
Logical Methods in Computer Science
Vol. 5 (3:5) 2009, pp. 1–29
www.lmcs-online.org

Submitted Jul. 16, 2008
Published Aug. 5, 2009

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES ∗

MIKO LAJ BOJAŃCZYK

Warsaw University
e-mail address: bojan@mimuw.edu.pl

Abstract. We consider a temporal logic EF + F
−1 for unranked, unordered finite trees.

The logic has two operators: EFϕ, which says “in some proper descendant ϕ holds”, and
F
−1

ϕ, which says “in some proper ancestor ϕ holds”. We present an algorithm for deciding
if a regular language of unranked finite trees can be expressed in EF + F

−1. The algorithm
uses a characterization expressed in terms of forest algebras.

1. Introduction

We say a logic has a decidable characterization if the following decision problem is
decidable: “given as input a finite automaton, decide if the recognized language can be
defined using a formula of the logic”. Representing the input language by a finite automaton
is a reasonable choice, since many known logics (over words or trees) are captured by finite
automata.

This type of problem has been successfully studied for word languages. Arguably best
known is the result of McNaughton, Papert and Schützenberger [11, 8], which says that
the following three conditions on a regular word language L are equivalent: a) L can be
defined in first-order logic; b) L can be defined using a star-free expression; and c) the
syntactic semigroup of L does not contain a non-trivial group. Since condition c) can
be effectively tested, the above theorem gives a decidable characterization of first-order
logic. This result demonstrates two important features of work in this field: a decidable
characterization not only gives a better understanding of the logic in question, but it often
reveals unexpected connections with algebraic concepts. During several decades of research,
decidable characterizations have been found for fragments of first-order logic with restricted
quantification and a large group of temporal logics, see [9] and [15] for references.

For trees, however, much less is known. No decidable characterization has been found
for what is possibly the most important subclass of regular tree languages, first-order logic
with the descendant relation, despite several attempts [10, 7, 2]. Similarly open are chain
logic [14] and the temporal logics CTL, CTL* and PDL. However, there has been some recent
progress. In [5], decidable characterizations were presented for the temporal logics EF and
EX+EF; while Benedikt and Segoufin [1] characterized tree languages definable in first-order

1998 ACM Subject Classification: F.4.1.
Key words and phrases: temporal logic, tree automata, forest algebra.

∗ Supported by Polish government grant no. N206 008 32/0810.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (3:5) 2009

c© M. Bojańczyk
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BOJAŃCZYK

logic with the successor relation (but without the descendant relation). Two new results
give effective characterizations for some fragments of first-order logic with limited quantifier
alternation. The expressive power of alternation-free formulas (i.e. boolean combinations
of formulas with quantifier prefix ∃∗) is characterized in [4]. Properties that can be defined
both with quantifier prefix ∃∗∀∗ and also with quantifier prefix ∀∗∃∗ are characterized in [3].
We will come back to the latter class later on in this introduction.

In this paper, we continue the line of research started in [5], by focusing on a temporal
logic for trees. We consider a logic called EF + F

−1. This logic has two operators: EFϕ,
which says “in some proper descendant ϕ holds”, and F

−1ϕ, which says “in some proper
ancestor ϕ holds”. Thanks to the backward modality, EF + F

−1 is more expressive than EF

alone. For instance, the formula
EF(a ∧ ¬F

−1¬b)

defines the class of trees where some node has label a, but all of its ancestors have label b.
This is a property reminiscent of CTL, and cannot be expressed by only using EF, since it
fails the identities that must be satisfied by EF-definable languages [6].

The main result in this paper is Theorem 6.2, which gives a decidable characterization
of languages definable in EF + F

−1. Before we present this result, in Section 2 we try to
justify the choice of the logic EF + F

−1. In Section 3 we present the algebraic formalism
that will be used in the proofs. The rest of the paper is devoted to proving the main result.

I would like to thank Luc Segoufin. We spent a lot of time together trying to understand
the expressive power of EF+F

−1. Without his input this paper would not have been possible.
I would also like to thank the anonymous referees for their helpful comments.

2. Why two-way unary temporal logic

There are two reasons to consider EF + F
−1. The first reason is that, over words,

this logic corresponds to an important and well-studied class of regular languages. The
second reason is that, over trees, the logic is related to XML. We go over these reasons in
Sections 2.1 and 2.2 respectively.

2.1. The word analogy. There is a very robust class of regular word languages that has
several equivalent descriptions (a survey of this class can be found in [12]):

(1) Word languages that can be defined in the temporal logic F + F
−1. Here Fϕ means “in

some future position ϕ” and F
−1ϕ means “in some past position ϕ”.

(2) Word languages that can be defined by a first-order formula with two variables and the
left-to-right ordering of positions (but without the successor relation).

(3) Word languages that can be defined by a first-order formula (with many variables, the
left-to-right ordering, but without the successor relation) with a ∀∗∃∗ quantifier prefix,
and also by one with an ∃∗∀∗ quantifier prefix.

(4) Word languages whose syntactic semigroup belongs to the semigroup variety DA. One
way of defining this variety is in terms of an identity: DA is the class of semigroups
that satisfy the identity (st)ω = (st)ωs(st)ω.

(5) Word languages described by finite disjoint unions of unambiguous products (a form of
regular expression).

(6) Word languages that can be recognized by “turtle automata”, a type of deterministic
two-way word automaton.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 3

(7) Word languages that can be recognized by two-way deterministic automata where the
states in a run are non-decreasing with respect to a given order.

An important corollary of property 4 is that membership of a regular language in the above
class is decidable: it suffices to check if the syntactic semigroup of the language satisfies the
DA identity.

Some of the above classes generalize easily to trees, some don’t.
We will not talk about classes 5, 6 and 7. It is not clear what unambiguous expressions

are for trees, likewise for the automata.
We will come back to the algebraic description in item 4 later on in the paper.
The three logically defined classes 1, 2 and 3 can be easily extended to trees. A natural

counterpart of class 1 is the logic EF+F
−1 considered in this paper. The classes 2 and 3 can

define tree languages if the order is interpreted as the ancestor/descendant ordering of tree
nodes. (One could also consider variants where two partial orders of nodes are available
instead of one: the ancestor/descendant order and also the left-to-right ordering of siblings.
We keep to the simpler case, where siblings are unordered.) The logically defined classes
diverge for trees:

• Two-variable logic is strictly more expressive than the temporal logic. The translation
from temporal to two-variable logic is fairly obvious. For the converse, the problem is
that x 6≤ y∧ y 6≤ x cannot be expressed in the temporal logic. For instance, the language:
“there are two a’s” can be defined by a two-variable formula, but cannot be defined in the
temporal logic. This is because the temporal logic is bisimulation invariant, and cannot
see the difference between one child with a and two children with a. (Note however, that
the languages “two a’s below some b”, or “three a’s” cannot be defined in two-variable
logic.)

• As we will show at the end of this paper, the intersection of ∀∗∃∗ and ∃∗∀∗ is incomparable
with both the two-variable and the temporal logic.

The second fragment has been considered in [3], the investigation therein shows that
it is a well-behaved class of tree languages. We are left with the temporal logic and two-
variable logic. Why do we choose temporal logic and not two-variable logic? The reason
is that two-variable logic seems to be less robust for trees: why can “two a’s” be defined,
but not “three a’s”? Of course it is nonetheless important to understand two-variable logic,
and we leave this task as future work.

2.2. XPath. XPath is a formalism used to describe paths and nodes in unranked trees.
There is a strong connection between XPath and two-variable logics

A set of paths is seen as a binary relation P (x, y), which says when a source x can be
connected with a target y. The basic idea in XPath is that one starts with atomic paths,
called axes, such as “x is a descendant of y”, or “x is a child of y”, and then constructs
longer paths using mechanisms such as concatenation. Marx and de Rijke [?] show that a
fragment of XPath called Core XPath has exactly the same expressive power as two-variable
first-order logic. (The equivalence in expressive power is for Boolean queries in XPath and
sentences of two-variable logic. The equivalence also holds for unary queries in XPath and
formulas of two-variable logic with one free variable; but it fails for binary queries.) Note
however, that the axes considered by Marx include child and next-child, which go beyond
the fragments considered in this paper. When the only axes allowed are “descendant” and
“ancestor”, Core XPath has exactly the same power as “our” logic EF + F

−1. A decidable

4 M. BOJAŃCZYK

characterization for fragments of XPath with the other axes, including the one considered
by Marx, is left as future work.

