q

are similar in the sense that for every three cells x, y, z ∈ N2, the triples

(ρ(x), ρ(y), ρ(z)) (σ(x), σ(y), σ(z))

are in the same equivaraint orbit. Then ρ is a computation if and only if σ is a
computation, and ρ is rejecting if and only if σ is rejecting.

Proof The semantics of a Turing machine involves comparing at most three
cells at the same time, as in the following picture:

2 Alternatively, we could use a deterministic exponential time Turing machine, which tries out
all possible choices of coefficients. This contrasts with the situation in Section 10.3, where
even a deterministic Turing machine with arbitrary time will be unable to compute the
language of interest.
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We use the above lemma to show that every rejecting computation of the
Turing machine can be converted into another rejecting computation, whose
input is linearly dependent, and therefore should be accepted.

Apply Theorem 3.23, yielding a surjective equivariant function

h : Ak → Γ + Γ × Q for some k ∈ {0, 1, . . .}.

Let a1 · · · an ∈ An be linearly independent atoms, with n sufficiently large,
and let ρ be the corresponding computation of our fixed Turing machine. For
each cell of the computation choose a k-tuple of atoms which maps to the cell
contents via the function h, leading to a set A of atoms such that h(Ak) contains
all cells of the computation ρ. Because the Turing machine runs in polynomial
time, and k is fixed, we can assume that the size of A is polynomial in the
length n of the input. We can assume without loss of generality that A contains
the atoms a1, . . . , an that appear in the input word.

Lemma 10.11. If n is large enough, there is a linear map f : A → A such
that:

(1) For every b̄ ∈ A3k, the tuples b̄ and f (b̄) are in the same equivariant orbit.

(2) The vectors f (a1), . . . , f (an) are linearly dependent.

Before proving the lemma, we use it to complete the proof of the theorem.
By choice of A, there is a function ρ̂ which makes the following diagram com-
mute:

N2

ρ

zz
ρ̂

��
Γ + Γ × Q Ak

h
oo

Apply Lemma 10.11, yielding a function f , and define σ to be the composition
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of the down and right arrows in the following diagram:

N2

ρ

zz
ρ̂

��

σ

))
Γ + Γ × Q Ak

h
oo

( f ,..., f )
// Ak

h
// Γ + Γ × Q

By condition (1) in Lemma 10.11, the functions ρ andσ are similar in the sense
described by the assumptions of Lemma 10.10, and therefore σ is a rejecting
computation of the Turing machine. From condition (2) in Lemma 10.11 it fol-
lows that the input of the run σ is linearly dependent, and therefore it should be
accepted. This shows that the Turing machine in question does not recognise
the language of linearly dependent tuples, and completes the proof of Theo-
rem 10.9.

It remains to prove Lemma 10.11.

Proof of Lemma 10.11 We use the following characterisation of tuples being
in the same equivariant orbit for bit vector atoms.

Claim 10.12. Tuples b̄, c̄ ∈ Am are in the same equivariant orbit if and only if

0 =
∑
i∈I

bi iff 0 =
∑
i∈I

ci for every I ⊆ {1, . . . ,m}.

Proof The left-to-right implication is immediate. For the converse implica-
tion, suppose that b̄ and c̄ satisfy the same equalities as in the statement of the
claim. Because every equality can be converted into an equality of the form as
in the statement of the claim, and quantifier-free formulas over vocabulary +

are Boolean combinations of equalities, it follows that b̄ and c̄ satisfy the same
quantifier-free formulas. The bit vector atoms are homogeneous, as discussed
in Section 7.3.2. By Lemma 7.5, in a homogeneous structure the orbit is de-
termined by the quantifier-free theory, and therefore b̄ and c̄ are in the same
orbit. �

The second ingredient in the proof is the following claim, which shows that
every tuple of independent vectors can be converted into a tuple of dependent
vectors that satisfies almost all of the same equations.

Claim 10.13. For every I ⊆ {1, . . . , n}, there are b1, . . . , bn ∈ A such that

0 =
∑
i∈J

bi iff J = I ∨ J = ∅ for every J ⊆ {1, . . . , n}.

Proof Start with all vectors being independent. If I is empty, there is nothing
to do. Otherwise choose some i ∈ I and replace bi with the sum of all vectors
with indexes in I − {i}. �
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We now use Claims 10.12 and 10.13 to prove the lemma. By Claim 10.12,
in order to prove the lemma, it suffices to find a linear map f so that

0 =
∑
b∈J

b iff 0 =
∑
b∈J

f (b) for every J ⊆ A of size at most 3k (10.1)

and the tuples f (a1), . . . , f (an) are linearly dependent. The left-to-right impli-
cation in (10.12) follows from linearity.

Choose a basis B ⊆ A, i.e. a set of vectors such that every vector spanned by
A is a unique linear combination of basis vectors. Since the vectors a1, . . . , an ∈

A are linearly independent, we can choose the basis so that it contains a1, . . . , an.
The size of the set A is polynomial in n. Since k is fixed, the number of subsets
of size at most 3k in A is also polynomial in n . Therefore, if n is large enough,
some nonempty subset

I ⊆ {a1, . . . , an}

has a sum that cannot be obtained by taking a sum of at most 3k vectors from A.
Apply Claim 10.13 to I viewed as a subset of B, yielding a function f : B→ A
such that

0 =
∑
b∈J

f (b) iff J = I for every J ⊆ B. (10.2)

Extend f to a linear map f : A → A. Clearly the vectors f (a1), . . . , f (an) are
linearly dependent, as required in the statement of the lemma, as witnessed by
taking the sum ranging over I. The right-to-left implication from (10.1) follows
from the conclusion of Claim 10.2 and the choice of I. �

Exercises

Exercise 156. Assume the bit vector atoms. Show that if the input alphabet is
A, then nondeterministic orbit-finite Turing machines have the same expressive
power as deterministic orbit-finite Turing machines (although with possibly
exponential slowdown).

10.3 For equality atoms, Turing machines cannot be
determinised

This section describes another thing that deterministic Turing machines with
atoms cannot do. This time, the atoms are the equality atoms.
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Theorem 10.14. Assume that the atoms are (N,=). There is a language which:

(1) is recognised by a nondeterministic orbit-finite Turing machine;

(2) is not recognised by any deterministic orbit-finite Turing machine.

In other words, deterministic orbit-finite Turing machines are not compu-
tationally complete3. This witnesses the tightness of Theorem 10.4 from Sec-
tion 10.1, which said that nondeterministic Turing machines are computation-
ally complete when the atoms admit quantifier elimination (as is the case for
the equality atoms).

The rest of Section 10.3 is devoted to proving Theorem 10.14.
Recall from Lemma 10.6 that, when the input alphabet is A – or actually

any straight set, as defined in Section 6.2 – then deterministic orbit-finite Tur-
ing machines are computationally complete. Therefore, the language in the
theorem needs to use an input alphabet that is not straight.

The language in Theorem 10.14 will be recognised by a polynomial time
nondeterministic machine. Therefore, the theorem gives another example of
np,p. Again, as mentioned at the beginning of this chapter, the theorem is
unlikely to shed new light on the np,p question without atoms, since the proof
is based on the limited way that a Turing machine can access the atoms in its
tape.

The separating language. Define a tile to be a tuple of 8 distinct atoms, i.e. an
element of A(8). We draw tiles like this:

7

8

3

4

65

21

(1, 2, 3, 4, 5, 6, 7, 8) is drawn as

We will arrange tiles on a square grid with torus topology. For n ∈ {1, 2, . . .},
define an n × n tiling to be a function

T : n × n→ A(8) where n × n def
= {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}.

A tiling is called consistent if it satisfies the following constraints:

3 The results in this section are based on Bojańczyk et al. (2013a).
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We begin with an informal description of the language that is difficult for de-
terministic Turing machines. One is given partial information about a tiling,
namely each tile is known up to an even number of flips (see below). The ques-
tion is: can the partial information be instantiated to a tiling that is consistent?
This question will turn out to be doable using a nondeterministic machine – by
guessing the instantiation – but will be impossible for a deterministic machine.

We now describe the partial information in more detail. A flip on a tile is
defined to be a transposition of atoms that appear on one side, as shown in the
following picture:

7

8

3

4

65

21

a tile one of its flips

7

8

4

3

65

21

Define ≈ to be the equivalence relation on tiles, which identifies two tiles if
one can be obtained from the other by doing an even number of flips. Each
equivalence class of ≈ has eight tiles, as shown in the following picture:
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Define A(8)
/≈

to be the set of equivalence classes of tiles. This is an orbit-finite
set. We are now ready to define the separating language.

Definition 10.15 (cfi property). Define an n × n ≈-tiling to be a function

T : n × n→ A(8)
/≈
.

We say that T satisfies the cfi property4 if there exists a consistent tiling

S : n × n→ A(8)

which projects to T when tiles are replaced by their equivalence classes.

Formally speaking, the separating language required for Theorem 10.14
should be a set of words, and not ≈-tilings, because Turing machines input
words. Therefore, we assume some convention on linearly ordering the tiles in
an ≈-tiling, e.g. the tiles are ordered first by columns then by rows. Under such
a convention, an n× n ≈-tiling can be encoded uniquely as a word of length n2

over the alphabet A(8)
/≈

.
To prove Theorem 10.14, we will show that a nondeterministic orbit-finite

Turing machine can check if an ≈-tiling satisfies the cfi property, but a deter-
ministic one cannot.

The positive part about nondeterministic machines is immediate. The work
alphabet of the machine is A(8)

/≈
∪ A(8) plus additional symbols that are used

as markers. Given an input word representing some ≈-tiling T , the machine
uses nondeterminism to guess the consistent tiling S which witnesses the cfi
property. Then, it deterministically checks if the adjacency constraints of a con-
sistent tiling are satisfied by S. This computation can be done in a polynomial
number of steps.

4 The name stands for Cai, Fürer and Immerman, who first studied this property in Cai et al.
(1992).
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The interesting part is that deterministic machines cannot check the cfi prop-
erty.

The CFI property is not recognised by any deterministic Turing machine.
We begin by discussing a doubt the reader might have at this point. Given an
input representing a ≈-tiling T , there are only finitely many (if exponentially
many) possibilities for choosing the witness S as in Definition 10.15. Why not
use a deterministic algorithm that exhaustively enumerates all the possibilities?
The problem is that such an algorithm cannot be implemented as a determin-
istic Turing machine. The intuitive reason is that even if a ≈-equivalence class
has only 8 tiles, one cannot choose deterministically any single one among
them (i.e. there is no notion of the “first” or “second” element of the equiva-
lence class) to write it down on the tape.

We now proceed to give a formal proof of why the cfi property is not recog-
nised by any deterministic Turing machine. This will be a consequence of
Lemma 10.17 below, which says that a deterministic Turing machine, unlike
the cfi property, is insensitive to certain well chosen flips in an ≈-tiling.

We lift the notion of flips from tiles to their ≈-equivalence classes as fol-
lows. If τ is a tile, then the flip of its ≈-equivalence class is defined to the ≈-
equivalence class which contains some (equivalently, any) flip of τ. It is easy
to see that this notion does not depend on the choice of τ in its ≈-equivalence
class, nor does it depend on the choice of which side was flipped. Flipping is
an involution on ≈-equivalence classes, i.e. doing a flip twice leads back to the
same ≈-equivalence class.

The following lemma shows that flips violate the cfi property.

Lemma 10.16. Let T be an n×n ≈-tiling which satisfies the cfi property. Then
for every x ∈ n × n, the following ≈-tiling violates the cfi property:

Tx(y) def
=

flip of T (y) if y = x;

T (y) otherwise.

Proof A parity argument. We view an n×n grid as a graph, where vertices are
grid positions, and grid positions are connected by an edge if they are adjacent
in the (torus) grid topology. For S : n × n → A(8) define the conflict set to be
the set of edges e in the graph corresponding to n × n such that the colours of
the two sides adjoining on e are different. Here is a picture:
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Using this terminology, an ≈-tiling T satisfies the cfi property only if there
exists some S which has an empty conflict set and such that T is the ≈-
equivalence class of S. The key observation is that S ≈ S′ implies that the
conflict sets have the same parity (i.e. size modulo two); and furthermore mak-
ing one flip makes this parity change. �

We are now ready to prove the main lemma which witnesses that the cfi
property is not recognised by any deterministic orbit-finite Turing machine.
Fix a deterministic orbit-finite Turing machine. We use the formalisation of
computations from Section 10.2, i.e. a computation is a function ρ : N2 → ∆,
where the ∆ is the work alphabet plus pairs (letter of the work alphabet, state
of the machine). If T is an ≈-tiling, we write ρT for the unique computation of
the fixed Turing machine on the word representing T .

Lemma 10.17. There exists k ∈ {0, 1, . . .} with the following property. Let n ∈
{0, 1, . . .} be sufficiently large, and let T be an n× n ≈-tiling which satisfies the
cfi property. Assuming the notation Tx defined in Lemma 10.16, the following
holds for every i, j ∈ N:

ρT (i, j) = ρTx (i, j) for all x ∈ n × n with at most k2 exceptions. (*)

Before proving the lemma, we use it to finish the proof of Theorem 10.14.
Take k as in the lemma, and let n be sufficiently large. Let T be some n × n
≈-tiling which satisfies the cfi property. Consider the computation ρT , and let
(i, j) be the place in the computation which contains the head at the moment
when it accepts. If n > k2, then (*) in the lemma implies that there is some
x ∈ n × n such that ρTx has the same contents. In particular, the machine also
accepts Tx. This contradicts Lemma 10.16.
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Proof of Lemma 10.17. Choose k so that

k/2 > support size for the Turing machine + support size for cell contents︸                               ︷︷                               ︸
smallest l such that ρT (i, j) has a
support of size l for every i, j ∈ N

.

We prove (*) by induction on i, i.e. the number of computation steps of the
Turing machine. For the induction base of i = 0, we observe that the contents
of a cell in time i = 0 depend only on the value of the input in at most one grid
position, and hence (*) holds with at most one exception.