3. Basic definitions

3.1. Trees and forests. We work with unranked finite labeled trees. We assume that an
alphabet (A,B) contains two types of labels: one set of labels A that can be used in the
leaves, and another set of labels B that can be used in inner nodes (i.e. not leaves). This
division is convenient for the algebraic framework we use in general, and for the induction
proof in this paper in particular. Trees are defined as follows: every leaf label a ∈ A is a
tree; if t1, . . . , tn are trees and b ∈ B is an inner node label then b(t1 + · · ·+ tn) is a tree. A
forest is a sequence of trees. As above, we concatenate forests using +. In particular every
forest is of the form t = t1 + · · · + tn, for some trees t1, . . . , tn. We do not allow empty
forests, so n ≥ 1. We denote both trees and forests using letters s, t. When b is a label and
t is a forest, we write bt for the tree that has label b in the root, and where the children
form the forest t. In other words, we omit the parentheses and write bt instead of b(t).

A context is a forest where exactly one leaf is labeled by a special label �; this leaf is
interpreted as a hole. We denote contexts by p, q. The main path in a context consists of
the ancestors of the hole. A forest t can be substituted in place of the hole of a context p,
the resulting forest is denoted p(t), or sometimes pt.

b

b a

a

a

aa

b

b a

p t pt

b

b a

a

a

aa

b

b a

There is a natural composition operation on contexts: the context pq is the unique
context such that (pq)t = p(qt) holds for all forests t. We allow the empty context, denoted
by �; this is the context where the only node in the context is the hole �. The empty
context satisfies �t = t. Nodes of trees, forests and contexts are defined the usual way. We
write x, y, z for nodes, and x ≤ y when x is an ancestor of y.

The reader will notice that the trees and forests we defined are sibling-ordered (i.e. s+ t
is not the same as t+ s). However, properties definable in our logic EF + F

−1 are going to
be invariant under this order.

3.2. The logic. The logic EF + F
−1 is defined as follows:

• Every label – both inner node label and leaf label – is a formula; this formula holds in
nodes with that label.

• Formulas are closed under boolean combinations, including negation.
• If ϕ is a formula, then EFϕ is also a formula; it is true in a node x if there is some proper

descendant y > x where ϕ is true. Likewise for F
−1ϕ, but this time y must be a proper

ancestor y < x.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 5

A formula ϕ of EF + F
−1 is most naturally interpreted as a unary query, i.e. in a given

tree it selects a set of nodes. For instance, the formula EFtrue selects all inner nodes. In this
paper, we are interested in tree languages, i.e. boolean queries, where a formula is either
true or false in a given tree. To get a boolean query, we say a formula of EF + F

−1 is true
in a tree if it is true in its root.

The main contribution of this paper is a characterization of the regular tree languages
that can be defined by a boolean query of EF+F

−1. It is, however, natural to also ask for a
characterization of unary queries. For instance, the first unary query below can be defined
in EF + F

−1, but the second one cannot:

• Some ancestor of the selected node has label a, i.e. F
−1a.

• Some child of the selected node has label a.

In general, a regular unary query can be given e.g. as a formula of monadic-second order
logic with one free variable. Note that although the second unary query cannot be defined,
the tree language “some child of the root has label a” can be defined, by the formula

EF(a ∧ F
−1true ∧ ¬F

−1
F
−1true) .

This suggests that characterizing unary queries is a nonobvious problem, which we leave as
future work.

3.3. Antichain composition principle. A problem with EF+F
−1 is that it is not closed

under “composition”. We illustrate this problem, together with a workaround, for words;
then we show the result for trees.

Consider the word languages aa and (a + b)∗. Both are definable in F + F
−1, and

even only using F, but the language (a+ b)∗aa(a + b)∗ is not. We claim however, that the
concatenation of two definable languages is also definable if the place in the word where
they meet can be uniquely determined in F + F

−1:

Lemma 3.1 (Composition for words). Let L,K be two word languages definable in F+F
−1

and let ϕ be a F + F
−1 formula with the semantic property that in every word, ϕ holds in

at most one word position. The following word language is also definable in F + F
−1:

{a1 . . . an : a1 · · · ai ∈ L, ai+1 · · · an ∈ K, and ϕ holds in a1 · · · an at position i+ 1}

Proof. We use relativization. We define ψ1 by taking the formula defining L, and replacing
each subformula ψ by ψ ∧ Fϕ. Likewise, we define ψ2 by taking the formula defining K,
and replacing each subformula ψ by ψ ∧ (ϕ ∨ F

−1ϕ). The formula for the language in the
lemma is then ψ1 ∧ F(ϕ ∧ ψ2).

For trees, the situation is more complicated. First of all, there are two notions of
composition: concatenation s + t for forests and composition pq for contexts. We are
interested in generalizing Lemma 3.1 to composition of contexts. In our generalization
though, we may need to substitute many trees simultaneously. This leads to a slightly less
appealing definition, which follows.

A formula is called antichain if in every tree, the set of nodes where it holds forms an
antichain, i.e. a set (not necessarily maximal) of nodes pairwise incomparable with respect
to the descendant relation. This is a semantic property, and may not be apparent just
by looking at the syntax of the formula. For instance, the first two formulas below are
antichain, while the third is not:

• The node is a leaf: ¬EFtrue.

6 M. BOJAŃCZYK

• The node is a minimal occurrence of b: b ∧ ¬F
−1b.

• The node has label b.

Using antichain formulas, we define our notion of concatenation. The ingredients are:

• An antichain formula ϕ.
• Disjoint tree languages L1, . . . , Ln.
• Leaf labels a1, . . . , an.

Let t be a tree. We define the tree

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an]

as follows. For each node x of t where the antichain formula ϕ holds, we determine the
unique i such the tree language Li contains the subtree of x. If such an i exists, we remove
the subtree of x (including x), and replace x by a leaf labeled with ai. Since ϕ is antichain,
this can be done simultaneously for all x. Note that the formula ϕ may depend also on
ancestors of x, while the languages Li only talk about the subtree of x.

Lemma 3.2 (Antichain composition principle). Let ϕ, L1, . . . , Ln and a1, . . . , an be as
above. If L1, . . . , Ln are tree-definable, and K is a tree-definable language, then so is

{t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ K} .

Proof. This is proved by a relativization entirely analogous to the one used in Lemma 3.1.

The point of this lemma is that the languages Li are taken out of their context inside
the tree t. For instance Li can say something like: “the root has label a and a child with
label b”,

Li = EF(b ∧ F
−1a ∧ ¬F

−1
F
−1true) ,

while in general the property “a node in the tree that has label b and a child with label b”
cannot be expressed in EF + F

−1.

4. Forest algebra

To represent languages of trees, we will be using forest algebra. We feel that using
forest algebra instead of automata simplifies the combinatorics used in our characterization.
Furthermore, when using forest algebra, the key properties from Theorem 6.2 can be stated
in terms of identities.

Here we only sketch out the definitions and basic properties; the reader is referred to [6]
for more details. The algebras described in [6] differ slightly from those used here—mainly
in that we do not allow empty forests here—but the results carry over into this setting.

A forest algebra is to a regular language of unranked trees as a semigroup is to a regular
language of words. Formally, a forest algebra is an algebra with two sorts (H,V), along with
some operations that satisfy a number axioms. While defining the operations and axioms,
we will illustrate them on an important example, called the free forest algebra, where H is
the set of all nonempty forests, and V is the set of all, possibly empty, contexts.

The operations and axioms of forest algebra are presented below. Elements of H will
be denoted by h, g, f and elements of V will be denoted by v,w, u.

• A composition operation + on H. This operation is required to be associative, i.e. h +
(g + f) = (h + g) + f holds for all f, g, h ∈ H. This makes H a semigroup, called the
horizontal semigroup, and justifies the notation h+ g+ f . In the free forest algebra, + is

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 7

forest concatenation. We do not require H to contain a neutral element, e.g. there is no
empty forest in the free forest algebra.

• A composition operation · on V . Again, this is required to be associative. We omit the
· symbol, writing vw instead of v · w, for v,w ∈ V . Furthermore, we require there to
be a neutral element � ∈ V , i.e. an element satisfying v · � = � · v = v for all v ∈ V .
In particular, V is a monoid, called the vertical monoid. In the free forest algebra, · is
context composition, while � is the empty context.

• An insertion operation V → H → H. The result of this insertion is denoted by vh ∈ H.
The empty context acts as the identity of this operation, i.e. �h = h. The insertion
operation must be a left action, i.e. it must satisfy (vw)h = v(wh) for v,w ∈ V and
h ∈ H, which justifies the notation vwh. In the free forest algebra, the left action
is substituting a forest into a context. There is an faithfulness requirement: distinct
contexts v,w ∈ V must induce different functions.