For the induction step, suppose that (*) is true for i−1 and consider the case
of i. In the computation of a Turing machine, the contents of a cell in time i are
uniquely determined by the contents of at most two cells in time i − 1: the cell
in the same column (offset from the beginning of the tape), plus possibly the
contents of the unique cell in time i−1 which contains the head of the machine.
Hence, using the induction assumption we can conclude the following weaker
version of (*), which uses 2k2 exceptions instead of k2:

ρT (i, j) = ρTx (i, j) for all x ∈ n × n with at most 2k2 exceptions. (**)

In the rest of this proof, we bring back the number of exceptions down to
k2. To do this, we talk about connected components in T after removing some
grid positions from the input T . For a subset X ⊆ n×n of grid positions, define
its connected components to be the connected components in the subgraph of
the graph of n×n (as defined in the proof of Lemma 10.16) induced by X. Here
is a picture of a set X together with its partition into connected components:

component 1

se
t X component 2

are in component 2 because of torus topology

component 3
{

We now resume the proof of the implication from (**) to (*). Choose a
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tuple of atoms ā which supports both the Turing machine and the cell contents
ρT (i, j). By choice of k, we can assume that ā less than k/2 atoms. Define

Z ⊆ n × n

to be the grid positions where T uses at least one atom from ā. The set Z
has less than k grid positions, since every atom appears in at most two grid
positions and k is more than twice the size of ā. By a straightforward analysis
of connectivity in an n × n grid, one can conclude that if n is big enough, then
the graph corresponding to n × n − Z has a connected component, call it X,
which contains all grid positions from n × n with at most k2 exceptions. If n is
big enough, then

2k2︸︷︷︸
number of exceptions in (**)

< n2 − k2︸ ︷︷ ︸
size of X

,

and therefore there is some x0 ∈ X which satisfies

ρT (i, j) = ρTx (i, j). (�)

Using this x0, we will show that all x ∈ X also satisfy (�), thus proving (*). Let
x ∈ X. Since X is connected and disjoint from Z, in the graph corresponding to
n × n there is a path which goes from x to x0 and avoids grid positions from Z.
Here is a picture:

x

we want to
show

we already
know 

an edge
on the path
from x to x0 

x0

Every edge e of the grid n × n corresponds to two distinct atoms. Define π to
be the atom automorphism which swaps, for every e on the path from x to x0,
the two atoms that correspond to the edge e. This atom automorphism fixes
all atoms from ā. For each tile except those corresponding to x and x0, the
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automorphism flips an even number of sides, and hence we have:

Tx = π(Tx0 ). (10.3)

The path from x to x0 was chosen so that it avoids atoms in the support of the
Turing machine, and therefore

π(ρT ) = ρπ(T ) for every input T to the machine. (10.4)

We are now ready to prove that x satisfies (�):

ρTx (i, j) = (by (10.3))

ρπ(Tx0 )(i, j) = (by (10.4))

π((ρTx0
)(i, j)) = (because x0 satisfies (�))

π((ρT )(i, j)) = (because π fixes the support of ρT (i, j))

ρT (i, j).

This completes the proof of the lemma, and therefore also of Theorem 10.14.
�

Exercise 157. Assume the equality atoms. Show that if k ≤ 3 and the input
alphabet Σ is k-tuples of atoms modulo some equivariant equivalence relation,
then every nondeterministic Turing machine over input alphabet Σ can be de-
terminised.

Exercise 158. In the proof of Theorem 10.14, we used an input alphabet which
consisted of 8-tuples of atoms modulo some equivalence relation. Improve the
proof to use 6-tuples modulo some equivalence relation5.

Exercise 159. Assume the equality atoms and consider the alphabet

{{{a, b, c}, {d, e, f }} : a, b, c, d, e, f are distinct atoms}.

Show that Turing machines over this input alphabet cannot be determinised.

5 This exercise is based on Klin et al. (2014); in particular Section 5.1 of that paper shows that 5
is the smallest dimension where Theorem 10.14 holds.
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205

Solution to Exercise 1.
Consider language 4, i.e. the first atom appears again. The automaton stores
the first atom in its unique register and then waits for a repetition to enter an
accepting sink state. Here is the picture:

a
a a

b a

Consider now language 5, i.e. every three consecutive atoms are pairwise dis-
tinct. The automaton uses two registers to store the last two atoms. There is
only one control state. Here is the picture:

a
a

aba
b

bcab
c

The unique location is the yellow one shown above and thus different occur-
rences of the yellow state should be seen as self-loops. The picture depicts
three kinds of self-loops in this unique control state: a self-loop which goes
from zero defined registers to one defined register, a self-loop which goes from
one defined register to two defined registers, and a self-loop from two defined
registers to two defined registers.

Solution to Exercise 2.
The classical construction works. This is most easily seen using semantic equiv-
ariance. Let Q be the states of the automaton (recall that a state consists of a
location and a register valuation). Consider an automaton which uses ε transi-
tions, i.e. it has two transition relations:

δε ⊆ Q × Q︸        ︷︷        ︸
ε-transitions

δ ⊆ Q × (Σ × A) × Q︸                     ︷︷                     ︸
usual transitions

,

both of which are semantically equivariant. It is not hard to see that if δε is
semantically equivariant, then the same is true for its reflexive transitive clo-
sure δ∗ε. Also, semantically equivariant relations are closed under composition,
and therefore γ = δ ◦ δ∗ε is semantically equivariant. We replace the original
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transition relation by γ. We also replace the final states by those states that can
reach a final state via δ∗ε, the resulting set of final states is also equivariant. The
resulting automaton has no ε-transitions, and it recognises the same language
as the original one.

Solution to Exercise 3.
An example of such a language is {abc : a, b, c ∈ A are distinct}. After reading
ab, the automaton should be in the same state as after reading ba. This example
would go away if automata had registers that store unordered pairs of atoms.
But then we could consider the following language, where addition is done
modulo 3:

{a0a1a2aiai+1ai+2 : a0, a1, a2 ∈ A are distinct}.

To have a minimal automaton for the above language, we would need regis-
ters that store triples of atoms modulo cyclic permutations. Groups other than
Z3 could also be used. In Section 5.2, we introduce an extension of register
automata that does not suffer from the problems described in this exercise.

Solution to Exercise 4.
Consider the language

{ab(cn) : a, b, c ∈ A are distinct and n ∈ N}

One location and two registers are necessary and sufficient. The automaton
begins by loading the first two atoms values into the two registers. Then the
automaton loads c into one of the registers, say the first one. However, one
needs to make a design decision: should the second register be erased or not?
Both choices lead to nonisomorphic automata. This example would go away
if we allowed a register automaton to have a different number of registers de-
pending on the location.

Solution to Exercise 5.
Language 2 says that some data value appears twice. After reading sufficiently
many letters, a deterministic register automaton will necessarily forget one of
the previously read letters, in the sense that it will not be in any register. This
letter can be read again. How arguments of this type should be formalised can
be seen in the solution to the next exercise, Exercise 6.

Solution to Exercise 6.
The alphabet is A and the language, call it L, is “the atom in the last position
does not appear on other positions”. This language is the reverse of language
4. (This exercise also shows that nondeterministic automata without guessing
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are not closed under reverses.) With guessing, the language L can easily be
recognised, by simply reversing all arrows in the automaton for language 4
from Exercise 1. The guessing corresponds to this reversed arrow:

a
a

Let us prove that L is not recognised by any nondeterministic automaton with-
out guessing. Toward a contradiction, suppose that L is recognised by an au-
tomaton without guessing. Let n be strictly bigger than the number of registers.
The word a1 · · · an+1 consisting of n + 1 distinct atoms belongs to the language,
and hence must admit an accepting run. Decompose this accepting run as σ · t
where t is the last transition, which reads the letter an+1, and σ is the rest of the
run, which reads the letters a1 · · · an. Since the automaton is not guessing, none
of the states in the run σ contains an+1. Furthermore, by assumption on n being
greater than the number of registers, some a ∈ {a1, . . . , an} does not appear in
the last state of σ. Let π be a permutation of the atoms which swaps a with
an+1. Applying π to σ yields a new run π(σ) which has the same last state as σ,
since the swapped atoms are not present in that state. Therefore, π(σ) · t is also
an accepting run, but the word it accepts contains the last letter an+1 twice.

Solution to Exercise 7.
Instead of storing an atom that does not appear in the input before it is erased
from the registers, use an undefined register with a special marker stored in the
control state.

Solution to Exercise 8.

(1) • pspace membership. A nondeterministic pspace algorithm can guess the
accepted word. If the automaton has n registers, then data values that are
numbers {0, . . . , 2n} are enough.

• pspace hardness. The problem is already hard for automata which ignore
the input letters in the sense that acceptance for a word is uniquely de-
termined by its length. If the state space is n-tuples of atoms, then an
arbitrary vector of n − 1 bits can be encoded by the pattern in which the
coordinates 2, . . . , n are equal to the first coordinate. Therefore, one can
think of the state as coding vector of n−1 bits, which can be used to store
the tape contents of a Turing machine. A quantifier-free formula of size
polynomial in n can be used to describe the transitions of the machine.
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(2) • np hardness. We reduce from the following problem: given a formula

ϕ(a1, . . . , an, b1, . . . , bn)

which is a Boolean combination of equalities and inequalities, decide if
there is a satisfying assignment where all ai are pairwise different and all
bi are pairwise different. This is an np-hard problem because the pattern
of equalities between ā and b̄ can be used to encode an arbitrary vector
of n bits (say that bit i is true if and only if the vectors ā and b̄ agree
on coordinate i). The above problem is at least as hard as emptiness for
register automata, even when there are three orbits of reachable states.
Indeed, suppose that the automaton has two locations `0 and `1, one initial
and final, and three orbits of reachable configurations:

`0(⊥, . . . ,⊥)︸         ︷︷         ︸
orbit 1

`0(
distinct data values︷     ︸︸     ︷

a1, . . . , an )︸               ︷︷               ︸
orbit 2

`1(

distinct data values︷     ︸︸     ︷
b1, . . . , bn )︸               ︷︷               ︸

orbit 3

The formula ϕ could be used as a guard in a transition that goes from the
second orbit to the third orbit.

• np membership. Consider a graph, where the vertices are orbits of states,
and there is an edge from orbit Q1 to orbit Q2 if and only if there is
some transition from some state in Q1 to some state in Q2. Because the
automaton is equivariant, the following conditions are equivalent

(i) There exists a state q1 in orbit Q1 and a state q2 in orbit Q2 such that
some transition leads from q1 to q2 in one step.

(ii) For every state q1 in orbit Q1 there exists a state q2 in orbit Q2 such that
some transition leads from q1 to q2 in one step.

It follows that the automaton is nonempty if and only if the graph de-
scribed above contains a path from some orbit in the initial states to some
orbit in the accepting states. Necessarily such a path has length bounded
by the number of orbits. By testing quantifier-free formulas for satisfia-
bility, one can test this in np.

(3) ptimemembership. We do the same argument as in npmembership, only this
time the edges of the graph can be computed in polynomial time.

Solution to Exercise 9.
We prove that the (non-)halting problem for Minsky machines reduces to this
universality. Recall that a Minsky machine has a finite set of states, two coun-
ters storing natural numbers, and a set of transitions which can increment the
counters, decrement them and test them for zero. It is an undecidable problem
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to decide, given a Minsky machine and two control states p, q, if the machine
admits a run that goes from p with both counters empty to q with both counters
empty. We can view a run of a Minsky machine as a sequence which alternates
between control states and counter operations, in a way consistent with the
transition relation, as in the following picture:

incA incAdecA decAzeroAincB incB decB decBzeroB q pp r q pr q r rq

The counter operations are valid if for every counter c ∈ {A, B}, one can pair
(the arcs in the picture above) the increments and decrements on counter c such
that the increment comes before, and there is no zero test in between. Such a
run with a pairing can be encoded as a data word, by adding a unique data
value for each arc and using some special data value for positions that are not
on arcs (i.e. states or zero tests), as in the following picture:

incA incAdecA decAzeroAincB incB decB decBzeroB

11 1 2 1 3 1 2 1 1 1 4 1 3 1 5 1 4 1 15

q pp r q pr q r rq

We claim that a nondeterministic automaton with one register (but with guess-
ing) can recognise the set of data words that are not the encoding of an accept-
ing run with a pairing, and hence undecidability of universality follows in the
same way as in Theorem 1.8. The most interesting type of problem is that some
arc is wrong: for this the automaton guesses some atom a at the beginning, and
checks that this atom is either not used exactly two times, or the first use is not
an increment, or the second use is not a decrement of the same counter, or in
between there is a test for zero on the appropriate counter.

Solution to Exercise 10.
One can write a formula which is true exactly in the encodings of runs of Tur-
ing machines as used in Theorem 1.8. Alternatively, one can write a formula
which is true exactly in the encodings of runs of Minsky machines as used in
Exercise 9.

Solution to Exercise 11.
Let A be an alternating register automaton, and define the dual of A to be
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the same automaton but where we swap universal locations with existential
locations, and we swap accepting locations with nonaccepting locations. We
claim thatA accepts a word if and only if its dual rejects.

We prove that for every state q and input data word w, the automaton A
accepts w starting in the bag {q} if and only if the dual rejects w starting in {q}.
The proof is by induction on the length of the input. For the induction base
of empty inputs, we use the fact that accepting and nonaccepting locations are
swapped. Let us do the induction step. Suppose that the input is aw for some
letter a and remaining input w. If the state q uses an existential location, then
saying that A accepts aw from q means that there is some transition (q, a, p)
such thatA accepts w from p. By the induction assumption, the dual rejects w
from p. Since q is universal in the dual, it follows that the dual rejects aw from
q, since there is some transition which leads to rejection. The case when q uses
a universal state inA is done the same way.

Solution to Exercise 12.
Let L be the language “for every position x with label inc, there is a later
position y with label dec and the same data value, such that label zero does not
appear between positions x and y”. This language is recognised by a one way
non-guessing alternating automaton. If its reversal were also recognised, then
we could use the same proof as in Exercise 9 to get undecidability.

Solution to Exercise 13.
The right-to-left implication is immediate because infinite antichains and in-
finite strictly decreasing sequences are both examples of infinite sequences
without infinite monotone subsequences. Let us prove the remaining implica-
tion, i.e. in a well quasi-order every infinite sequence has an infinite monotone
subsequence.

Let x1, x2, . . . be some sequence in a well quasi-order. Consider the set of
minimal elements that appear in the sequence. This set must be finite up to
equivalence in the quasi-order, otherwise we would have an infinite antichain.
Furthermore, for every element in the sequence there must be some smaller
or equal element that is minimal, since otherwise we would have an infinite
strictly decreasing sequence. Cut off a finite prefix of the sequence where all
minimal elements are found up to equivalence, and reapply the argument, and
continue doing this forever. In the limit we get a partition of the sequence into
finite factors

x1, . . . , xi1︸      ︷︷      ︸
factor 1

, xi1+1, . . . , xi2︸         ︷︷         ︸
factor 2

, . . .
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such that every element from outside the first factor is greater or equal to some
element that appears in the previous factor. We can view this factorisation as a
directed acyclic graph on the indices {1, 2, . . .} which has an edge from i to j if
xi ≤ x j and i, j are in consecutive factors. This directed acyclic graph has finite
degree because factors are finite, and it has arbitrarily long paths. Therefore, it
must have an infinite path by König’s lemma.