• An operation left : H×V → V . This operation must satisfy left(h, v)g = h+vg for v ∈ V

and g, h ∈ H. Thanks to this axiom, we can without ambiguity write h + v to denote
the element left(h, v). In the free forest algebra, h+ v is the context obtained from v by
prepending the forest h (next to the root, not the hole). In a similar way we define v+h,
in terms of an operation right .

As demonstrated above, the free forest algebra is a forest algebra. Clearly the free
algebra depends on the leaf labels A and inner node labels B (and only on these); once
these are given, the free algebra is denoted by (A,B)∆. When describing a forest algebra,
we usually only give names to the carrier sets H and V , leaving the operations implicit.

Let (H,V) and (G,W) be two forest algebras. A forest algebra morphism

α : (H,V) → (G,W)

is a pair of functions

α = (αH , αV) αH : H → G αV : V →W

that preserve all operations in the signature, namely, composition + in H, composition · in
V , insertion, and the left , right operations. For instance, preserving insertion is:

αH(vh) = αV (v)(αH(h)) .

To avoid clutter, we omit the subscripts, and write α(h) instead of αH(h), likewise for v.
If α is a morphism, then the type under α of a forest t is simply the value α(t). Whenever

the morphism α is clear from the context, we omit the qualifier “under α”.
In this paper, a forest algebra will either be a free forest algebra, or a finite forest

algebra. In the first case, elements of the first sort will be called forests and denoted by
s, t, while elements of the second sort will be called contexts, and denoted by p, q. In the
second case, of a finite forest algebra, elements of the first sort will be called forest types
and denoted by f, g, h, while elements of the second sort will be called context types, and
denoted by u, v,w.

4.1. Equivalence with regular languages. In this section we show that forest algebras
provide an equivalent description of regular tree languages. Although this has already been
shown in [6], we present the proof here for two reasons. First, our definition is slightly
different from the one in [6], where a neutral element was required in H. Second, the notion
of semigroup automaton used in the equivalence will be used later on in the paper.

8 M. BOJAŃCZYK

The point of forest algebras is to recognize forest languages. Let L be a set of forests
over labels (A,B) and let (H,V) be a finite forest algebra. We say a morphism

α : (A,B)∆ → (H,V)

recognizes a forest language L if membership t ∈ L depends only on the value α(t). In
this case, we also say that the algebra (H,V) recognizes the language L. Note that this
definition is for languages of forests, and not languages of trees, as in the logic EF + F

−1.
We will deal with this discrepancy in Section 5.

Below we show that forest algebras recognize exactly the regular forest languages. What
is a regular forest language? The definition used here, of a semigroup automaton, is chosen
so that the translation to forest algebra is easiest. A semigroup automaton is a type of
bottom-up finite automaton that can be used to recognize tree and forest languages. Let
(A,B) be an alphabet. A semigroup automaton A over (A,B) is defined by a finite semi-
group H, whose operation is denoted additively by +, along with two mappings (which
describe the initial states and transitions, respectively):

βA : A→ H βB : B → HH

The purpose of the automaton is to uniquely associate a type β(t) ∈ H to every forest t.
This is done using the following rules:

β(a) = βA(a)

β(s1 + · · · + sn) = β(s1) + · · · + β(sn)

β(bt) = βB(b)(β(t)) .

Recall that in the last line above, bt is a tree that has b in the root and the forest t below.
An automaton recognizes a forest language L if membership t ∈ L depends only on the

value β. In other words, one can choose a set of accepting elements F ⊆ H such that a
forest t belongs to L if and only the value β(t) belongs to F . The definition can be modified
for recognizing tree languages by requiring the equivalence t ∈ L ⇔ β(t) ∈ F to hold only
for trees. Note that even when recognizing a tree language, a semigroup automaton is still
obliged to assign a value from H to every forest.

It is not difficult to show that this definition is equivalent to other existing automata
models for unranked trees, although there may be an exponential blowup when translating
to semigroup automata.

Theorem 4.1. A forest language is regular if and only if it is recognized by a finite forest
algebra.

Proof. Once we have a semigroup automaton, we can extend the mapping β so that contexts
also get values, namely values in HH . A context p is assigned the following mapping
β(p) ∈ HH :

h 7→ β(pt) ,

where t is some forest with β(t) = h (the choice of t does not change this value). It is easy
to see that the mapping β (when seen as a mapping on both forests and contexts) is a forest
algebra morphism

β : (A,B)∆ → (H,HH) .

This shows the harder direction in the proof of Theorem 4.1. The other direction, from a
forest algebra to a semigroup automaton, is immediate.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 9

4.2. Syntactic algebra. The syntactic forest algebra of a forest language L is a canonical
forest algebra that recognizes the language. It is defined using the following Myhill-Nerode
equivalence over forests and contexts. Two forests s, t are considered equivalent if for every
context p, either both or neither ps nor pt belongs to L. Two contexts p, q are considered
equivalent if for every forest t, the forests pt and qt are equivalent in the above sense.

It turns out that the above defined equivalences are a congruence with respect to all
operations in a forest algebra; therefore a quotient forest algebra can be defined, where
elements of H are equivalence classes of forests, and elements of V are equivalence classes of
contexts. This quotient forest algebra is called the syntactic forest algebra of L. The syn-
tactic morphism is the morphism that assigns to each forest (resp. context) its equivalence
class. The syntactic morphism recognizes L, furthermore it is optimal in the sense that the
syntactic morphism factors through any morphism recognizing L, i.e. if β is a morphism
recognizing L, and α is the syntactic morphism of L, then there is a (unique) morphism
γ with α = γ ◦ β. In particular, the syntactic forest algebra is a morphic image of any
forest algebra recognizing L, and a language has a finite syntactic algebra if and only if it
is regular.

4.3. Green’s relations for trees. Fix a forest algebra (H,V). In this section we introduce
two preorders on V and H that will be used in the paper.

We say that context type v ∈ V is reachable from a context type w ∈ V if v = wu holds
for some context type u ∈ V . A context component is a maximal set of mutually reachable
context types. Stated differently, two context types v,w are in the same context component
if the ideals vV and wV are equal. Since reachability is transitive and reflexive, it induces
an order (not necessarily linear) on context components.

We say a forest type g ∈ H is reachable from a forest type h ∈ H if g = uh holds
for some context type u ∈ V . A forest component is a maximal set of mutually reachable
forests. Stated differently, two forest types g, h are in the same forest component if the ideals
V g and V h are equal. As for context types, forest components are ordered by reachability.
Note that g + h is reachable from h, since we can take the context type u to be g + �.

These two preorders are related to Green’s relations used in semigroup theory. Actually,
reachability on contexts simply is the R-order on the semigroup V . The reachability relation
on H is not one of Green’s relations, since its definition involves the two sorts H and V in
the forest algebra.

5. Tree-Definable vs Forest-Definable

A tree language L is tree-definable if there is a formula of EF + F
−1 that is true exactly

(in the root of) trees in L. In this paper, it will sometimes be convenient to talk about
EF + F

−1 formulas defining properties of forests (and not only trees). We say a forest
language L is forest-definable if L is a boolean combination of languages of the form “some
tree in the forest satisfies ϕ”, with ϕ a formula of EF + F

−1. Such a boolean combination
will be called a forest formula. For instance, the following property of a forest t1 + · · · + tn
is forest-definable: all trees t1, . . . , tn contain a leaf with label a, and at least one of these
trees has root label b. Any nonempty tree language violates the following property, which
is true for forest-definable languages:

t+ t ∈ L iff t ∈ L ,

10 M. BOJAŃCZYK

for the simple reason that t+ t is not a tree. Therefore no nonempty tree language is forest-
definable. For the same reason, no nonempty forest-definable language is tree-definable.

In this paper, we will present a decidable characterization for forest-definable languages.
Thanks to the following result, this will also give us a decidable characterization of tree-
definable languages.

Proposition 5.1. Let L be a tree language over (A,B). The following conditions are
equivalent:

• L is tree-definable.
• For each inner node label b ∈ B, the forest language {t : bt ∈ L} is forest-definable.

Proof. We begin by showing that the first property implies the second. Assume then that L
is tree-definable, and fix some b ∈ B. We need to show that the forest language {t : bt ∈ L}
is forest definable.

Let P be the set of contexts of the form p = b(� + t), where t is a forest. Consider the
following equivalence relation on trees:

s ∼ t iff ps ∈ L⇔ pt ∈ L holds for all p ∈ P .

This equivalence relation has only finitely many classes, since it is coarser than the Myhill-
Nerode equivalence relation used in the definition of syntactic algebra. Note that we would
get the same equivalence relation by also considering contexts of the form p = (s + � + t),
since EF+F

−1 is invariant under reordering siblings. Furthermore, each of these equivalence
classes is tree-definable, thanks to the following fact: if p is a context and L a tree-definable
language then the set of trees t with pt ∈ L is tree-definable. The standard proof of this
fact is omitted here. For any forest t = t1 + · · · + tn, membership bt ∈ L only depends on
the equivalence classes under ∼ of the trees t1, . . . , tn that the constitute the forest t. Since
EF+F

−1 formulas are invariant under duplicating and reordering sibling trees, it is only the
set of equivalence classes that counts, which can be described by a boolean combination of
languages of the form required in forest-definable languages.

We now do the bottom-up implication. It suffices to show that if a forest language L
is forest-definable, then for any inner node label b ∈ B, the tree language {bt : t ∈ L} is
tree-definable. The key step is that if a tree language K is tree-definable, then the following
tree language:

XK = {b(t1 + · · · + tn) : b ∈ B,∃i. ti ∈ K}

is also tree-definable. Once we demonstrate how to write a formula for XK, the formula
tree-defining bL can be obtained from the formula forest-defining L.

Note that definability of the language XK does not mean we can add the child operator
to the logic. This is because XK uses the child only at a fixed depth. For instance, the
property “some node at depth 4 has the same label as its parent” is tree-definable, contrary
to the property “some node has the same label as its parent”.

The formula for XK can be obtained from the antichain composition principle, but
we do a direct construction here. Let ϕ be the formula defining K. We define ϕ̂ to be
the formula obtained from ϕ by replacing every subformula ψ by ψ ∧ F

−1true. This way,
quantification in ϕ̂ is relativized to non-root nodes. Finally, the formula for XK is

EF
(

(F−1true) ∧ (¬F
−1

F
−1true) ∧ ϕ̂

)

.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 11

The above formula nondeterministically picks a successor x of the root, and then tests if
ϕ̂ holds in x. Since ϕ̂ is relativized to non-root nodes, evaluation of ϕ̂ will never leave the
subtree of x.

6. The identities and the main result

In this section we state our main result, the decidable characterization of the logic
EF + F

−1.
The characterization uses a relation ⊣ over contexts in a forest algebra. The idea is

that u ⊣ w holds if the context u can be obtained from the context w by removing forests
that are siblings of the main path (recall that the main path contains ancestors of the hole).
Let (H,V) be a forest algebra. For u,w ∈ V , we write u ⊣ w if u,w can be decomposed as

u = v0v1 · · · vn w = v0(h1 + v1) · · · (hn + vn)

for some v0, . . . , vn ∈ V and h1, . . . , hn ∈ H. The reason why we have v0 above, and not
h0+v0, is that a context type can be empty, but there is no empty forest type. The following
lemma shows that the relation ⊣ can be calculated in polynomial time using a least fixpoint
algorithm:

Lemma 6.1. The relation ⊣ is the least relation R ⊆ V × V such that:

(v, v), (v, v + h), (v, h + v) ∈ R for v ∈ V, h ∈ H

(v, v′), (w,w′) ∈ R⇒ (vw, v′w′) ∈ R for v, v′, w,w′ ∈ V .

Proof. The implication from (v,w) ∈ R to v ⊣ w is proved by induction on the number
of steps in the derivation. The converse implication is proved by induction on n in the
definition of ⊣.

The relation ⊣ is transitive in some forest algebras, including all free forest algebras.
However, in general it need not be transitive, as illustrated by the following example. Let
the leaf alphabet A be {a1, a2} and let the inner node alphabet B be {b}. Consider the
forest language L: “the forest does not contain both labels a1 and a2 at the same time, and
every node with label b has a sibling with label a1 or a2”. Let α be the syntactic morphism
of this language. Consider the following four contexts:

b

b

b

b a1

b

b a2

b

b a1 a2

p1 p2 q1 q2

Clearly we have α(p1) ⊣ α(p2) and α(q1) ⊣ α(q2). We claim that α(p2) = α(q1). Indeed,
both contexts are “error” contexts, i.e. for any context r and forest t we have rp2t, rq1t 6∈ L.
Therefore, if ⊣ were a transitive relation, we would have α(p1) ⊣ α(q2). This, however,
cannot hold, since otherwise we could construct a tree in L with both a1 and a2 labels.

We are now ready to state the main theorem of this paper:

Theorem 6.2. A language is forest-definable in EF+F
−1 if and only if its syntactic algebra

satisfies the following identities:

h+ h = h g + h = h+ g (6.1)

12 M. BOJAŃCZYK

(vw)ω = (vw)ωw(vw)ω . (6.2)

(u1w1)
ω(u2w2)

ω = (u1w1)
ωu1w2(u2w2)

ω if u1 ⊣ u2, w1 ⊣ w2 . (6.3)

In the identities above, all variables are quantified universally. The identities in (6.1) say
that children can be duplicated and reordered. This corresponds to bisimulation invariance
in the following way: a forest language is bisimulation invariant if and only if its syntactic
forest algebra satisfies (6.1). The identity (6.2) says that the vertical monoid belongs to
the variety DA (although the commonly used identity is different). Only the last identity
is new.

The exponent ω in properties (6.2) and (6.3) stands for “for almost all n”. In particular,
identity (6.2) should be read as:

∃m∀n ≥ m (vw)n = (vw)nw(vw)n .

Usually in semigroup theory, ω stands for “least idempotent power”, but the above definition
is equivalent for aperiodic monoids, which is the case here, thanks to (6.2).

An important corollary of the above theorem is that definability in EF+F
−1 is decidable:

Corollary 6.3. It is decidable if a forest (resp. tree) language is forest-definable (resp. tree-
definable) in EF + F

−1. The algorithm runs in polynomial time if the input is given as a
forest algebra.

Proof. To determine if a language is tree-definable, we calculate the languages {t : bt ∈ L}
and reduce to the characterization of forest-definable language thanks to Proposition 5.1.
Therefore, we focus on deciding if a language is forest-definable.

We begin by finding the syntactic forest algebra. The syntactic forest algebra can
be effectively calculated based on any representation of the tree language, be it a tree
automaton, or a formula of some rich logic, such as MSO. In general, the syntactic forest
algebra can be exponentially larger than a nondeterministic tree automaton, not to mention
a formula of MSO.

Once the syntactic forest algebra has been calculated, the properties (6.1), (6.2) and (6.3)
can be verified in polynomial time (with respect to the algebra). The relation ⊣ over V can
be computed in polynomial time thanks to Lemma 6.1. The exponent ω is not a problem.
Indeed, a consequence of (6.2) is that V is aperiodic, i.e. the identity vω = vωv holds for all
context types v. In particular, it is enough to test for ω = |V |.

The rest of this paper is devoted to showing Theorem 6.2. The “only if” implication
in the above theorem is proved in Section 7 using a simple induction on formula size. The
difficult part is the proof of the “if” implication, which is found in Section 8.

In the following fact, we show that property (6.3) in Theorem 6.2 is not redundant. In
a similar way one can prove that neither (6.1) nor (6.2) is redundant.

Lemma 6.4. There exists a forest algebra satisfying properties (6.1) and (6.2) but not (6.3).

Proof. Let the leaf alphabet A be {a1, a2} and let the inner node alphabet B be {b}.
Consider the following language: “if a node has a child with label a1, then it has an
ancestor with a child with label a2”. The syntactic forest algebra of this language satisfies
properties (6.1) and (6.2); but it does not satisfy (6.3), since for all n ∈ N we have

(bb)n((b+ a2)(b+ a1))
na2 ∈ L (bb)nb(b+ a1)((b+ a2)(b+ a1))

na2 6∈ L .

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 13

7. Correctness

In this section we show that any language forest-definable in EF + F
−1 satisfies the

identities from Theorem 6.2. For each of these identities we show that any formula of
EF + F

−1 must, informally speaking, confuse the two trees described by the opposing sides
of the identity. To show this confusion, we use an Ehrenfeucht-Fräıssé game. The plan
of this section is as follows. First, in Section 7.1, we define the Ehrenfeucht-Fräıssé that
characterizes EF + F

−1. Next, in Section 7.2, we use the game to show that languages
defined in EF + F

−1 are closed under morphic preimages. Finally, in Section 7.3 we show
that any language forest-definable in EF + F

−1 satisfies the identities from Theorem 6.2.