Another solution uses Ramsey’s Theorem. Take some infinite sequence x1, x2, . . .

and colour each pair i < j with “smaller”, ”bigger or equal” or “incompara-
ble”, depending on the relationship of xi and x j. By Ramsey’s theorem, there
is an infinite subsequence where all pairs get the same colour. This colour has
to be “bigger or equal”, since the other possibilities would imply an infinite
antichain or descending sequence.

Solution to Exercise 14.
Using Exercise 13 it suffices to show that every infinite sequence in Nd has an
infinite monotone subsequence. This is shown by induction on d. The induction
base of d = 1 is easy to see. For the induction step, consider a sequence

x1, x2, . . . ∈ Nd+1.

By the induction assumption, there is an infinite subsequence such that the pro-
jection onto the first coordinate is monotone. By induction assumption again,
that subsequence has an infinite subsequence where the projection onto the
remaining coordinates is monotone, and the result follows.

Solution to Exercise 15.
The counterexample is the bags

1 11≤

which have profiles that are coordinate-wise incomparable (an equivalence
in (1.3) would be recovered if we considered a slightly different order on pro-
files, but we do not do this only the implication (1.3) is needed for our reason-
ing).

Solution to Exercise 16.
See (Schmitz and Schnoebelen, 2012, Exercise 1.10)

Solution to Exercise 17.
The same proof as without order. The only difference is that order-preserving
bijections are used in the definition of the quasi-order, and the Higman order
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is used to show that this is a well quasi-order. More specifically, when proving
the variant of Lemma 1.15, instead of using vectors of natural numbers indexed
by subsets of locations, we use sequences of subsets of locations, ordered by
the Higman ordering.

Solution to Exercise 18.
Using Theorem 1.16 and the Higman ordering on configurations.

Solution to Exercise 19.
This solution is by Klin and Lasota. Let W be the set of words like the one de-
picted on the following picture, with circles denoting consecutive data values,
and dotted lines denoting equality:

n times

Note that the atom in the first letter is special because it appears four times
and all other atoms appear two times. We claim that if w and v are words in W
of different lengths, then w is not in the same orbit (i.e. equivalent up to atom
permutations) as any subsequence of v. In other words, there is no mapping f
from positions of w to positions of v which preserves the order and equality
on data values. Indeed, such a mapping would have to map the first position to
the first position (because the first letter contains the special atom that appears
four times), and therefore also the third position to the third position. It follows
that the second position must be mapped to the second position, and therefore
also the fifth position to the fifth position. Arguing inductively, we see that the
i-th position needs to be mapped to the i-th position. In other words, w needs
to be mapped to a prefix of v. This cannot be, because, the last position of w is
mapped to the last position of v.

Solution to Exercise 20.
Consider the set W of words in the solution to Exercise 19. Let WP ⊆ W be
the subset of words that have a prime number of different atoms. Finally, let L
be the upward closure of WP under the Higman order. We claim that this lan-
guage is not recognised by a nondeterministic register automaton. Otherwise,
such an automaton would need to tell the difference between words from W
that have prime and non-prime length. By choosing some non-computable set
of numbers instead of the prime numbers, we can get a language that is not
computable.
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Solution to Exercise 21.
If all positions have distinct atoms, then storing the atom from position i in
the register can be seen as storing a pointer to position i. The automaton can
increment such pointers, test them for equality, and it can move its head to a
pointer. Using this one can implement simple arithmetic on pointers.

Solution to Exercise 22.
It will be easier to work with a slightly more general model, called two-way
automata with regular lookaround, where the transitions can ask about regular
queries about the sequence of labels to the left (or to the right) of the head. For
example, the automaton could empty its register conditionally on the property
“the number of b labels to the left of the head is even”. From now on, when
talking about two-way register automata we assume it has one register, it is
nondeterministic, but it is allowed to use regular lookaround.

A configuration of a two-way register automaton is called local if the regis-
ter is either empty or its content is equal to the data value under the head. Call
a two-way register automaton local if every change of registers is done only in
local configurations (i.e. the automaton can either load the current data value
into the register assuming the register was previously empty, or it can empty
the register assuming that the register previously stored the data value under
the head). One first shows that every two-way register automaton can be made
local without affecting the expressive power on data words with pairwise dis-
tinct data values. For this, the automaton nondeterministically guesses the last
local configuration before emptying the register and does the emptying at that
moment.

It remains to prove the exercise for two-way register automata that are local.
For a data word

b1

a1

b2

a2
· · ·

bn

an
b1, . . . , bn ∈ Σ a1, . . . , an ∈ A

and locations `, `′, we say that the automaton admits a (`, `′)-loop in position
i ∈ {1, . . . , n} if it can start in position i in the local configuration (`, ai) and then
do a finite number of transitions that do not change the register and lead back
to position i in the local configuration (`′, ai). It is not difficult to see that the
existence of a (`, `′)-loop depends only on the label under the head and regular
properties of the labels to the left and right of the head. Therefore, the instead of
doing a (`, `′)-loop, the automaton could simply do an ε-transition conditional
on some regular lookaround. After eliminating (`, `′)-loops this way, we are
left with a two-way automaton which has the property that whenever it loads
something into a register, it empties the register in the next step. For such
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automata, the register is superfluous, and we are left with a two-way automaton
without registers, which recognise only regular properties of the labels.

Solution to Exercise 23.
This solution comes from the Master’s thesis of Tomasz Wysocki Wysocki
(2013). Consider the following language over A:

{ana1 · · · an : n ∈ N and a, a1, . . . , an ∈ A are all distinct}

Let us first argue that an alternating register automaton without guessing
cannot recognise the language. After reading a prefix of the form an, the bag
can only have a in its registers. Since there are finitely many possibilities for
such bags, there must be some n < m such that the set of reachable bags after
reading an is the same as the set of reachable bags after reading am. Therefore,
if the automaton accepts ana1 · · · an, then it also accepts ama1 · · · an.

Let us recognise this language with guessing. An alternating automaton can
easily check that a word is of the form ana1 · · · am for distinct data values
a, a1, . . . , am. The challenge is to check that n = m. Since languages recog-
nised by alternating automata are closed under intersection, we assume that
the input is of the form ana1 · · · am.

We only present the main idea using pictures. The automaton has three reg-
isters. A main thread of the automaton will read the first n letters, and after
reading the i-th letter it will be in a configuration with the initial state and reg-
ister values a, ai−1, ai as in the following picture (the orange boxes represent
these configurations, with the first two boxes being corner cases):

a

a a a a a a a

a1

a1

a1

a2

a2

a2

a3

a3

a4

a4

a5

a5

a6

a7

a8

a3 a4 a5 a6 a7a a a a a a

The contents of the registers are above are guessed, but they are verified using
alternation: the initial state is universal, and in each step it spawns off a parallel
thread that checks if the current configuration corresponds to two consecutive
data values in the future, as in this picture:

a

a

a1 a2

a3

a4

a3 a4 a5 a6 a7a a a a a a
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Solution to Exercise 24.
This solution comes from the Master’s thesis of Tomasz Wysocki Wysocki
(2013). Consider a two-way nondeterministic automaton A, where the loca-
tions are Loc and the registers are R. For two states of this automaton

p, q ∈ Loc × register valuations

we say that a word admits a (p, q)-loop if there is a run of the automaton which
begins in state p, ends in state q, and never tries to move to the left beyond the
first position of the word. Here is the picture, note how the run is allowed to
revisit the first position or the end delimiter a but it is not allowed to see the
start delimiter `.

p

q

input word
with end
delimeters

run of the
two-way
register
automaton

The crucial point is to recognise loops: we will sketch that there is an alternat-
ing register automaton, such that if is initialised in a state that stores both p and
q, then it accepts if and only if there is a (p, q)-loop. Once loops are recognised,
it is not difficult to simulate the two-way automaton (one needs to deal with the
initial state and visiting the start marker `.) To recognise loops, we observe that
a data word admits a (p, q)-loop if and only if one of the following conditions
holds:

• There is some intermediate state r such that the word admits a (p, r)-loop
and an (r, p)-loop, as in this picture.

p

q

r
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To check this, the simulating alternating register automaton does an ε-transition
where it guesses r and temporarily stores it in the registers. Next it uni-
versally branches by into threads for (p, r) and (r, q). Guessing is crucial
because r might contain data values from the future of the word, and ε-
transitions are used because the two-way automaton might revisit the first
position an unbounded number of times.

• The loop does not revisit the first position, as in the following picture:

p

a

q

p’

q’

The simulating alternating register automaton guesses the two configura-
tions p′, q′, subject to the transition requirement, and advances to the next
position.

Solution to Exercise 25.
We want a language that is two-way deterministic, also one-way nondetermin-
istic, but not one-way alternating without guessing. This language is:

{w ∈ A∗ : some letter appears exactly once}.

The language is clearly recognised by a one-way nondeterministic automaton,
by guessing the letter which appears exactly once. Let us now find a determin-
istic two-way automaton which does this language. The automaton implements
the following procedure:

(1) Put the head on the first letter.
(2) Check if the letter under the head appears exactly once. If yes, accept imme-

diately, otherwise return the head to its previous position (this can be done
by a subroutine which first searches to the left for a duplicate, then searches
to the right for a duplicate, and returns after finding the first duplicate).

(3) If the head is on the last position, reject, otherwise move the head one step
to the right and goto 2.

It remains to show that the language cannot be done by an alternating one-way
automaton without guessing. This, honestly speaking, is just a conjecture.
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Solution to Exercise 26.
We want a language that is one-way nondeterministic and one-way alternating
without guessing, but not two-way deterministic. For this, consider the set of
even length sequences of atoms

a1b1 · · · anbn ∈ A∗

such that there is a path from 1 to n in the graph whose vertices are {1, . . . , n}
and where the edge relation contains all pairs i→ j such that i < j and bi = a j.
This language is clearly seen to be recognised by a one-way nondeterministic
register automaton without guessing (and therefore also by an alternating one).
However, if the language were recognised by a two-way deterministic register
automaton, then the language would be in deterministic LogSpace. However,
every instance of directed graph reachability can be encoded as a member-
ship question in this language, and therefore we would get that directed graph
reachability is in deterministic LogSpace, thus implying that LogSpace can be
determinised.

Solution to Exercise 27.
We want a language that is one-way alternating without guessing but which is
not two-way nondeterministic. We use the same type of graph problem as in
Exercise 26, except that instead of graph reachability we use alternating graph
reachability. Since alternating graph reachability is complete for polynomial
time, the language cannot be done by a nondeterministic two-way automa-
ton, since otherwise nondeterministic LogSpace would be equal to polynomial
time.

Solution to Exercise 28.
Suppose that L is a language that can be done by model A but not B, and K
is a language that can be done by model A but not C. Define L&K to be the
concatenation of L and K separated by a fresh symbol. As long as A, B, C are
one of the six models in the figure, then the language L&K can be done by
model A but neither by B or C. Using this idea, we can find examples for all
coloured areas as in the following picture:
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one-way alternating

one-way alternating without guessing

one-way nondeterm
inistictw

o-
wa

y d
ete
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inistic

two-way nondeterministic

one -way deterministic2

3

4

5

1

3&5

2&3

2&4

3&4

2&3&4

Solution to Exercise 29.

Solution to Exercise 30.
If there was closure under Kleene star, then we would have undecidable empti-
ness, by finding a data automaton recognising the encodings of computations
of Minsky machines used in Exercise 9. Since data automata are closed under
intersections, it suffices to find data automaton recognising just one counter
with zero tests. If there was closure under Kleene star, then we could check
one counter with zero tests: the zero tests can be performed only when the star
proceeds to the next iteration.

Solution to Exercise 31.
Suppose that the transitions are

δ1, . . . , δn ∈ Zd.
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There is a run (which can use negative coordinates) that goes from v ∈ Zd to
w ∈ Zd if and only

v = w + a1δ1 + · · · + anδn for some a1, . . . , an ∈ N

This is an instance of integer linear programming, and it is known that such in-
stances can be solved in np. Another answer is that integer linear programming
is a special case of Presburger arithmetic, which is decidable.

Solution to Exercise 32.
Languages recognised by data automata are closed under inverse images of
the following operations on data words: “remove the first position” and “keep
only positions divisible by k”. Therefore, we can apply Lemma 2.8 to get the
desired result.

Solution to Exercise 33.
Let us use the name enriched data automaton for the model from this exer-
cise, and the name standard data automaton for the original model. To prove
the exercise, we introduce an intermediate model, called a semi-enriched data
automaton. In semi-enriched model, there is some k such that only the follow-
ing information is stored about each block of question marks: the exact length
if the block has length ≤ k, and the remainder modulo k if it the block has
length ≥ k. It is not difficult to see that the enriched and semi-enriched models
have the same expressive power. To show that the semi-enriched model has the
same expressive power as the standard one, we use Exercise 32 and a labelling
of every position by its offset from the beginning modulo k.

Solution to Exercise 34.
With the more powerful model from this exercise, one can recognise com-
putations of counter machines as used in Exercise 9. This would contradict
Theorem 2.6 that emptiness is decidable for data automata.

Solution to Exercise 35.
A position is called opening if it is the first chosen position in its interval, and
a closing position if it is the last chosen position in its interval. The following
lemma characterises the language in the statement of the exercise in terms of
a condition that can clearly be recognised by a data automaton. Therefore, to
solve the exercise it remains to prove the lemma.

Lemma 2.12. A data word belongs to the language in the exercise if and only
if:
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(1) every class string satisfies the following expression:

(
( open︸︷︷︸
opening but not closing

remaining cases︷  ︸︸  ︷
middle∗ close)︸︷︷︸

closing but not opening

+ clopen︸ ︷︷ ︸
opening and closing

+ ⊥︸︷︷︸
not chosen

)∗
(2) one can colour the intervals with four colours so that:

(i) for every opening position, the previous position with the same data value
does not exist or is in an interval with a different colour;

(ii) for every closing position, the next position with the same data value does
not exist or is in an interval with a different colour.

Proof We begin with the bottom-up implication. Suppose that conditions 1,
2 hold. We show membership in the language:

• All chosen positions in the same interval have the same data value. By in-
duction on the left-to-right order on positions, we prove that every chosen
position x has the same data value as all earlier chosen positions in its in-
terval. If x is an opening position, then this statement vacuously true, since
there are no earlier chosen positions in the same interval. Assume then that x
is chosen but not opening. By condition 1, x cannot be the first position in its
class. Let y be the previous position in the class of x. We need to show that
y is in the same interval as x. By condition 1, y is a chosen but not closing
position. Therefore, there must be a closing position in the interval of y, call
it z, which is strictly after y. We cannot have y < z < x since then we could
apply the induction assumption to z and show that it is in the same class as x,
contradicting the choice of y as the previous position in the class. Therefore,
z ≥ x, and thus x is in the same interval as y.

• There is no non-chosen position which has the same data value as some cho-
sen position in the same interval. Consider an interval. If the interval has no
chosen position, the condition is vacuously true. Otherwise, let d be the data
value in the chosen positions, which is unique by the previous item. There
cannot be any non-chosen position in the interval with data value d that is
before the opening position, since otherwise we would get a contradiction
with 2a). A symmetric argument holds for non-chosen positions after the
closing position. Between the opening and closing position there cannot be
non-chosen positions by condition 1.

We now show that top-down implication. Condition 1 is easy to see, so we
focus on condition 2. We say that two intervals I and J are in conflict if I
contains the class predecessor (i.e. previous position in the same class) of the
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opening position in J. Condition 2a) says that conflicting intervals have differ-
ent colours. The key observation is that the conflict relation is a forest. This
is because every interval has at most one opening position, and every opening
position has at most one class predecessor. Every forest can be coloured with
two colours so that no edge is monochromatic, which shows that two colours
are enough to satisfy 2a). A symmetric argument shows that two colours are
enough to satisfy 2b), and therefore the product colouring with four colours
will satisfy both 2a) and 2b). �

Solution to Exercise 36.
For the sake of this exercise, we consider a model of register automaton where
undefined registers are not allowed. The initial configuration has the initial
state and the first data value in all the registers. It is not difficult to see that this
model is equivalent to the original model of register automata.

Take some nondeterministic register automaton where undefined registers
are not allowed, in the sense described above. Without loss of generality, we
assume that it is weakly guessing in the sense of Exercise 7. Consider a run of
this automaton.

For a register r, an r-interval is a maximal connected set of positions in the
input word such that every transition in the interval has the same contents of
r in its source configuration. Define the r-chosen data value of an r-interval,
which may be undefined, to be the contents of register r that is used throughout
the interval (in the source configurations). Call a position r-chosen if the input
data value is equal to the r-chosen data value of the containing r-interval. Here
is a picture of a run for an automaton with registers {A, B, C} together with the
corresponding intervals and their chosen positions.

input data values
input labels

states

register C
C-intervals

register B
B-intervals

register A
A-intervals

4

a a b a b b b a b b a b b b b a b

p q q r s p q r p s q r p p q r s p

T
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In the picture above, the chosen positions are marked by black circles and the
non-chosen positions are marked by white circles. To describe the run, the data
automaton uses nondeterminism to guess this part of the above picture:

states

C-intervals

B-intervals

A-intervals

p q q r s p q r p s q r p p q r s p

Using the solution to Exercise 35, the data automaton checks for each register
r that for every r-interval, all r-chosen positions have the same data value,
and all non-r-chosen positions have a different data value than the r-chosen
ones. Since the automaton is weakly guessing, every r-interval contains some
r-chosen position. The above picture is sufficient to reconstruct the entire run
including the register contents, in a way which can be checked by the finite
states of the transducer in the data automaton.

Solution to Exercise 37.
Immediate.

Solution to Exercise 38.
If the run of the transducer is given explicitly in the data word, and every
position is labelled by the state in the run of an automaton recognising the
class language, then the correctness of such a labelling can be checked by a
formula of the logic.

Solution to Exercise 39.

Solution to Exercise 40.
The automaton checks that the following conditions are all satisfied:

(1) Every data value appears exactly twice.
(2) Let us use the name middle for the second appearance of the data value in

the first position. Every data value before the middle appears also after or at
the middle. Every data value after the middle appears also before the middle.

(3) Regardless of the choices by player ∀, the following procedure is bound to
terminate by reaching the last position in step (c).

(i) Player ∀ chooses a position x before the middle.
(ii) Let x′ be the position after or at the middle with the same data value as x.
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(iii) If x is the last position, then terminate. Otherwise, player ∀ chooses some
position y > x′.

(iv) Let x be the position before the middle with the same data value as y.
(v) Goto (b)

It is not difficult to see that the conditions above are satisfied by every word
from the language. For the converse, we prove that if a word does not belong
to the language, then items 1 and 2 imply that 3 does not hold. Suppose that 1
and 2 hold, which means that the word is of the form

a1 · · · anaπ(1) · · · aπ(n).

for some distinct data values a1, . . . , an and some permutation π of {1, . . . , n}.
In particular, there must be some i < j such that π(i) > π( j). In step (a), player
∀ chooses a j before the middle, and in step (b) player ∀ chooses ai after the
middle.

Solution to Exercise 41.
For undecidability, we could extend the idea from Exercise 40 to recognise
use the encoding of Turing machine computations from Theorem 1.8. For the
decidability, we use a data automaton. The data automaton guesses for each po-
sition what are the states from which this position would be accepted, i.e. from
which states would player ∃ win if the game started in that position. Then only
a local consistency check is needed, in the spirit of Lemma 2.11.

Solution to Exercise 42.
The right-to-left implication is immediate. For the left-to-right implication, as-
sume that ā is a tuple of atoms that supports x and that π, σ are atom automor-
phisms that satisfy π(ā) = σ(b̄). In particular, π−1 ◦σ is an atom automorphism
that fixes ā, and therefore

(π−1 ◦ σ)(x) = x

Applying π to both sides of the above equality we get the described

σ(x) = π(x).

Solution to Exercise 43.
There are only four equivariant (having empty support) binary relations on
atoms, namely the empty and full relations, the equality relation, and the dise-
quality relation:

∅ A × A {(a, a) : a ∈ A} {(a, b) : a , b ∈ A}.
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It suffices to show that if an equivariant relation contains some equality pair
(a, a) then it contains all other equality pairs as well, and if it contains some
disequality pair (a, b) with a , b, then it contains all other disequality pairs
as well. The reason is that every equality pair can be mapped to every other
equality pair by an automorphism of the equality atoms, likewise for disequal-
ity pairs. The reader will easily generalise this argument to show that an n-ary
relation is equivariant if and only if it can be defined by a quantifier-free for-
mula that uses only equality.

Solution to Exercise 44.
All of the four equivariant relations mentioned in the solution to Exercise 43
are still valid. (In general, when the atoms gain structure, there are more equiv-
ariant sets.) However, there are four new binary relations, which refer to the
total order, namely:

{(a, b) : a < b} {(a, b) : a ≤ b} {(a, b) : a > b} {(a, b) : a ≥ b}.

Observe again these are exactly the binary relations that can be defined by
quantifier-free formulas.

Solution to Exercise 45.
By unravelling the definition, the commuting diagram says that

(π(x), π( f (x))) ∈ f for every x ∈ X

which is equivalent to

(x, f (x)) ∈ π−1( f ) for every x ∈ X.

Since applying an automorphism, such as π−1, to the function f results in a
function, the above is equivalent to saying that the functions f and π−1( f ) are
identical, for every ā-automorphism π. This is the same thing as saying that f
is supported by ā.

Solution to Exercise 46.
The vertices are ordered pairs of atoms. From a vertex (a, b) there is exactly
one edge, which connects it to (b, a). This graph is bipartite, so it admits a two-
colouring. A finitely supported two-colouring, say by colours blue and yellow,
would give a choice function, namely map a set {a, b} to the unique pair in
{(a, b), (b, a)} which is coloured by blue.

Solution to Exercise 47.
Suppose that < is a partial order, and a, b are atoms outside the support. Choose
π to be the transposition that swaps a and b; in particular π is the identity on the
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support of <. It follows that < is preserved when π is applied to its arguments,
and therefore a < b is equivalent to a > b. By antisymmetry, neither property
can hold.

Solution to Exercise 48.
Suppose that R is a binary relation on the atoms with finite support. Let c be the
smallest atom in the finite support. If a1 < b1 and a2 < b2 are atoms which are
smaller than c, then R selects the pair (a1, b1) if and only if it selects the pair
(a2, b2), because these pairs can be mapped to each other by an automorphism
of the rational numbers that fixes all rational numbers greater or equal to c. It
follows that for atoms smaller than c, the order imposed by R is either that of
the rational numbers or its opposite, neither of which is well-founded.

This example goes back to Andrzej Mostowski, who was one of the main
figures in sets with atoms, which is why they are sometimes called Fraenkel-
Mostowski sets. The example shows that in sets with atoms there exist sets
which can be totally ordered, but not in a well-founded way.

Solution to Exercise 49.
This exercise might be connected to (Mac Lane and Moerdijk, 1992, Section
III.9), but I’m not sure.

We first observe that the choice of enumeration is not important. This is
because the topology on bijections does not depend on the enumerations. In
other words, the notion of convergent sequence (of bijections) does not depend
on the enumeration: a sequence of bijections is convergent if and only if it
is pointwise ultimately constant, i.e. for every argument, all but finitely many
bijections give the same result.

The equivalence in the exercise says that the following conditions are equiv-
alent:

(1) if a sequence of bijections π1, π2, . . . of atom automorphisms is pointwise
ultimately constant, then the sequence of bijections f1, f2, . . . on X defined
by fn(x) = πn(x) is also pointwise ultimately constant.

(2) every element of X is finitely supported.

For the bottom up implication, suppose that π1, π2, . . . is pointwise ultimately
constant. To show that f1, f2, . . . is pointwise ultimately constant, take some
element x ∈ X. By assumption 2, there is some finite atom tuple ā that supports
x. By assumption on π1, π2, . . . being pointwise ultimately constant, it follows
that all but finitely many of the automorphisms π1, π2, . . . give the same result
on the tuple ā. This implies that all but finitely many of the functions f1, f2, . . .
give the same result on x.
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For the top-down implication, suppose that some x ∈ X does not have finite
support. Let a1, a2, . . . be an enumeration of A. Since x does not have finite
support, it follows that for every n ∈ {1, 2, . . .} there is some atom automor-
phism πn which is the identity on a1, a2, . . . , an but is not the identity on x.
Consider the sequence

π1, id, π2, id, π3, id, . . . .

This sequence is pointwise ultimately constant (its limit is the identity). How-
ever, if we apply the atom automorphisms from the sequence to x, then on even
numbered positions we will get x, and on even numbered positions we will not
get x.

Solution to Exercise 50.
Condition 1 (x is a finite union of ā-orbits for some atom tuple ā) is satisfied by
X ⊆ Z if and only if X is finite or X = Z. Condition 2 (x is contained in a finite
union of equivariant orbits) is satisfied by all subsets of Z. Condition 3 (for
every atom tuple ā that supports x, x is a finite union of ā-orbits) is satisfied by
X ⊆ Z if and only if X is finite.

Solution to Exercise 51.
Define S ⊇ R to be those pairs which can be obtained by taking some first
coordinate of R and pairing it with some second coordinate of R. The set S is
obtained from R by taking the product of the projections of R onto the first and
second coordinates. Since projection is an equivariant function, it follows from
Fact 3.24 that S is orbit-finite. Choose some tuple ā which supports both R and
S . It is easy to see that the transitive closure does not increase the support, and
therefore the transitive closure of R is a subset of S that is union of ā-orbits.
Since S is orbit-finite, this union must be finite.

Solution to Exercise 52.
Consider the equality atoms. For every finite set of atoms C, the following is a
finitely supported function:

fC(a) =

1 if a ∈ C

2 otherwise.

When C,D are finite sets of atoms with different sizes, then the functions fC
and fD are not in the same orbit.

Solution to Exercise 53.
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Solution to Exercise 54.
First observe that the assumption that the atoms have finitely many equivariant
orbits is necessary to get the converse. As an example, take some infinite struc-
ture without any automorphisms, e.g. A = (N, <). In this case every ā-orbit is a
singleton, regardless of the choice of the atom tuple ā, and therefore conditions
1 and 3 in the statement of the theorem are equivalent.

Let us now prove the statement in the exercise. By induction on n ∈ {1, 2, . . .}
we show that An has finitely many equivariant orbits. The induction base is the
assumption from the exercise. Let us now do the induction step, i.e. consider
An+1. Take some n-tuple of atoms ā. By the induction base, there are finitely
many ā-orbits in A, which means that there finitely many equivariant orbits
in An+1 that contain tuples which begin with ā. We have just shown that the
mapping

f : An → P(An+1)

which maps a tuple A to those equivariant orbits in An+1 that contain a tuple
beginning with ā always produces finite families of subsets. Since every tu-
ple in An+1 must begin with some tuple in An, it follows that the family of
equivariant orbits in An+1 is ⋃

ā∈An

f (ā)

It is also easy to see that f is equivariant, and therefore its value only depends
on the equivariant orbit of the argument. Therefore, in the union above we
could take only one tuple ā for every equivariant orbit of An, of which there
are finitely many by induction assumption. Therefore, the family of equivariant
orbits in An+1 is finite, as a finite union of finite families. We have shown that
An+1 has finitely many equivariant orbits. By the assumptions that the two
conditions in Theorem 3.16 are equivalent, it follows that An+1 has finitely
many ā-orbits for every tuple of atoms.

Solution to Exercise 55.
Suppose that X is orbit-finite. Choose some support b̄ of X. For every tuple of
atoms ā, there are finitely many āb̄-orbits of X. If an element x ∈ X is supported
by ā, then its āb̄-orbit is a singleton, hence there are finitely many elements of
X supported by ā.

Solution to Exercise 56.
Consider the set of all non-repeating tuples of atoms. Since tuples can have
arbitrarily large dimensions, and atom automorphisms preserve dimensions of
tuples, the set is not orbit-finite. Nevertheless, a given tuple of atoms can only
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support finitely many tuples, namely those tuples that are contained in it (and
possibly reordered).

Solution to Exercise 57.
We begin with the following observation.