7.1. Ehrenfeucht-Fräısse Game. In this section, we define an Ehrenfeucht-Fräıssé game
that characterizes the logic EF + F

−1.
The game is played on two forests s0 and s1, with two distinguished nodes, x0 in s0

and x1 in s1. A configuration of the game is therefore a four-tuple (x0, x1, s0, s1). Finally,
the game has a parameter n ∈ N, which is called the number of rounds. The game is played
by two players, Duplicator and Spoiler. The idea is that Duplicator claims that the same
formulas of size at most n hold in x0 and x1.

The game is played as follows. Assume that there are n ≥ 0 rounds left. If the labels
of x0, x1 are different, then Spoiler wins the game immediately, and no further rounds are
played. If the labels are the same, and n = 0, then Duplicator wins the game, and no
further rounds are played. Finally, if the labels are the same and n > 0, a new round is
played as follows.

First, Spoiler chooses one of the two nodes x0, x1, i.e. he chooses an index i ∈ {0, 1}.
The idea is that Spoiler thinks that the node xi has some property that the other node x1−i

does not have. He then chooses to make either a descendant move (in this case, Spoiler
thinks that xi has a descendant unlike all descendants of x1−i) or an ancestor move (Spoiler
thinks that xi has an ancestor unlike all ancestors of x1−i) . If Spoiler chooses a descendant
(respectively, ancestor) move, then he must choose a proper descendant (respectively, proper
ancestor) yi of xi in the forest si. To this, Duplicator must respond by choosing a proper
descendant (respectively, proper ancestor) y1−i of x1−i in the other forest s1−i. The idea
is that Duplicator thinks that y1−i is similar to yi, at least as far as the remaining n − 1
rounds are concerned. Formally, the new configuration becomes (y0, y1, s0, s1) and the game
continues with n− 1 rounds left.

We also define how the n-round game is played on two forests s0, s1 in case when the
nodes x0, x1 are not specified. In this case, there is a special introductory round, where
Spoiler chooses i ∈ {0, 1} and a root node xi in si; Duplicator responds with a root node
x1−i in the other forest. Then the standard n-round game continues from this configuration.

Proposition 7.1. A forest language is forest-definable in EF+F
−1 if and only if for some n,

Spoiler wins the n-round game for any pair of forests s0 ∈ L and s1 6∈ L.

Proof. The proof is standard, and omitted here. The idea is that n is the nesting depth of
the formulas used to forest-define L. The nesting depth counts the maximal nesting of EF

and F
−1 in a formula, while boolean operations are for free.

14 M. BOJAŃCZYK

7.2. Morphic images. In this section, we show that languages forest-definable in EF+F
−1

are closed under morphic preimages. Actually, we show a slightly more general result. The
more general setting will be used in Section 9, where we show that our characterization also
works for a different model of forest algebra, where empty forests are allowed.

We first describe the more general setting. The generalization is twofold. First, we
allow empty forests. Second∗1, we consider forests over a single alphabet (unlike the two-
sorted alphabet A,B considered before, with A allowed only in leaves and B allowed only
in inner nodes). The new type of forests will be called one-sorted forests, to distinguish
them from the two-sorted forests considered before. The one-sorted forests are more general
in the following sense: the two-sorted forests over an alphabet (A,B) are a subset of the
one-sorted forests over the alphabet A ∪ B. Of course, the difference is not that big: the
one-sorted forests over A are the two-sorted forests over (A,A), plus the empty forest.We
also have an analogous concept of one-sorted contexts. A one-sorted morphism, with source
alphabet A and target alphabet B is given by a function that assigns to each letter of A a
one-sorted context, possibly empty, over B. A one-sorted morphism uniquely extends to
one-sorted forests and one-sorted contexts. To avoid confusion, in this section we use the
name two-sorted morphism for the morphisms introduced previously in the paper.

Theorem 7.2. Let α be a one-sorted morphism. If a forest language L over the target
alphabet B is forest-definable in EF + F

−1, then so is its inverse image α−1(L).

The version of this theorem for two-sorted morphisms is a special case of the one-sorted
version, since every for two-sorted morphism there is a one-sorted morphism that gives the
same results over all legal two-sorted forests.

To show this theorem, we will use the Ehrenfeucht-Fräıssé game. We fix the forest-
language L and the (one-sorted) morphism α from the theorem for the rest of this section.
Let n be the number of rounds obtained by applying Proposition 7.1 to the forest L in the
statement of the theorem. By invoking Proposition 7.1 a second time, to establish that
the inverse image α−1(L) is forest-definable in EF + F

−1, it suffices to show that Spoiler
can win the n-round game over any two preimages, one taken from the preimage α−1(L),
and the other taken from its complement. The proof will be by showing how a strategy of
Duplicator over the preimage can be lifted to a strategy over the image, as stated in the
following proposition.

Proposition 7.3. If Duplicator wins the n-round game over s0, s1, then Duplicator also
wins the n-round game over α(s0), α(s1).

To prove this transfer of strategies, we will be switching back and forth between the
Ehrenfeucht-Fräıssé games on s0, s1 and on α(s0), α(s1). To avoid confusion, we use the
name preimage game for the former and we use the name image game for the latter. We
will be comparing configurations of the two games in the following way. Every node x in a
morphic image α(s) can be uniquely identified by two pieces of information: its preimage
x̄, which is a node in the preimage forest s, and its offset, which is a node of the context
assigned by α to the label in x̄. These concepts are illustrated below, in an example where
both the source and target alphabets are {a, b}, and the one-sorted morphism is defined by
α(a) = a(� + b) and α(b) = �.

1
∗ It turns out that in forest algebra, the first generalization entails the second.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 15

a

b

a

a

b

a

b

a

b

a

s

α(s)

o set of x

o set of y

b

a

b

a

y
x

x,y– –

Note that some nodes in the preimage forest s are not the preimage of any node in α(s),
these are the nodes whose labels are mapped to an empty context by α.

Armed with the definitions of offset and preimage, we now prove the strategy transfer
from Proposition 7.3. We only give the main invariant, which is described below. The
missing part of the proof, for the introductory round of the game where the root nodes are
chosen, is done in a similar way.

Lemma 7.4. Let m ≤ n. Let x0, x1 be nodes with the same offset such that x̄0, x̄1 have the
same label. If Duplicator can win the n-round preimage game in configuration (x̄0, x̄1, s0, s1),
then he can also win the m-round image game in configuration (x0, x1, α(s0), α(s1)).

Proof. The proof is by induction on n. Consider first the case of n = 0. By assumption on
the preimage game, the nodes x̄0 and x̄1 have the same labels in s0, s1. Since the two nodes
x0, x1 have the same offsets, they must also have the same labels in the images α(s0), α(s1),
and therefore Duplicator wins.

Consider now the induction step. We only do the case when Spoiler chooses a descen-
dant move, the ancestor move is done the same way. Assume then that Spoiler chooses xi

and indicates a proper descendant yi of xi in α(si). How should Duplicator respond? There
are two possible cases:

• The preimage ȳi is a proper descendant of x̄i. We now go to the preimage game, and
make Spoiler play a descendant move where he chooses ȳi. By assumption on Duplicator
winning the preimage game, there is a proper descendant of x̄1−i, call it ȳ1−i, such that
Duplicator wins the (n − 1)-round preimage game from configuration (ȳ0, ȳ1, s0, s1). In
particular, the nodes ȳ0, ȳ1 have the same labels in the preimage, and therefore the same
possible offsets in the image. Therefore, there exists a node y1−i in α(s1−i) such that its
preimage is ȳ1−i, and this node can be chosen to have the same offset as ȳi. We now use
the induction assumption to show that Duplicator wins the rest of the image game from
configuration (y0, y1, α(s0), α(s1)).

• If the preimage ȳi is not a proper descendant of x̄i, then ȳi = x̄i and the only difference
between yi and xi is in the offset. Duplicator’s response is to choose in the forest s1−i

a node y1−i that has the same offset as yi, and such that ȳ1−i = x̄1−i. We then use the
induction assumption to show that Duplicator wins the rest of the image game.

7.3. Correctness of the identities. We are now ready to show the easier implication
in Theorem 6.2, namely that the syntactic forest algebra of a language forest-definable in
EF + F

−1 satisfies the three identities. Validity of (6.1) can easily be shown. We omit the

16 M. BOJAŃCZYK

proof of (6.2) for two reasons: first, it is the same as in the word case, see e.g. [13]; and
second, it follows along similar lines as the proof of (6.3).