Claim 3.26. There exists a tuple of atoms c̄ which supports R and such that
for every ā ∈ Ak there exists a tuple b̄ ∈ Ak such that R(āb̄) and every atom in
b̄ appears in āc̄.

Proof Let d̄ be some support of R. Choose c̄ to be d̄ plus 2k fresh distinct
atoms. The tuple c̄ is designed so that for every ā ∈ An there are at least k
atoms in c̄ which are not in d̄ and do not appear in ā. By the assumption that
d̄ supports R and because we are in the equality atoms, membership āb̄ ∈ R
depends only on the equality type of the tuple āb̄d̄. Hence one can always
choose b̄ so that those coordinates which are not from ād̄ are from c̄. �

Let c̄ be as in the above claim. Take some ā ∈ An and apply the above
lemma, yielding a tuple b̄ ∈ Ak. Define

fā = {π(ā, b̄) : π is a c̄-automorphism}.

The above relation is contained in R and it is a partial function by the assump-
tion that every atom in b̄ appears in āc̄. The domain of fā is the c̄-orbit of
ā. Since An has finitely many c̄-orbits, we can take a finite union of partial
functions of the form fā and get a total function.

Solution to Exercise 58.
Consider the total order atoms, and the relation a < b. There is no finitely
supported function which maps each atom to a strictly bigger one.

Solution to Exercise 59.
The atoms are the undirected graph which consists of infinitely many triangles.
The binary relation is “different but in the same triangle”. The function would
need to pick, for each atom, one of the two other vertices in the same triangle.

Solution to Exercise 60.
Let E be the family in the exercise. The set E is finite because X × X is
orbit-finite and therefore has finitely many ā-supported subsets thanks to Ex-
ercise 55. Therefore, to prove the exercise it suffices to show that for every
two equivalence relations ∼1,∼2∈ E there exists an equivalence relation ∼∈ E
which is coarser than both ∼1 and ∼2. Consider the following binary relation
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on X:

R =∼1 ◦ ∼2 .

This relation is supported by ā. Define ∼ to be the transitive closure of R. This
is an equivalence relation and it is supported by ā. It suffices to show that ∼
has finite equivalence classes. Define Rn ⊆ X × X to be the set pairs which can
be connected by a path of length at most n in the graph (X,R). We know

R = R1 ⊆ R2 ⊆ R3 ⊆ · · · ⊆ X × X

are all subsets of ā that are supported by ā. By 55 there are finitely many
subsets of X × X that are supported by ā, and therefore there must be some n
such that Rn is transitive, i.e. Rn =∼. By the assumption that ∼1,∼2 have finite
equivalence classes, the graph (X,R) has finite degree, i.e. for each x ∈ X there
are finitely many y ∈ X such that R(x, y). Therefore, the graph (X,Rn) also has
finite degree, which shows that ∼ is in E.

Solution to Exercise 61.
Choose some x ∈ X and some atom tuple b̄ which supports x. Consider the set
of pairs

{(π(b̄), π(x)) : π is an ā-automorphism.}

This set of pairs is a surjective function from atom tuples to X, by the assump-
tion that b̄ supports x. The domain of the function is the ā-orbit of b̄, which is
an orbit-finite set. From Fact 3.24 it follows that the range of the function is
orbit-finite.

Solution to Exercise 62.
Suppose that X and f are supported by an atom tuple ā. Since orbit-finite sets
are clearly closed under finite unions, it suffices to consider the case when X
is one ā-orbit. Choose some x ∈ X, and let b̄ be an atom tuple which supports
f (x). Since f (x) is orbit-finite, it is a union of finitely many b̄-orbits, and there-
fore one can choose y1, . . . , yn so that every element of f (x) is obtained from
some yi by applying some b̄-automorphism. It follows that an element belongs
to the union in the exercise if and only if it can be obtained by taking some
yi, applying some b̄-automorphism, and then applying some ā-automorphism.
The result then follows from Exercise 61.

Solution to Exercise 63.
Suppose that X is an orbit-finite set, and f : X → X is an injective function. It
is not difficult to see that if ā is a support of f , then f maps injectively ā-orbits
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to ā-orbits. In particular, since X has finitely many ā-orbits, then the image of
f must have the same number of ā-orbits, and is therefore the whole set X.

Solution to Exercise 64.
Before giving the solution, we remark that Dedekind finiteness can be used to
characterise orbit-finite sets, but one needs to use the (finitely supported) pow-
erset. The following theorem, which is given here without proof, was shown
by Andreas Blass.

Theorem 3.27. For every choice of atoms, not necessarily oligomorphic ones,
a set is all-support orbit-finite if and only if its powerset is Dedekind finite.

Let us now solve the exercise. Consider the equality atoms and the set

A(∗) def
=

⋃
n

A(n),

i.e. the set of non-repeating tuples of arbitrary lengths. This set is not orbit-
finite, yet we claim that it is Dedekind finite, i.e. that every finitely supported
injection

f : A(∗) → A(∗)

is a bijection. Suppose that f is supported by a finite tuple of atoms ā. For a
tuple in A(∗) define its ā-dimension to be the number of atoms in the tuple,
not counting the atoms from ā. All tuples in a single ā-orbit have the same
ā-dimension, and therefore it makes sense to talk about the ā-dimension of an
ā-orbit.

Claim 3.28. For every ā-orbit Z, the image f (Z) is a ā-orbit with the same
ā-dimension.

Proof The image under f of an ā-orbit in A(∗) is also an ā-orbit. The ā-
dimension cannot increase when applying f , since the function is ā-supported,
but it cannot decrease as well (since the inverse of f is also ā-supported). �

The key property is that for every n ∈ N, the set A(∗) has finitely many ā-
orbits of ā-dimension n. It follows that for every n, f is a bijection between
ā-orbits of ā-dimension n, and therefore f is a bijection.

Solution to Exercise 65.
The left-to-right implication is clear. For the converse implication, if X is not
finite, then the family of finite subsets of X is directed but has no maximal
elements.
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Solution to Exercise 66.
Let us introduce a further condition: (**) there is a maximal element in ev-
ery set of atoms X ⊆ PX which is a chain (i.e. totally ordered by inclusion)
and uniformly supported. We will show that orbit-finiteness, (*) and (**) are
all equivalent. The implication from (*) to (**) is immediate. For the implica-
tion from (**) to orbit-finiteness of X, choose some support ā of X. If X had
infinitely many ā-orbits, then we could construct a uniformly supported infi-
nite chain without a maximal element, by successively adding these orbits. For
the implication from orbit-finiteness to (*), suppose that X is a uniformly sup-
ported directed family of subsets of an orbit-finite set X. Let ā a tuple of atoms
that supports every set in X. The union

⋃
X is a finitely supported subset of X,

and therefore must be orbit-finite by oligomorphism. The union partitions into
finitely many ā-orbits, call them X1, . . . , Xn. Every set fromX is simply a union
of some of the ā-orbits X1, . . . , Xn, and therefore X must contain X1 ∪ · · · ∪ Xn,
a maximal element.

Solution to Exercise 67.
Let us begin with a counterexample for (Q, <). The set of all atoms is orbit-
finite, but it admits a chain of subsets without a maximal element, namely the
family of all downward closed intervals.

We now prove that the statement in the exercise is true in the equality atoms.
We will show that (***) is equivalent to (**) from the solution to Exercise 66
and therefore it is equivalent to orbit-finiteness. Actually, we show a stronger
property.

Lemma 3.29. Consider the equality atoms. If a set with atoms (X,≤) is a total
order, then some tuple of atoms supports all elements of X.

Proof We use the following property of the equality atoms:

(†) Every finite partial automorphism of the atoms can be extended to a complete auto-
morphism that is the identity on almost all atoms.

The above property is not true in (Q, <) but it true e.g. in the random graph that
will be discussed in Section 7.

Let ā be a support of both X and the total order, which we denote by ≤.
We show that every element x ∈ X is supported by ā. Let then π be some ā-
automorphism of the atoms. We need to show that π(x) = x. Let b̄ be a finite
support of x (eventually we will show that x is supported by ā). Since supports
are closed under adding elements, assume that that all atoms in ā appear also
in b̄. By property (†), there must be some automorphism of the atoms σ, which
agrees with π on b̄, but which is the identity on almost all atoms. Since π
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and σ agree on the support of x, it follows that π(x) = σ(x). Also, σ is an
ā-automorphism since it agrees with π on b̄ which contains all elements of ā.

Since X is supported by ā, it follows that σ(x) belongs to X. Since ≤ is a total
order, x and σ(x) must be comparable under ≤. Without loss of generality, we
assume that

x ≤ σ(x).

Since ≤ is supported by ā, we can apply the ā-automorphism σ to both sides
of the inequality, yielding

σ(x) ≤ σ2(x).

By doing this a finite number of times, we get

x ≤ σ(x) ≤ · · · ≤ σn(x)

Since σ is the identity on almost all atoms, there must be some n for which σn

is the identity. Therefore, we see that x ≤ σ(x) ≤ x, and therefore x = σ(x),
which is the same as π(x). �

Solution to Exercise 68.
Same proof as for the standard lemma, plus this observation: the depth of a
subtree is invariant under applying atom automorphisms.

Solution to Exercise 69.

Solution to Exercise 70.

Solution to Exercise 71.

Solution to Exercise 72.

Solution to Exercise 73.
As explained in the proof of Theorem 3.23, sets which admit a representation
as in the statement of the exercise are closed under finite union. Therefore, it
is enough to treat the case of a set which is defined by a set expression

{α(x̄) : for x̄ ∈ An such that ϕ(x̄)}.
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The function

ā ∈ An 7→ α(ā)

is the desired bijection, assuming that we restrict its domain to tuples that sat-
isfy ϕ, and quotient it under the kernel

ā ∼ b̄ if α(ā) = α(b̄),

which is defined in first-order logic thanks to the First Symbol Pushing Lemma.

Solution to Exercise 74.
Since every orbit-finite set admits a finitely supported bijection with one that
is hereditarily orbit-finite, we can assume without loss of generality that X is
hereditarily orbit-finite, and therefore definable. For ā = (a1, . . . , an), every ā-
orbit that is represented by a set builder expression that uses parameters from ā.
There is a well-founded ā-supported total order on such set builder expressions,
by viewing each set builder expression as a string over a finite alphabet, with
the atom parameters ordered as a1 < · · · < an. The function f uses this order
to produce a list of orbits.

Solution to Exercise 75.
The vertices are nonrepeating tuples of atoms, and there is an edge ā → b̄
whenever ā is a proper prefix of b̄. This graph clearly contains an infinite path,
but every such path uses infinitely many atoms, and is therefore not finitely
supported.

Solution to Exercise 76.

• Not equivalent. The atoms are (Q, <). Consider the graph where the vertices
are atoms, and the edge relation is {(v,w) : v < w}. Take T to be all vertices,
and s to be any vertex. There exists an infinite path from s which sees T
infinitely often – actually this is true for every infinite path – but there is no
cycle in the graph.

• Equivalent. The atoms are the equality atoms (N,=). Let (V, E) be such that
there is an infinite path that begins in s and visits T ⊆ V infinitely often.
Let ā be a tuple of atoms that supports the graph and the target set T . By the
pigeon-hole principle, the infinite path must contain two vertices t, t′ that are
in the same ā-orbit, i.e.

π(t) = t′ for some ā-automorphism π.
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Suppose that t′ is visited first by the infinite path, i.e.

t
p
→ t′ for some finite path p in the graph.

It follows that for every n, there is a path from t to πn(t), namely

t
p
→ π(t)

π(p)
→ π2(t)

π3(p)
→ · · ·

πn−1(p)
→ πn(t).

By the same argument as in the solution to Exercise 67, we may assume that
π is the identity on all but finitely many atoms, and therefore πn(t) = t for
some n, thus showing that there is a cycle containing t.

Solution to Exercise 77.

(1) Infinite path that sees T infinitely often. Suppose that ā supports the graph.
We claim that condition (1), i.e. existence of an infinite path that begins in s
and visits T infinitely often, is equivalent to:

(*) there exist paths s→ t → t′ such that t and t′ are in the same ā-orbit.

The left-to-right implication follows from the pigeon-hole principle, while
for the right-to-left implication we use the path

t → π(t)→ π2(t)→ · · · .

It remains to decide if (*) holds. The binary relation “in the same ā-orbit”
is a finitely supported relation on V . Therefore, the question in the defini-
tion of (*) can be formalised using the set structure. (There is a hole in this
argument, namely that it assumes that we can compute the relation “in the
same ā-orbit”. This is actually an assumption that needs to be made about
the atom structure, see the footnote for Exercise 99.)

(2) One can reach a finite cycle that intersects T . Condition (2) is checked using
the set structure from the Third Symbol Pushing Lemma.

Solution to Exercise 78.
Define V0 to be T . For n > 0 define Vn ⊆ V to be Vn−1 plus all vertices v ∈ V
such that:

• v is owned by 0 and some (v,w) ∈ E satisfies w ∈ Vn;
• v is owned by 1 and all (v,w) ∈ E satisfy w ∈ Vn.



235

Using the set structure, one shows that each Vn is a hereditarily definable set
that can be computed. By the same argument as for graph reachability, there is
some fixpoint, i.e. some n such that Vn+1 = Vn. If the source vertex is in this
fixpoint, then player 0 wins the game. We claim that the converse implication
is also true, thus completing the algorithm.

To prove this claim, suppose that the source vertex belongs to the comple-
ment of the fixpoint, call this complement W. By definition, if v ∈ W then

• v is owned by 0 then all (v,w) ∈ E satisfy w ∈ W;

• v is owned by 1 then some (v,w) ∈ E satisfies w ∈ W.

It follows that player 1 has a strategy that ensures staying in the complement
W, and thus never reaching the set T .

Solution to Exercise 79.
First observe that binary relations represented by set builder expressions are
not closed under taking transitive closure. As an example, consider the succes-
sor relation {(n, n + 1) : n ∈ N}. This relation is clearly defined by a set builder
expression, but its transitive closure is the order relation, which is not.

To get the undecidability result, one considers a graph where vertices are
configurations of a Minsky machine, and the edge relation is one step of com-
putation.

Solution to Exercise 80.
The atoms are

A = (N, P1(x), P2(x), . . .) where Pi(x) = x < i.

Define An to be the structure with the same universe, but where only the unary
predicates P1, . . . , Pn are allowed. The structure A is not oligomorphic, but the
structures A1,A2, . . . are oligomorphic. Every set builder expression over A is
already a set builder expression over An for some finite n. For such set builder
expressions, the graph reachability algorithm terminates in finite time.

Solution to Exercise 81.
Let A be the undirected graph (which is modelled a structure where the uni-
verse is the vertices and there is one binary symmetric relation), which is a
union of all finite cliques (one clique for each size):
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...

This structure is not oligomorphic, since an automorphism can only map each
clique to a permutation of itself. Nevertheless, we show below that graph reach-
ability is decidable for graphs represented by set builder expressions over these
atoms.

For k ∈ {1, 2, . . . , ω} define Ak be the structure obtained from A by adding
for each i < k a unary predicate Pi which selects elements of the clique of
size i.

Claim 5.5. Every first-order formula over A of quantifier-rank r is equivalent
to a quantifier-free formula over Ar.

Proof Induction on r �

Claim 5.6. If R is a binary relation on Ak which is first-order definable, then
there is some n such that the transitive reflexive closure R∗ is equal to R≤n.

Proof By Claim 5.5, the relation R is defined by a quantifier-free formula
over Ar for some r. Consider a path in the graph where the vertices are Ak and
the edge relation is given by R:

x̄1
R
→ x̄2

R
→ · · ·

R
→ x̄n.

If n is sufficiently large with respect to r, one can find i < j such that the
quantifier-free types in Ar are the same for the 2k-tuples x̄i x̄i+1 and x̄i x̄ j+1. We
can then shorten the path, by going directly from x̄i to x̄ j+1. �

A corollary of the above claim is that the fixpoint algorithm for graph reach-
ability terminates in finitely many steps, for graphs where the vertices are tu-
ples of atoms. By Exercise 73, any the vertices of any graph represented by a
set builder expression can be viewed as tuples of atoms modulo a first-order
definable partial equivalence, and therefore the fixpoint algorithm terminates
in finitely many steps also for graphs represented by set builder expressions.

An extension of this argument would work for the structure which is the
union of all finite cycles:
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...

Solution to Exercise 82.
The usual proof works. It is important that transitive closure preserves orbit-
finiteness.

Solution to Exercise 83.
Determinism can be formalised in first-order logic and then checked using
the Symbol Pushing Lemmas. To check if an automaton is unambiguous we
construct the product of the automaton with itself, and check if there is a pair
(p, q) of state p , q that is both reachable and co-reachable.

Solution to Exercise 84.
Consider a nondeterministic orbit-finite automaton A which recognises a lan-
guage L supported by ā. Define a new automaton, which is a disjoint union of
all automata of the form π(A) where π is a ā-automorphism. This new automa-
ton is orbit-finite and supported by ā. Finally, the recognised language is the
same because all automata in the disjoint union recognise the same language,
namely the original language L.

Solution to Exercise 85.
The construction from Exercise 84 does not work, but we can apply the Myhill-
Nerode Theorem. Since the syntactic automaton is obtained only from the lan-
guage, it has the same support as the language, by the equivariance principle.

Solution to Exercise 86.
Instead of natural numbers, we could use the positive rational numbers, and
the answer to emptiness would be the same. This is because a run that uses
positive rational numbers can be changed into a run that uses natural numbers,
by scaling. After assuming that the counters store positive rational numbers, we
end up with a special case of nondeterministic orbit-finite automata, over the
total order atoms. (The automaton is not equivariant, since it uses the constant
0.) As we shall prove later on, emptiness for such automata is decidable.

Solution to Exercise 87.
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Suppose that we have a union ⋃
i∈I

Li

where I is an orbit-finite set and each Li is recognised by an nondeterministic
orbit-finite automaton with state space Qi. Then the union is recognised by an
automaton with state space ⊎

i∈I

Qi

which is an orbit-finite set by Exercise 62.

Solution to Exercise 88.
The language of words w ∈ A∗ where all atoms are distinct, is an orbit-finite
intersection ⋂

a

atom a appears at most once.

The language of representations of accepting runs of Turing machines, as de-
scribed in the proof of Theorem 1.8, is also seen to be an orbit-finite intersec-
tion of languages recognised by orbit-finite deterministic automata.

Solution to Exercise 89.
Intuitively speaking, the problem is that intersection corresponds to product on
automata, and we cannot do orbit-finite products. Here is the counterexample.
For every a ∈ A, the language “a appears at most once” is recognised by a
(deterministic) orbit-finite automaton. If we could intersect all these languages,
then we would get a nondeterministic automaton for the language “all letters
are distinct”. By Theorem 5.11, this would mean that “all letters are distinct”
could be recognised by a register automaton, which is not the case.

Solution to Exercise 90.
The problem is that when the automaton reads the first letter of the input, say
the unordered set {1, 2}, then it cannot load any atoms into its registers, since
this would require a form of choice.

Solution to Exercise 91.
Let M be the syntactic monoid of a language. There is a deterministic automa-
ton with states M which recognises the same language; the transition function
is simply defined by (q, a) 7→ qa where qa is the product operation in the
syntactic monoid.



239

The failure of the converse implication is witnessed by the language

{w ∈ A∗ : the first letter appears also later in the word}.

The language is recognised by a deterministic automaton which keeps the first
letter in its state, and is hence orbit-finite. To see that the syntactic monoid is
not orbit-finite, we observe that if two words w, v have different sets of atoms
that appear in them, then they are not equivalent with respect to the two-sided
Myhill Nerode equivalence relation. Indeed, if a is an atom that appears in w
but not in v, then aw is in the language, but av is not. Therefore, the syntactic
monoid must store the set of distinct atoms in a given word, which cannot be
done in an orbit-finite way.

Solution to Exercise 92.

Solution to Exercise 93.

Solution to Exercise 94.
Assume that the set of states Q in the syntactic automaton is orbit-finite. By
Exercise 92, the syntactic monoid consists of state transformations of states in
the syntactic automaton. Therefore, saying that the syntactic monoid is aperi-
odic amounts to showing that every input word w satisfies

∃k ∈ {0, 1, . . .} ∀q ∈ Q qwk = qwk+1. (5.1)

The exercise asks if the last two quantifiers can be swapped in the above, i.e. if
the above condition is equivalent to

∀q ∈ Q ∃k ∈ {0, 1, . . .} qwk = qwk+1. (5.2)

Clearly (5.1) implies (5.2), so we only show the converse implication. Choose
m so that for every state q, there is a tuple of at most m atoms which supports
w, q and the transition function of the syntactic automaton. The value of m
depends on w. The function

ā ∈ Am 7→ number of ā-orbits in Q

is a finitely supported function from tuples of atoms to natural numbers, and
therefore it has finitely many possible values. It follows that there is some
k ∈ {0, 1, . . .} such that for every tuple ā of at most k atoms, there are at most k
ā-orbits in Q. Let q ∈ Q, and choose some tuple ā which supports w, q and the
syntactic automaton; this tuple has at most m atoms. All elements in the set

{q, qw, qw2, . . .}
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are supported by ā, and therefore each of the elements of the above set is a
singleton ā-orbit in Q. It follows that the above set has size at most k, which
proves (5.1).

Solution to Exercise 95.
Yes. Consider the monoid

M = 1 + A2

where 1 is the identity and product for non-identity elements is defined by
ab = b. Removing any finite set of non-identity elements still yields a monoid,
and hence one can obtain an infinite chain as in the statement of the exercise.

Solution to Exercise 96.
Using the usual construction, one can convert the automaton into one which
operates on the stack only via push and pop, i.e. apart from the fresh transitions
of the type in the statement of the exercise, we only allow transitions of the
form:

q
read(a)
→ p read input letter a ∈ Σ and do not change the stack

q
push(a)
→ p read nothing and push symbol a on the stack

q
push(a)
→ p read nothing and pop symbol a from the stack

For states q, p and a stack symbol a, we write q
a
⇒ b if the automaton has a

run of the following form:

state q

the token
never gets popped

state p

a a a

the stack is allowed
to grow and shrink,
but it must disappear
at the end

the �rst con�guration
has state q and symbol a

on top of the stack

the last con�guration
has state p and symbol a

on top of the stack

The following claim implies decidability. This is because it shows that the
relation q

a
⇒ b can be computed, and hence one can check if there is a run

which eventually pops the initial stack symbol.

Claim 5.21. Suppose that c̄ is some tuple of atoms which supports the transi-
tion relation. The relation q

a
⇒ b is generated by the following rules:
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(1) for every stack symbol a, the binary relation
a
⇒ is transitive and reflexive.

(2) for every q, p, q′, p′, ∈ Q, b ∈ Σ, a, a′ ∈ Γ we have

q
read(b)
→ p implies q

a
⇒ b

q
fresh(b)
→ p implies q

a
⇒ b if b is fresh with respect to q, a, c̄

q
push(a′)
→ q′

a′
⇒ p′

pop(a′)
→ p implies q

a
⇒ b

Proof The proof has two parts: soundness (the relation q
a
⇒ b satisfies the

rules) and completeness (the relation q
a
⇒ b is the least one which satisfies the

rules). Completeness of the rules is shown as usual for pushdown automata (by
induction on the length of the run). Soundness needs a little care, because of the
rule for freshness. Here, the observation is that we can always map the stack
to some stack which is fresh with respect to b, by using a c̄-automorphism
which fixes the state q and the topmost stack symbol a. Such an operation
is admissible, because reachable configurations are closed under applying c̄-
automorphisms. �

Solution to Exercise 97.
Before giving the solution, we point out that without atoms, emptiness is de-
cidable for higher order pushdown automata, even for orders ≥ 3. For unde-
cidability it suffices to have a stack of at most two stacks. We assume that
ε-transitions are available, which changes the expressive power of the model,
but does not influence decidability of emptiness.

We only show that such an automaton can recognise

L = {(w#)n : w ∈ A∗ has no repetitions and n ∈ N}

over the alphabet A ∪ {#}. The same construction can be modified so that the
automaton checks that consecutive blocks between # symbols, instead of being
equal as in L, are consecutive configurations of a Turing machine.

In a first phase, the automaton puts w into the (first) stack and checks that it
has no repetitions. This is done as follows. For every new letter a, the automa-
ton stores a in its state. Then it duplicates the stack, and searches if a appears
on the duplicated stack, destroying the duplicate in the process. If it does not
find a on the duplicated stack, it pushes a onto the first stack, and proceeds to
the next input letter.

Once it has checked that w has no repetitions, and stored w on the stack,
the automaton proceeds to the second phase, which checks that the rest of the
input consists of copies of w separated by # symbols. The second phase is done
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essentially the same way as the first. For every two consecutive letters a and b
in the rest of the input the automaton does the following.

If a = # then b must be the first letter of w, which is stored in the state. If b = #, then
a must be the last letter of w, which is stored in the state. Finally, suppose that neither
a nor b are #. The automaton needs to check that a and b are consecutive letters in w.
To do this, the automaton duplicates the stack, and searches through this stack to check
that a and b are consecutive symbols on the stack.

Maybe the above undecidability argument shows that our definition of higher-
order pushdown automata for atoms is the wrong one. If it is wrong, then which
one is right?

Solution to Exercise 98.
The language is odd length palindromes where the first letter is equal to the
middle letter. If it were generated by an orbit-finite context-free grammar with
finitely many terminals (but possibly an orbit-finite set of rules), then the lan-
guage would have the following property for some tuple of atoms ā (the sup-
port of the hypothetical grammar), which it does not have:

For every sufficiently long w, there is a decomposition w = w1w2w3, with w2 and w1w3

nonempty such that

w1(π · w2)w3

is a palindrome for every ā-automorphism π.

Solution to Exercise 99.
Let A be a structure that is effectively oligomorphic and has decidable first-
order theory. Our goal is to extend the vocabulary of the structure with con-
stants c1, c2, . . . such that the structure (A, c1, c2, . . .) has decidable first-order
theory, and every element of the universe is represented by some constant.

For k ∈ {0, 1, . . .} we say that a tuple of atoms a1 . . . an is k-saturated if it is
non-repeating, and every k-tuple of atoms is in the same equivariant orbit as
some tuple of the form

an1 an2 · · · ank for some n1, . . . , nk ∈ {1, . . . , k}.

If k = 0, then the condition is trivially satisfied. IfA is oligomorphic, then every
k-saturated tuple can be extended to one which is (k + 1)-saturated. It follows
that there is an infinite sequence of atoms a1, a2, . . . which is ω-saturated in the
following sense: for every k, some finite prefix a1, . . . , an is a k-saturated tuple
of atoms.

Claim 5.29. If a sequence of atoms a1, a2, . . . is ω-saturated then the structure
A is isomorphic to its substructure induced by {a1, a2, . . .}.
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Proof One shows that Duplicator can win the infinite round Ehrenfeucht-
Fraı̈ssé game between A and the induced substructure, which implies isomor-
phism. �

Using the assumption that the formulas for the “same orbit” equivalence
relation can be computed, it follows that there is some infinite ω-saturated
sequence of atoms which is computable in the following sense: for every n, one
can compute a first-order formula ϕn(x1, . . . , xn) which defines the equivariant
orbit of the first n elements in the infinite sequence. Fix some ω-saturated and
computable infinite sequence of atoms a1, a2, . . .. Let B be the substructure of
A induced by this sequence, extended with constants c1, c2, . . . representing the
atoms a1, a2, . . .. By the computable assumption, B has decidable first-order
theory, and by the claim it is isomorphic to A.

Solution to Exercise 100.
Clearly 1 implies 2. Let us show that 2 implies 1. By assumption 2, we can
compute the number k of equivariant orbits of An. By Lemma 4.11, each such
orbit has a different first-order theory. Therefore, it suffices to find k inequiv-
alent formulas with n free variables, these formulas can be found using brute
force.

It is not difficult to see that 1 implies 3: if we can axiomatise each orbit
by a formula, then being in the same orbit boils down to satisfying the same
axiomatising formula, for which there are finitely many possibilities.

Let us show that 3 implies 2. We want to count the number of equivariant
orbits in An. Consider the following procedure. Let A ⊆ An be a finite set of
tuples of atoms, which are in pairwise different orbits. Initially, A is empty.
Using assumption 3 and decidable model checking, we can decide if there
exists a tuple ā ∈ An which is in a different orbit than all tuples in A. If there
exists no such tuple, then we have found the number of orbits. Otherwise,
we can find such a tuple, by enumerating through all possible candidates. We
add this tuple to A and continue. The algorithm is bound to stop because of
oligomorphism.