The rest of this section is devoted to showing the validity of identity (6.3). Let L be
a forest language forest-definable in EF + F

−1. We need to show that the syntactic algebra
of L satisfies identity (6.3). Recall that elements of the syntactic algebra are equivalence
classes of the Myhill-Nerode equivalence relation. Therefore, in order to show the validity
of (6.3), we have to show that for any formula ϕ of EF + F

−1, for all contexts p1 ⊣ p2 and
q1 ⊣ q2, every context p and every nonempty forest t, for almost all n ∈ N the formula ϕ is
true in some tree of either both or neither of the forests

s0 = p(p1q1)
n(p2q2)

nt s1 = p(p1q1)
np1q2(p2q2)

nt . (7.1)

We will use the Ehrenfeucht-Fräıssé game, and show that Duplicator can win the n-round
game over the above two forests. To keep notation simple, we assume the following simpli-
fying assumptions are met.

• The context p is a single node b (in particular, s0 and s1 are trees).
• The forest t is a single node a.
• The contexts p1, p2, q1, q2 are

p1 = b1 · · · bk

q1 = bk+1 · · · bm

p2 = b1(a1 + �) · · · bk(ak + �)

q2 = bk+1(ak+1 + �) · · · bm(am + �)

for some k < m and b1, . . . , bm ∈ B, a1, . . . , am ∈ A.
• The labels a, a1, . . . , am, b, b1, . . . , bm and a are all distinct.

The trees s0 and s1 are shown in Figure 1. Why can we make these simplifying assumptions?
The reason is that the general case follows from this special case by way of homomorphic
images. More specifically, consider the two forests s0, s1 in the general case, as given in (7.1).
We want to show that Duplicator wins the n-round game over these two forests. The key
observation is that any two forests s0, s1 as in (7.1) can obtained as homomorphic images
s0 = α(t0) and s1 = α(t1) from trees t0, t1 that satisfy the simplifying assumption, for some
(two-sorted) morphism α. As long as we know how Duplicator can win the game over the
simpler trees t0, t1, we can use Proposition 7.3 to transfer this result to the forests s0, s1.

We now proceed to describe a winning strategy for Duplicator over trees s0, s1 that
satisfy the simplifying assumptions. We use the term main path for the ancestors of the
node a. The projection of a node onto the main path is its closest ancestor (not necessarily
proper) that is on the main path. For a node in either s0 or s1, the ancestor block count
(respectively, descendant block count) is the number of ancestors with label bm (respectively,
descendants with b1) of the node’s projection onto the main path. For m ≤ n, we say that
two nodes x0, x1 in the trees s0, s1 are m-similar if their labels are the same and moreover
one of the conditions in the following invariant holds:

(1) The trees s0, s1 agree on nodes in the subtrees of y0, y1; or
(2) The trees s0, s1 agree on nodes not in the subtrees of y0, y1; or
(3) The ancestor and descendant block counts of x0, x1 are both at least m.

Lemma 7.5. Let m ≤ n. If the nodes x0, x1 are m-similar, then Duplicator wins the
m-round game from configuration (x0, x1, s0, s1).

Proof. The proof is by induction on m. For the base case m = 0 we use the assumption
that the labels are the same. Consider now the induction step. We only do one case, when
Spoiler chooses a descendant move to go from x1 to a node x′1 in the “new block” of s1 (the

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 17

b1

b b

b2

bm

b1

b1

b2

bm

b1

a1

b
lo

c
k
 1

b
lo

c
k
 n

+
1

b1

b2
a1

a2

bm

a am

b
lo

c
k
 2

n
+

1

b2

a2

bm

am

b
lo

c
k
 n

+
2

b1

b2

bm

b1

b1

b2

bk

bk+1

ak+1

b
lo

c
k
 1

n
e
w

 b
lo

c
k

bm

amb1

a1

b1

b2
a1

a2

bm

a am

b
lo

c
k
 2

n
+

1

b2

a2

bm

am

b
lo

c
k
 n

+
1

Figure 1: The trees s0 and s1

new block is the context p1q2). This Spoiler move means that x0, x1 are m-similar for reason
(2) or (3), since item (1) forbids a descendant of x1 in the new block. What is Duplicator’s
response? Note that for all nodes in the new block, both the ancestor and descendant block
counts are at least n ≥ m − 1. Duplicator goes to any node x′0 in the tree s0 where the
ancestor and descendant block counts are both at least m− 1. This must be possible, since
either one of items (2) or (3) of the invariant was true for x0, x1. The rest of the game is
played according the induction assumption, since x′0 and x′1 are (m− 1)-similar.

By taking m = n in the above lemma, we get the desired result. This is because the two
roots of s0, s1 have the same (empty) prefixes, thus they are m-similar, and must therefore
satisfy the same formulas of size m = n.

18 M. BOJAŃCZYK

8. Completeness

This section is devoted to showing:

Proposition 8.1. Any forest language recognized by a forest algebra satisfying (6.1), (6.2)
and (6.3) can be forest-defined.

The above statement immediately implies the more difficult “if” part of Theorem 6.2.
Indeed, if L is recognized by an algebra satisfying (6.1), (6.2) and (6.3), then its syntactic
algebra satisfies these identities. This is because the syntactic algebra is a morphic image
of any algebra recognizing the language, and identities are preserved by morphic images.

Let X ⊆ H be a set of forest types. We say a forest t is X-trimmed if the only subtrees
of t that have a type in X are leaves. We say a tree language L is tree-definable modulo X
if there is a formula ϕ such that

t satisfies ϕ iff t ∈ L

holds for all X-trimmed trees (for other trees, ϕ may disagree with L). In a similar fashion,
we define a forest language that is forest-definable modulo X.

Instead of Proposition 8.1, we show the slightly more general result below, which con-
tains the induction parameters that appear in the proof.

Proposition 8.2. Let α : (A,B)∆ → (H,V) be a morphism, with (H,V) satisfying identi-
ties (6.1), (6.2) and (6.3). Let X ⊆ H be a set of forest types, and let v ∈ V be a context
type. For each forest type h ∈ H the following forest language is forest-definable modulo X:

{t : v(α(t)) = h} . (8.1)

For the rest of Section 8, we fix α : (A,B)∆ → (H,V), h ∈ H, v ∈ V and X ⊆ H from
Proposition 8.2. Clearly Proposition 8.1 follows from the above result, taking X = ∅, v to
be the empty context type �, and doing a disjunction over all forest types h ∈ α(L). The
rest of Section 8 is devoted to a proof of Proposition 8.2. The proof is by induction on four
parameters:

(1) The size of H, i.e. the number of all forest types.
(2) The size of H \X, i.e. the number of forest types that can be found outside leaves.
(3) The size of vV , i.e. the number of context types reachable from v.
(4) The size of B, i.e. the number of inner node labels.

The order of these parameters is important: first we try to minimize H, then the other three
parameters (the order for the other three is not important). Note that the last parameter
depends on the alphabet B, and the notion “modulo X” depends on the morphism.

We say a morphism α into (H,V) is leaf saturated if for every h ∈ H, there is a
representative leaf label a whose type α(a) is h. In the rest of this section, we will only
consider such morphisms. By adding leaf labels, any morphism can be extended to one that
is leaf saturated, without affecting the target forest algebra.

We begin by outlining our proof strategy for Proposition 8.2. We will consider three
possible cases. First, in Section 8.1, we see what happens when some inner node label b ∈ B
has the property that v cannot be reached from vα(b). Then, in Section 8.2, we see what
happens if H \X intersects more than one forest component, i.e. contains at least two forest
types that are not mutually reachable. Finally, in Section 8.3, we show that if neither of
the above holds, then the formula ϕ in Proposition 8.2 can basically be replaced by either
“true” or “false”.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 19

8.1. For some inner node label b ∈ B, v is not reachable from vα(b). We begin
with this case, which is the easiest of the three. The basic idea is that we cut the forest
into two parts, by looking at the first occurrence of b on each path, beginning at the root.
Since after reading the label b, the context type v is no longer reachable, we can use the
induction assumption to calculate the subtree below each such first b. These subtrees can
then be squashed into single leafs using the antichain composition principle, and therefore
the induction assumption can be used on a smaller alphabet of inner node labels, which
now no longer contains b.

We say that two forest types h, g ∈ H are v-equivalent if vuh = vug holds whenever v
is not reachable from vu.

Lemma 8.3. For each h, the set of forests whose type is v-equivalent to h is forest-definable
modulo X.

Proof. Fix some context type u such that v is not reachable from vu. By induction
assumption—the third parameter is decreased—the set of forests s satisfying vuα(s) = vuh

is forest-definable modulo X. The set in the statement of the lemma is the intersection,
over u, of all these sets.

Lemma 8.4. If v,w, vu ∈ V are in the same context component, then so is wu.

Proof. By assumption there must be context types v′, w′ with vuw′ = w and wv′ = v. But
then we have wv′uw′ = w. In particular, w(v′uw′)ωv′ = v. Using identity (6.2), we get

v = w(v′uw′)ωv′ = w(v′uw′)ωuw′(v′uw′)ωv′ = wuw′(v′uw′)ωv′ ,

which shows v can be reached from wu.

Let γ1, . . . , γn be all the equivalence classes of v-equivalence. For each such class γi, let
Li be the set of trees {bt : α(t) ∈ γi}. Thanks to Lemma 8.3, each set Li is tree-definable.
For any i = 1, . . . , n, let hi be an arbitrarily chosen forest type in the class γi, and let ai

be a leaf label whose type is α(b)hi. The label ai exists by assumption on leaf saturation.
Note that ai may have a different type than some of the trees in Li, since hi need not be
the only forest type in γi. However, we will show that no information is lost by squashing
subtree in Li into a single leaf with label ai, at least as long as the resulting forest is going
to be an argument of v. More formally, we show:

Lemma 8.5. Let ϕ = b ∧ ¬F
−1b, i.e. “a b without b ancestors”. For any forest t we have

vα(t) = vα(t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an]) .

Before we show this lemma, we show how it concludes the case considered in this section.
Recall that we want to show that the following language is forest-definable modulo X:

L = {t : vα(t) = h} .

By Lemma 8.5, this is the same language as

{t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ L} .

Since the substitution operation removes all letters b from the forest, we get

L = {t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ K} ,

whereK is the set of trees in L that do not use the letter b. To K we can apply the induction
assumption on a smaller alphabet, and then use the antichain composition principle to
transfer definability from K to L.

20 M. BOJAŃCZYK

We now resume with the proof of Lemma 8.5.

Proof. Note first that the tree on the right hand side of the equation is well defined, since the
languages Li are disjoint, and ϕ is an antichain formula. The proof is by induction on the
number of b nodes in the forest t. The induction base, where there are no b’s, is immediate
since the substitution on the right hand side does not change the forest. Otherwise, let t
be of the form pbs, with the context p not containing any b’s on the main path, and let Li

be such that bs ∈ Li. By induction assumption, we have

α(pai[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an]) = α(pai) .

By definition of the substitution we have

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] = pai[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ,

it therefore remains to show that vα(pbai) = vα(pbs).
First, we claim that v is not reachable from vα(pb). Indeed, if v is not reachable from

vα(p) then we are done. Otherwise, v and vα(p) are in the same context component. If this
context component would also contain vα(pb), then by Lemma 8.4 it would also contain
vα(b), a contradiction with the assumption on b.

Recall now the forest type hi that represented the equivalence class γi ∋ α(s). By
assumption on α(s) and hi being v-equivalent, we get

vα(pbs) = vα(pb)α(s) = vα(pb)hi = vα(p)α(b)hi = vα(p)α(ai) = vα(pai) .

8.2. There is more than one forest component in H \X. We now turn to the second
case in the proof of Proposition 8.2. Let G ⊆ H be a forest component not included in X.
We pick G so that no forest type in G can be reached from a forest type outside X ∪ G.
Intuitively speaking, forest types from G are close to the leaves. The essential idea in this
section is that we will add G to X, by squashing each subtree of type g to a single leaf with
the g written in its label. This is done by applying the antichain composition.

Let W ⊆ V be the set of context types that preserve G, i.e. context types w such
g is reachable from wg for some g ∈ G. The following lemma, proved the same way as
Lemma 8.4, shows that “some” in the above definition can be replaced by “all”.

Lemma 8.6. If g, h, vg are in the same forest component, then so is vh.

Let F ⊆ H be the set of those forest types f from which a forest type in G can be
reached. In particular, we have

G ⊆ F ⊆ H .

Note that all forest types in F \X are from G by choice of G. Furthermore, the inclusion
F ⊆ H is proper, since H \ X contains more than one forest component by assumption.
The inclusion G ⊆ F may also be proper, however all forest types in the difference F \ G
are from X.

We say f ∈ H is a bad brother if for all g ∈ G, we have f + g 6∈ G, i.e. g is not reachable
from f + g. Likewise, we say f ∈ H is a good brother if for all g ∈ G, we have f + g ∈ G,
i.e. g is reachable from f + g. Note that by definition of F , all good brothers are in F .
Clearly f is a bad brother if and only if the context type f + � is outside W . Therefore by
Lemma 8.6, every forest type in H is either a good brother or a bad brother. In particular,
all forest types in G are good brothers, since they cannot be bad brothers by g + g = g.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 21

Furthermore, since W is closed under context composition, good brothers are closed under
forest concatenation, i.e. form a subsemigroup of H.

We fix the sets G, F and W for the rest of Section 8.2.
A twig is a tree of depth exactly two, i.e. a root and some leaves. A twig node is a node

whose subtree is a twig.

Lemma 8.7. There is a formula ψ such that in any X-trimmed tree, ψ holds in nodes with
a subtree of type in G.

Proof. Let t be an X-trimmed tree, and x a node in this tree. If the node is a leaf, then
the type of its subtree can be read from the label. Otherwise, the type of the subtree
must be either in G or outside F , by assumption on the tree being X-trimmed. We claim
that the following condition is necessary and sufficient for the subtree of x to have a type
outside F , and can furthermore be tested by a formula of EF + F

−1. The condition is that
some descendant y of x, not necessarily proper, is either

(1) A leaf or twig node with a type outside F ; or
(2) A non-twig inner node with a label b ∈ B whose type α(b) is outside W ; or
(3) An inner node whose brother has a leaf label a whose type α(a) is a bad brother.

We begin by showing that these conditions can be tested by an EF + F
−1 formula.

Testing for 1) is simple. Using EF, we search for a candidate y for the node. If y is a
leaf, we just test its label. Otherwise, we test if y is a twig node (no path of length at
least two). Then we read the label of y and the set of labels in descendants of y, which
uniquely determine the type of the subtree of y, thanks to idempotency and commutativity,
i.e. identities (6.1). Condition 2 is tested in a similar way. For condition 3 we use EF to go
into a leaf y with a label a whose type is a bad brother. We then test if y has a sibling that
is an inner node (all ancestors of y have an inner node descendant).

We now show that these conditions are sufficient. The first one is clearly sufficient. For
the other two, note that every inner node has a subtree with type outside X by assumption
on the tree being X-trimmed. This type must then be either in G ⊇ F \X or outside F .
For the second condition, let bs be the subtree of a non-twig inner node, with s a forest.
Since s has depth at least two, its type must be outside X, and therefore either outside F ,
or in G ⊇ F \X. In either case, the type of bs is outside F . The last condition is shown in
a similar way.

It remains to show that the conditions are necessary. Indeed, assume that the subtree
of x has a type outside G. Let s be a minimal subtree below x that has a type outside F .
If s is a leaf or a twig, then item 1 must hold. Otherwise s is of the form b(s1 + · · · sn),
for some label b ∈ B and trees s1, . . . , sn, with at least one tree si not being a leaf. By
assumption on the tree being X-trimmed, the type of si is outside X. Since F \X ⊆ G,
the type of this si is in G. If all the types of sj , for j 6= i, are good brothers, then the
type of s1 + · · ·+ sn must belong to G by closure of good brothers under composition, and
therefore case 2 must hold. Finally, we consider the case when the type of some tree sj is a
bad brother. Since all forest types from G are good brothers, the type of sj is in F \G ⊆ X.
Since the tree is X-trimmed, sj is a single leaf, and thus 3 holds.

Lemma 8.8. For each g ∈ G, the set of trees with type g is tree-definable modulo X.

The general idea is that (G,W) is a (smaller) forest algebra, and therefore the induction
assumption can be applied to languages recognized by (G,W). However, thanks to bad
brothers and such, (G,W) does not recognize the language in the lemma. Before we solve

22 M. BOJAŃCZYK

this problem, we show how Lemmas 8.7 and 8.8 along with the antichain composition
principle conclude the case considered in this section. The idea is that we add all forest
types from G to X.

Let h, v be as in the statement of Proposition 8.2. We need to show that the language

L = {t : v(α(t)) = h}

is forest-definable modulo X. By induction assumption, we know that this language is
forest-definable modulo X ∪G. In other words, there is some forest-definable set of forests
K that agrees with L over (X ∪G)-trimmed forests. To describe L modulo X, we will use
the antichain composition principle.

Let ψ be the formula from Lemma 8.7. Let

ϕ = ψ ∧ ¬F
−1ψ .