Solution to Exercise 101.
The difficulty is that the memoryless determinacy theorem uses choice, and
produces strategies that are not necessarily finitely supported. In fact, one can
give an example of a Büchi (even reachability) game where player 0:

• has a winning strategy that is not finitely supported;
• does not have a finitely supported winning strategy.

A solution to this difficulty is to consider nondeterministic strategies. Define a
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memoryless nondeterministic strategy for player i ∈ {0, 1} to be a set of pairs

S i ⊆ (Vi × V) ∩ E

such that if a vertex owned by player i has at least one outgoing edge in E,
then it also has at least one outgoing edge in S i. We say that S i is winning
for player i if every path that starts in the source vertex s and uses only edges
from S i will necessarily see T infinitely often. We claim that if player i has
a winning memoryless strategy (not necessarily finitely supported) in a Büchi
game, then player i also has a winning memoryless nondeterministic strategy,
which is supported by whatever supports the game. There are finitely many
such strategies; these can then be enumerated and checked

(todo complete)

Solution to Exercise 102.
A reduction from the tiling problem.

Solution to Exercise 103.
Still undecidable. We can view a configuration of a Minsky machine as a nat-
ural number

2a3b5c

where a, b are the values of the counters and c is the number of the control
state. One can write a Presburger formula ϕ(x, y) which holds if and only if
y represents the successor of the configuration represented by x. The system
of equations says that: (a) the variables that represent the source and target
states have different values; (b) variables that represent consecutive configura-
tions have the same value. This system has a solution if and only if the source
configuration cannot reach the target configuration.

Solution to Exercise 104.
The first set is the atoms. The second set is pairs of atoms, modulo the equiva-
lence relation defined by

(a1, a2) ∼ (b1, b2) if a2 − a1 = b2 − b1︸                ︷︷                ︸
b1+a2=a1+b2

.

Let c be some atom. It is not hard to see that the function

a ∈ A 7→ equivalence class of (a, c)

is a c-supported bijection between the two sets. We now establish that there is
no equivariant bijection. Toward a contradiction, suppose that f is an equivari-
ant bijection. For an atom a ∈ A, let (b, c) be an element of the equivalence
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class f (a). It is not hard to see that for every atom d, the function

a 7→ a + d

is an automorphism of the atoms. Since equivariant functions commute with
automorphisms, it would follow that (b + d, c + d) belongs to the equivalence
class f (a + d). However,

(b, d) ∼ (b + d, c + d),

contradicting injectivity of f .

Solution to Exercise 105.
The atoms are the undirected graph which is an infinite union of triangles:

. . .

Consider a triangle which involves atoms a, b, c. This triangle is supported by
a, and it is also supported by b (or c). Nevertheless, the atom a does not support
b, because one can swap b and c while fixing a.

Solution to Exercise 106.
Before proving the exercise, we observe that it gives an alternative proof of
the Least Support Theorem. To prove the Least Support Theorem, it suffices
to show that finite sets of atoms supporting x are closed under intersection.
Suppose then that x is supported by S and also supported by T . By the ex-
ercise, if an atom automorphism π fixes S ∩ T , then it can be decomposed
as a finite compositions of atom automorphisms that fix either S or T . Since
such automorphisms fix x, it follows that π also fixes x. It remains to prove the
exercise.

We do this in several steps.

(1) Transpositions. Suppose first that π from the assumption of the lemma is a
transposition, i.e. it swaps two atoms a, b < S ∩ T . Choose atoms a′, b′ <
S ∪ T . Swapping a, b is the same as performing the following sequence of
transpositions:

a b

b’a’ b’a’

a b

b’a’
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By the assumption that a, b are not in S ∩ T and a′, b′ are not in S ∪ T , each
of the above transpositions fixes either S or T .

(2) Finite permutations. An automorphism (i.e. permutation) of the atoms is
called finite if it moves finitely many atoms. Every finite permutation is a
finite composition of transpositions, and thus the previous item implies that
the conclusion of the lemma is also true when π is a finite permutation.

(3) Infinite cycles. Suppose that π is an infinite cycle, as in the following picture:

a-1... a0 a1 ...a2

We do not assume that the cycle contains all atoms. Since S ∪ T is finite, up
to renumbering we can assume that there is some n such that elements from
S ∪T can appear only in {a2, . . . , an}. If we compose πwith the transposition

a1 an+1

then we get the permutation consisting of two cycles (one finite, one infinite)
as in the following picture:

a-1... a0 an+1 ...a2

a1
a2an

The permutations drawn in blue fix S ∪ T . Therefore, we have shown that
the infinite cycle π is a composition of two permutations that fix S ∪ T , and
one finite cycle. To the finite cycle we can apply the previous item.

(4) General case. Every permutation can be decomposed into independent cy-
cles, some finite and some infinite. Both types of cycles were dealt with in
the previous items. We only need to apply the construction to the finitely
many cycles that contain atoms from S ∪ T .

Solution to Exercise 107.
Clearly anything that supports all the sets X1, . . . , Xn will also support X, which
proves the inclusion

sup(X) ⊆ sup(X1) ∪ · · · ∪ sup(Xn).

For the converse inclusion, we observe that the notions of least support, and
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the partition of a set with respect to its least support can all be defined using
the language of set theory, and therefore the functions

X 7→ sup(X) X 7→ {X1, . . . , Xn} X 7→
⋃

i

sup(Xi)

can all be defied using the language of set theory. In particular, by the equiv-
ariance principle, these functions are equivariant. Since the last function is
equivariant, anything that supports X, e.g. its least support, will also support⋃

i sup(Xi). Therefore,

sup(X) supports sup(X1) ∪ · · · ∪ sup(Xn).

Since both sides of the above are finite sets of atoms, and for finite sets of
atoms “supporting” is the same as “containing”, we get the inclusion

sup(X) ⊇ sup(X1) ∪ · · · ∪ sup(Xn).

Solution to Exercise 108.
See (Bojańczyk et al., 2014, Corollary 9.5).

Solution to Exercise 109.
Suppose that the atoms are a graph with infinitely many edges that do not share
any nodes.

...

This structure is oligomorphic, actually it is homogeneous (see Section 7).
Every atom is supported by itself, or the other side of its edge.

Solution to Exercise 110.
This exercise is based on (Colcombet et al., 2015, Lemma 2.14). Consider the
least support of the multiplication operation in the group. This least support
also supports the universe of the group, and the inverse operation g 7→ g−1. For
an element g of the group, define [g] to be the set of atoms that are in the least
support of g but are not in the least support of the multiplication operation of
the group. If a set of atoms supports g, h and the multiplication operation, then
it also supports the product gh. It follows that

[gh] ⊆ [g] ∪ [h]. (6.4)
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For the same reasons, we have

[g−1] = [g]. (6.5)

Take some g in the group which maximises the size [g]. Such a maximum
exists, since the size of [g] depends on that ā-orbit of g, of which there are
finitely many. Since we are dealing with the equality atoms, we can choose an
atom automorphism π so that

π([g]) ∩ [g] = ∅. (6.6)

We have

g = π(g)π(g)−1g.

Combining this with (6.4), we get

[g] ⊆ [π(g)] ∪ [π(g)−1g]

Combining this with (6.6), we get

[g] ⊆ [π(g)−1g]

By maximality of [g] the above is actually an equality, i.e.

[g] ⊆ [π(g)−1g] (6.7)

The same proof also yields

[π(g)] ⊆ [g−1π(g)] (6.8)

Using a similar reasoning applied to

π(g)−1 = g−1π(g)π(g)−1

we conclude that

[π(g)]
(6.8)
⊆ [g−1π(g)]

(6.5)
= [π(g)−1g]

(6.7)
= [g].

From (6.6) it follows that [π(g)] is empty. Therefore, [g] must also be empty,
since [ ] commutes with ā-automorphisms. By maximality of [g] it follows
that all elements of the group have value ∅ under [ ] which implies that all
elements of the group are supported by ā. In an orbit-finite set there can only
be finitely many elements with a given support (Exercise 55). Therefore, the
group is finite. The same proof would work for some other atoms, e.g. (Q, <).
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Solution to Exercise 111.
No. The bit vector atoms are oligomorphic, but the atoms themselves are a
group.

Solution to Exercise 112.
Using the same ideas as in Theorem 6.3, we get the following result.

Claim 6.5. Let X be an orbit-finite set. There exists k and a finitely supported
surjective function g : Ak → X such that for every x ∈ X there is some tuple in
g−1(x) only uses atoms from the least support of x.

Take g and k as in the above claim. Take c̄ to be some tuple of atoms which
supports both g and f . We will show that for every ā ∈ An·k there is some
c̄-supported partial function f ′ which satisfies the commuting diagram in the
statement of the picture when its domain is restricted to the c̄-orbit of ā. By
putting these functions together we get the desired result.

Let then ā ∈ An·k. Consider

x = f ◦ (g, . . . , g)(ā).

The element x is supported by āc̄ because the value of a function is supported
by any tuple which supports both the function and its arguments. Therefore
the least support of x uses only atoms that appear in āc̄. By Claim 6.5, there is
some b̄ ∈ Ak which uses only atoms from āc̄ and such that g(b̄) = x. Consider
the relation

f ′ def
= {π(ā, b̄) : π is a c̄-automorphism}

By choice of b̄ this relation is a partial function from An·k to Ak and it satisfies
the commuting diagram in the exercise when restricted to its domain.

Solution to Exercise 113.

Solution to Exercise 114.
Let ā be a support of F. Since the choice function f can be defined separately
for each ā-orbit, we can assume without loss of generality that X is a single
ā-orbit. By definition of straight sets, this means that (up to finitely supported
bijections) X is a single ā-orbit in A(k) for some k.

Claim 6.11. There is some tuple of atoms c̄ such that for every x ∈ X, there is
some y ∈ F(x) which is supported by the atoms in x plus c̄.

Proof For x ∈ X define n ∈ {0, 1, 2, . . .} to be the minimal number n such that
some element of F(x) has support of size n. The number does not depend on the
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choice of x, since X is contained in one equivariant orbit. Let c̄ be any tuple of
k + n distinct atoms that do not appear in ā. Take some x ∈ X and choose some
y ∈ F(x) with support of size at most n. Let b1, . . . , bi be the atoms in the least
support of y which are not in the least support of x, there are at most n of these.
Since c̄ has k + n atoms, one can find atoms c1, . . . , ci in the tuple c̄ which do
not appear in x ∈ A(k). The atom automorphism π that swaps (b1, . . . , bi) with
(c1, . . . , ci) fixes the supports of both x and F. Therefore, π(y) ∈ F(x). The least
support of π(y) uses only atoms from c̄ and the least support of x. �

By Exercise 74, there is a finitely supported function which maps every
x ∈ X to an ordered list of the xc̄-orbits that are contained in F(x). By the
above claim, one of these orbits is a singleton, and the function f can simply
output the unique element of that singleton (the first singleton in the list).

Solution to Exercise 115.
Take F to be the function which maps an atom a ∈ A to all strictly bigger
atoms.

Solution to Exercise 116.

Solution to Exercise 117.

(a, b) ∈ A2 7→

(a, b) if a , 1

(b, a) otherwise.

Solution to Exercise 118.
Here is an example of an instance of amalgamation and its solution:
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One way of amalgamating two partial orders, which is illustrated in the picture
above, is to put the elements of the left (yellow) order after the elements of the
right (blue) order, as long as they have the same relationship with the common
(green) elements. Other strategies lead to other amalgamations.

Solution to Exercise 119.
No.

Solution to Exercise 120.
The family of structures with equality only (i.e. an empty vocabulary) that have
size at most 2.

Solution to Exercise 121.
In a homogeneous structure, two tuples are in the same orbit if they satisfy the
same quantifier-free formulas. By the assumption that the vocabulary is rela-
tional (i.e. has no function symbols) and finite, up to logical equivalence there
are finitely many quantifier-free formulas over a given set of variables, and they
can be computed. By the assumption on A having decidable membership, one
can decide which quantifier-free formulas are satisfiable in the Fraı̈ssé limit A.
Furthermore, one can effectively eliminate quantifiers, i.e. for every first-order
formula (possibly with free variables) over the vocabulary of A, one can com-
pute an equivalent one which is quantifier-free. Using this observation, it fol-
lows that the first-order theory of A is decidable. Furthermore, A is effectively
oligomorphic, in the sense of Exercise 99, since the “same orbit” formula is the
quantifier-free formula which checks that the same predicates from the finite
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vocabulary are satisfied. Therefore, A satisfies the assumptions of Exercise 99
and is thus an effective structure.

Solution to Exercise 122.
By going through the proof of Theorem 7.10.

Solution to Exercise 123.
A rational number can be viewed as node in Rabin’s tree {0, 1}∗ as follows

x

smaller than x

bigger than x

Solution to Exercise 124.
See (Bojańczyk et al., 2013b, Proposition 2).

Solution to Exercise 125.
No. The vertices might come in the wrong order.

Solution to Exercise 126.
Properties X for which LX is recognizable by an automaton include “contains a
clique of size three”, “is not a clique”, “contains a vertex connected to all other
vertices” but do not include the complementary properties “does not contain
a clique of size three” or “is a clique”. A sufficient condition is definability
by a formula of first-order logic with a quantifier prefix ∃∗∀. Is this condition
necessary?

Solution to Exercise 127.
Toward a contradiction, suppose that ≤ is a total order on the random graph
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that is supported by a tuple ā = (a1, . . . , an). Choose some atoms b, c which
are isolated in the subgraph induced by {a, . . . , an, b, c}. It follows that

(a1, . . . , an, b, c) 7→ (a1, . . . , an, c, b)

is a partial automorphism of the random graph. By homogeneity, it extends to
a ā-automorphism, which preserves the total order, but swaps b with c

Solution to Exercise 128.
Both conditions (a) and (b) in the definition of path decompositions are prob-
lematic. Let us focus on condition (a), i.e. that for every atom, the positions
where it appears is an interval. To prove that a nondeterministic automaton
cannot check this condition, one uses the same proof as in Exercise 10.1.

Solution to Exercise 129.
The truth value of an mso formula ϕ(x1, . . . , xn) depends only on the orbit of
the free variables. The random directed graph is homogeneous and without
functions, and therefore by Exercise 121 one can decide if a first-order for-
mula with free variables has at least one satisfying assignment. Since the tu-
ples which satisfy ϕ form an equivariant set, this set is definable in first-order
logic by Theorem 4.13. If the translation to first-order logic were computable,
then one would be able to decide the mso theory of the random directed graph.
Since the random directed graph contains all finite directed graphs as induced
subgraphs, e.g. all directed grids, it has undecidable mso theory.

Solution to Exercise 130.

Solution to Exercise 131.
Linear independence can be expressed in terms of addition, and therefore all
automorphisms of the bit vector atoms are also automorphisms of B. For the
converse inclusion, we observe that

a + b = c

is equivalent to:

(1) a = c and b = 0; or

(2) b = c and a = 0; or

(3) all of a, b, c are distinct and nonzero, and the tuple abc is linearly dependent.
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Solution to Exercise 132.
To see that B is not homogeneous, consider the four vectors:

100 010 001 111.

Every three out of four are linearly independent, but all four are linearly inde-
pendent. Therefore, mapping the above four vectors to some four independent
vectors is a partial automorphism which does not extend to a full automor-
phism.

We now show that the structure becomes homogeneous if we add indepen-
dent predicates of all arities.

(todo complete)

Solution to Exercise 133.
Yes. Its Fraı̈ssé limit is the countably dimension vector space over the rationals.
This limit is not oligomorphic. The pairs

(1, 1) (1, 2) (1, 3) (1, 4) · · ·

are in different orbits.

Solution to Exercise 134.
Fix some atom a. Define the equivalence relation to be b ∼ c if the closest
common ancestor of b, c is a proper descendant of a.

Solution to Exercise 135.

Solution to Exercise 136.
We will show how this universal tree can be interpreted in the complete binary
tree using mso. To prove this, consider a transformation f which inputs a tree
t (i.e. a structure with the closest common ancestor function where for each
element, the ancestors are a totally ordered) and outputs the tree depicted in
the following picture:
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�e blue points form
a countable dense 
total order isomorphic
to the rational numbers

Each blue point gets
one child of the form   
�e notion of child is 
a bit nonstandard, since
has no minimal elements.

represents a forest consisting of
in�nitely many copies of t

= t  t  t  t  ...

f (t)

...
...

...
...

...
...

...

Define t∞ to be a limit of this procedure, i.e. a tree satisfying

t∞ is isomorphic to f (t∞).

We will show that t∞ is the universal tree. To show this, we need to show that
it is a) homogeneous; and b) it contains every tree as an induced substructure.
Both properties are not difficult to show. Using the idea from Exercise 123 and
the recursive nature of Rabin’s tree, one can show that the structure (Q∗,�)
consisting of sequences of rational numbers ordered lexicographically has de-
cidable mso theory. The tree t∞ can be described in terms of (Q∗,�), with
nodes being coded as odd length sequences of rational numbers (i.e. every sec-
ond level of (Q∗,�) is used), and the descendant relation defined using an mso
formula ϕ(x, y) which uses the definition of the tree t∞ in terms of the function
f . This implies that t∞ has decidable mso theory, since it can be interpreted
inside a structure with decidable mso theory.

Solution to Exercise 137.
Essentially rearranging parentheses in a set builder expression. Using the De-
finable Relation Lemma, compute set builder expressions which represent the
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projections of R onto the first and second coordinates, respectively:⋃
i∈I

{αi(x̄i) : for x̄i ∈ Ani such that ϕi(x̄i)}⋃
j∈J

{β j(ȳ j) : for ȳ j ∈ Ak j such that ψi(ȳ j)}.

Using the Symbol Pushing Lemma, compute for each i ∈ I and j ∈ J a formula
of first-order logic θi j such that

θi j(x̄iȳ j) iff (αi(x̄i), β j(ȳi)) ∈ R.

The expression for S is now⋃
i∈I

{(αi(x̄i), β̂i(x̄i) : for ni ∈ Ax̄i such that ϕi(x̄i)}

where

β̂i(x̄i) =
⋃
j∈J

{β j(ȳ j) : for ȳ j ∈ Ak j such that θi j(x̄iȳ j)}.

Solution to Exercise 138.

Solution to Exercise 139.

Solution to Exercise 140.

Solution to Exercise 141.
Formally speaking, a pair is defined using Kuratowski pairing:

(α, β) def
= {α} ∪ {{α} ∪ {β}}

Apart from the subexpressions of α and β, the Kuratowski pair has five subex-
pressions as indicated in the following picture:

It follows that the size of a k-tuple satisfies

|(α1, . . . , αk)| ≤ |α1| + . . . + |αk | + O(k).
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Note that Kuratowski pairing introduces no new variables, apart from the ones
used by its components. For example, the dimension of the set

Ak = {(a1, . . . , ak) : for a1, . . . , ak ∈ A}

is k, while its size is linear in k.

Solution to Exercise 142.

(1) The bit vector atoms do not have fixed dimension polynomial orbit count.
Let ā be a tuple of n linearly independent atoms. Then the number of ā-orbits
in A is 2n because each atom can be a linear combination of any nonempty
subset of the atoms ā – or be linearly independent from all of them.

Solution to Exercise 143.

Solution to Exercise 144.
Fix some variable names x1, . . . , xk. Define P to be the set of atomic formulas,
i.e. formulas Define an atomic formula to be a relation from the vocabulary of
the atoms applied to arguments which are either variables x1, . . . , xk of con-
stants from the tuple ā. The number of atomic formulas is∑

R

(k + n)arity of R,

where R ranges over relations in the vocabulary of the atoms.

Solution to Exercise 145.

Solution to Exercise 146.

Solution to Exercise 147.

Solution to Exercise 148.
Consider the set {1, 2}n. This is a finite set, and its dimension is 0. Any 0-
dimensional set builder expression that represents this set needs to have size at
least 2n, because it needs to essentially enumerate the set. On the other hand,
one can represent this set with an n-dimensional expression of size polynomial
in n, namely

{(x1, . . . , xk) : for x1, . . . , xk ∈ A such that ϕ(x1, . . . , xk)}
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where ϕ is the formula which says that all of its arguments are either 1 or 2.

Solution to Exercise 149.
Consider X = Ak. The natural set builder expression has size O(k), while the
size |X| is not polynomial in k.

Solution to Exercise 150.
For distinct atoms a1, . . . , an, consider the powerset of {a1, . . . , an}. This set
has dimension 0, since it is finite. Its semantic size is 2n, while the number of
equivariant orbits that intersect it is n.

Solution to Exercise 151.
Let us begin by explaining some of the definitions used in the exercise. A
term is a finite tree where internal nodes are the functions, and the leaves are
variables or constant operations (operations of arity zero). Given a term t with
n variables, and elements a1, . . . , an of the universe of the algebra, we write
t(a1, . . . , an) for the element in the universe of the algebra which is obtained by
evaluating the term, using ai instead of the i-th variable.

Let us now prove the equivalence in the exercise.
Let us begin with the right-to-left implication. Assume (*). Since the num-

ber of operations is finite, one can easily write a deterministic Turing machine
which on input a1 · · · an enumerates all terms with n variables, and then eval-
uates each term on arguments a1, . . . , an. It is important here that we have
finitely many operations. If the family of operations would be orbit-finite, then
a nondeterministic Turing machine would be needed to produce the terms.

Let us now do the left-to-right implication. Consider a deterministic Turing
machine. The set A is going to contain the work alphabet and the state space
of the Turing machine, and the functions F . For every n, k, i ∈ N there exist
terms sn,k and tn,k,i, each one with k arguments, such that for every input word
a1 · · · ak, the value

sn,k(a1, . . . , ak)

is the state of the machine after n computation steps, and the value

tn,k,i(a1, . . . , ak)

is the symbol of the work alphabet that is stored in the i-th cell of the tape after
n computation steps. These terms are produced by unfolding the definition of
the computation of a deterministic Turing machine.

Solution to Exercise 152.
The right-to-left implication is shown the same way as in Exercise 151. For the



259

left-to-right implication, we need a stronger version of Exercise 151, where in
condition (*) the set A is equal toAk for some k. Suppose then that (*) holds for
some A,F and F. By Exercise 112 (actually, a small strengthening to tuples
of functions which can be obtained using the same proof), there exists some
k ∈ N and finitely supported functions

g : Ak → A h : A→ An { f ′ : Aarity( f )·k → Ak} f∈F

such that the following diagrams commute for every f ∈ F :

A h //

identity   

Ak

g

��
A

Aarity( f )·k

f ′

��

(g,...,g) // Aarity( f )

f

��
Ak

g
// A

From (*) it follows that for every n one can compute a term t over the functions
{ f ′} f∈F such that a word a1 · · · an is accepted by the Turing machine if and only
if

g(t(h(a1), . . . , h(an))) ∈ F.

The above is a quantifier-free formula using the functions { f ′} f∈F and h, to-
gether with the relation g−1(F).

Solution to Exercise 153.
One could use Exercises 151 and 152, but we present here a self-contained
proof.

The right-to-left implication is straightforward, so we only do the left-to-
right implication. Consider a nondeterministic Turing machine which recog-
nises the language L. Let Q be the states of the machine and let Γ be the work
alphabet of the machine. We assume that the work alphabet already contains
the blank symbol. Define a configuration of the machine to be a word in

Γ∗(Γ × Q)Γ∗

with the usual interpretation. Define

∆ = Γ ∪ (Γ × Q).

The following claim is a formalisation of the standard observation that the
contents of cell i in a configuration depend only on the contents of cells i −
1, i, i + 1 in the previous configuration.

Claim 10.7. There exists a finite family of finitely supported relations

R = {Ri ⊆ ∆ni }i∈I
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such that for every n ∈ N, the relations

ā, b̄ ∈ ∆n are configurations and the machine can go in one step from ā to b̄

is defined by a quantifier-free formula in 2n variables using only relations from
R.

Proof We use relations to check if: a letter contains the state (arity 1), a tran-
sition is correctly applied (arity 3). �

The following claim uses the previous claim and existential quantification
to guess computations.

Claim 10.8. There exists a finite family of finitely supported relations

R = {Ri ⊆ ∆ni }i∈I

such that for every n ∈ N, the relation

ā ∈ An is accepted by the Turing machine M

is defined by a formula of the form ∃b̄ ∈ ∆mϕ(āb̄) such that ϕ is quantifier-free
formula and uses only relations from R.

Proof Let c̄ be a support of the Turing machine M. By Lemma 5.3, the func-
tion

t : A∗ → N ∪ {∞}

which maps an input word to the smallest length of an accepting computation
(which is∞ for rejected inputs) is also supported by c̄.

Let n ∈ N. By the assumption that the atoms are oligomorphic, there are
finitely many c̄-orbits of An. Let m be the maximal value finite of the function
t on An, i.e. every input of length n is either rejected or accepted in at most m
computation steps. The formula in the statement of the claim quantifies exis-
tentially over computations of length at most m, and then uses the quantifier-
free formula from Claim 10.7 to check if a computation is correct (we also
need additional predicates to check if a configuration is initial/accepting). �

By the assumption on oligomorphism there exists some n and a surjective
finitely supported function g : Ak → ∆. Let R be the family from Claim 10.8.
For i ∈ I define S i ⊆ Ani·k to be the relation defined by

S i(ā1, . . . , āni ) iff Ri(g(ā1), . . . , g(āni )) for ā1, . . . , āni ∈ Ak.

From Claim 10.8 it follows that for every n, the set

ā ∈ An is accepted by the Turing machine M
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is defined by a formula of the form ∃b̄ ∈ Amϕ(āb̄) such that ϕ is quantifier-free
and uses only relations from {S i}i∈I .

To finish the exercise, we only need to reduce the finite set of relations {S i}i∈I

to a single relation. Suppose that the finite set consists of relations S 1, . . . , S p.
Without loss of generality, we assume that all relations have the same arity
n (otherwise we can add unused arguments). We can code them as a single
relation S of arity p + 1 + n defined by

S (a0, a1, . . . , ap, b1, . . . , bn) iff
∧

i∈{1,...,p}

(a0 = ai)⇒ S i(b1, . . . , bn).

Each of the relations S i can be defined in terms of S using an existential for-
mula. For this encoding to work, one need A to have size at least two, but if A
has only one element, then the exercise is immediate, since there is only one
word of each length.

Solution to Exercise 154.
In this case, conditions (**) from Exercise 152 and (***) from Exercise 153
are the same.

Solution to Exercise 155.
By the proof of Theorem 10.4, item 1 from the exercise is equivalent to the
following property:

(*) there exists a nondeterministic Turing machine which recognises the follow-
ing language over input alphabet A ∪ {0, 1}:

{a1 · · · anϕ : a1, . . . , an ∈ A, ϕ has n free variables, and A |= ϕ(a1, . . . , an) }.

Therefore, to prove the exercise, we will show that item 2 in the exercise is
equivalent to (*). The implication from 2 to (*) is straightforward. For the
converse implication, one uses Exercise 153 and (*) to show that there exists a
single finitely supported relation S ⊆ Ak such that every first-order formula ϕ
is equivalent to an existential formula ϕ̂ (i.e. a prefix of existential quantifiers
followed by a quantifier-free formula) that uses only the predicate S . Since the
language in (*) is equivariant, from the proof of Exercise 153 one can conclude
that also S is equivariant. Furthermore, the formula ϕ̂ can be computed based
on ϕ; this is because the language from (*) is self-dual, and therefore one can
compute for every n an upper bound on the length of computations needed to
accept all inputs of length at most n. It follows that the structureA has the same
automorphism group as the structure (A, S ).
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Solution to Exercise 156.
One can compute a representation of the input without atoms, by checking
which linear combinations of the input atoms are zero.

Solution to Exercise 157.
By looking at the finitely many possible equivariant relations, and then doing
a deatomisation procedure in each case.

Solution to Exercise 158.

8

7

4

3

56

12

8

7

6 5

3

4

12

9
9

0
0

is coded as

Solution to Exercise 159.
See (Klin et al., 2014, Example 2.5 and discussion at the end of Section 5).



Bibliography

Abdulla, Parosh Aziz, Cerans, Karlis, Jonsson, Bengt, and Tsay, Yih-Kuen. 2000. Al-
gorithmic Analysis of Programs with Well Quasi-ordered Domains. Inf. Comput.,
160(1-2), 109–127.

Alur, Rajeev, and Dill, David L. 1994. A theory of timed automata. 126(2), 183–235.
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Bojańczyk, Mikołaj. 2013. Nominal Monoids. Theory Comput. Syst., 53(2), 194–222.
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Bojańczyk, Mikołaj, and Toruńczyk, Szymon. 2012. Imperative Programming in Sets
with Atoms. Pages 4–15 of: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2012, December
15-17, 2012, Hyderabad, India.

263

http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf
http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf


264 Bibliography
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