This formula holds in a node whose subtree has a type in G, and the node is closest to
the root for this property. Thanks to the last clause, ϕ is an antichain formula. Let
G = {g1, . . . , gn}. By assumption that α is leaf saturated, for each gi there is a leaf label
ai ∈ A with α(ai) = gi. For each gi, let Li be the set of trees with type gi. Thanks to
Lemma 8.8, each tree language Li is tree-definable modulo X.

It is easy to see that squashing a subtree with type gi into a single leaf with label ai

does not change the type of the whole tree. More precisely, a forest t has the same value as

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] .

Furthermore, the above forest is (X ∪G)-trimmed, at least as long as t was X-trimmed. It
follows that over X-trimmed forests, L agrees with

{t : t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] ∈ K} ,

which is forest-definable thanks to the antichain composition principle. It now remains to
show Lemma 8.8, which we do in the next section.

8.2.1. Trees with type in G. Fix some forest type g ∈ G. Our goal is to show that the set
of trees with type g is tree-definable modulo X.

Lemma 8.9. Without loss of generality, we may assume that all forest types in F are good
brothers and all inner node labels b satisfy α(b) ∈W .

Proof. Recall that all forest types from G are good brothers. In particular, all bad brothers
in F are from X, and can therefore only appear in leaves, as long as we are working over
X-trimmed forests. Let A′ ⊆ A be the set of leaf labels that are mapped by α to a good
brother in F . Let B′ ⊆ B be the set of inner node labels b with α(b) ∈W .

Let β be the restriction of α to this smaller alphabet:

β : (A′, B′)∆ → (H,V) .

Note that over X-trimmed forests, the only forest types from F in the image of β are good
brothers, and all inner node labels b satisfy α(b) ∈ W . Assume now, that we have shown
Lemma 8.8 for the morphism β, i.e. the set K of trees that have type g under β is tree-
definable modulo X. We will use the antichain composition principle to extend this result
to α. The idea is that we squash twig nodes into leaves, thus eliminating labels outside
A′, B′.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 23

Let ϕ be a formula that is true in twig nodes (the node is not a leaf, but all of its
proper descendants are leaves); this is clearly an antichain formula. Let G = {g1, . . . , gn}.
By assumption that α is leaf saturated, for each gi there is a leaf label ai ∈ A with α(ai) = gi.
For each gi, let Li be the set of twig trees with value gi (under α). Each Li is tree-definable,
since the type of a twig tree is determined by its root label and the set of its leaf labels
by (6.1). It is easy to see that a tree t over (A,B) has the same type under α as the tree

t[(L1, ϕ) → a1, . . . , (Ln, ϕ) → an] .

Furthermore, if the type of t under α is g, then the latter forest belongs to the domain of
β, since all nodes with a label outside A′ or B′ are covered by ϕ. Therefore, we can use the
antichain composition principle to conclude that the forests with value g under α can be
defined in EF + F

−1.

From now on, we use the assumptions stated in the previous lemma. Recall that good
brothers are closed under concatenation, and therefore F is a subsemigroup of H. This
allows us to define a semigroup automaton A, whose semigroup is F . The input alphabet
of this automaton is:

• The inner node labels are B
• The leaf labels are A′ = {a ∈ A : α(a) ∈ F}.

For a ∈ A′, we define βA(a) to be α(a). For b ∈ B, we would like the associated function
βB(b) to be α(b). Even though Lemma 8.9 guarantees that α(b) belongs to W , this context
type cannot be used since it need not generate a function F → F . The reason is that α(b)h
may be outside F for types h outside G. To solve this problem, we artificially redefine the
function:

βB(b)(h) =

{

α(b)h if α(b)h ∈ F

g0 otherwise.
(8.2)

In the above, g0 is an arbitrarily chosen forest type from G.
By the proof of Theorem 4.1, this automaton induces a forest algebra morphism

β : (A′, B′)∆ → (F,FF) .

This morphism is not the same as α, due to the second clause in (8.2). However, it agrees
with α over the forests that are relevant to Lemma 8.8:

Lemma 8.10. For any g ∈ G, and forest t, if α(t) = g then β(t) = g.

Proof. If t has a type in G under α, then all of its leaf labels belong to A′ by definition of F .
Therefore, t belongs to the domain of β. The lemma is proved by induction on the size of t.
If α(t) = g, then the “bad” second case in (8.2) is never used while calculating β(t).

Lemma 8.11. The image of β satisfies identities (6.1), (6.2) and (6.3).

Proof. We only focus on identity (6.3), the others are easy to show. The key idea is that α
and β only disagree in twig nodes, and these are not important for the identity (6.3).

Let then p1 ⊣ p2, q1 ⊣ q2 be contexts. We need to show that

β((p1q1)
ω(p2q2)

ω) = β((p1q1)
ωp1q2(p2q2)

ω) .

Thanks to the faithfulness of contexts in forest algebra, it suffices to show that both sides
induce the same transformations on forests, i.e.

β((p1q1)
ω(p2q2)

ωt) = β((p1q1)
ωp1q2(p2q2)

ωt)

24 M. BOJAŃCZYK

holds for every forest t.
Consider first the case when both p2, q2 have the hole in the root, and therefore so do

p1, q2. In this case the equality above becomes:

β(ω(s1 + t1) + ω(s2 + t2) + t) = β(ω(s1 + t1) + s1 + t2 + ω(s2 + t2) + t) .

The above equality follows by commutativity of the horizontal monoid F , and aperiodicity
of H, i.e. ωh+h = ωh. The latter is a consequence of aperiodicity of V , itself a consequence
of (6.2), by iterating

ωh+ h = (h+ �)ωh = (h+ �)ω(h+ �)ωh = ωh+ h+ h .

We can therefore now assume that in the context p2q2, at least one inner node is an ancestor
of the hole. Thanks to the assumption on leaf saturation, in the contexts p1, q1, p2, q2 every
subtree that does not contain the hole can be squashed to a single node, without affecting
the image under β. We therefore assume that in the contexts above, all nodes outside the
main path are leaves. As remarked above, a consequence of equation (6.2) is that V is
aperiodic, i.e. vω = vωv holds for every context type v. Therefore, it is sufficient to show

β((p1q1)
ω(p2q2)

ω(p2q2)t) = β((p1q1)
ωp1q2(p2q2)

ω(p2q2)t) . (8.3)

The only part where α and β disagree are twig nodes. Thanks to our assumption on the
form of p1, p2, q1, q2, the only place where the forests in (8.3) contain twig nodes is p2q2t.
Therefore, we have

β((p1q1)
ω(p2q2)

ω(p2q2)t) = α((p1q1)
ω(p2q2)

ω)β((p2q2)t) .

In the same way we can decompose the right side of (8.3). Applying the assumption that
the image of α satisfies (6.3), we get the desired result.

Proof of Lemma 8.8. By Lemma 8.10, a tree has type g under α if and only if a) its type
under α belongs to G; and b) it has type g under β. Condition a) can be tested by thanks
to Lemma 8.7. Since F is a proper subset of H, we can use the induction assumption to
test condition b).

8.3. The induction base. In this section, we assume that the techniques from the previous
two sections cannot be applied. That is:

• All forest types from H \X are in a single forest component.
• For all inner node labels b ∈ B, v is reachable from vα(b).

Note that the second assumption does not necessarily mean that any context type reachable
from v is in the same context component. Indeed, it is possible that for some forest type g,
the context type v is no longer reachable from v(� + g).

We will show
vf = vg for all f, g ∈ H \X . (8.4)

Before we do this, we show how Proposition 8.2 follows. For every every forest type h ∈ H,
we need to show that the forest language

L = {t : v(α(t)) = h}

is forest definable modulo X. By assumption (8.4), there is some forest type h0 ∈ H such
that vf = h0 holds for all f ∈ H \X.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 25

• If an X-trimmed forest t contains an inner node label—which can easily be tested by the
logic—then α(t) must be in the single forest component H \X. In particular, vα(t) = h0.
So in this case, ϕ is either “true” or “false” depending on whether h0 = h or not.

• Otherwise, the forest t is the concatenation of some leaves a1 + · · ·+ an. In this case, the
type of vα(t) can be calculated based on the set of leaf labels in t.

The rest of this section is devoted to showing (8.4). The following lemma is the key step
in our proof (8.4). It says that not only any two forest types h, g ∈ H\X can be reached from
each other—which is the assumption on there being one forest component—but they can
also be reached from each other by only using contexts without any branching. Furthermore,
the context type that goes from g to h can be chosen independently of g. However, all these
statements are relative to context types from the context component of v.

Lemma 8.12. Let h ∈ H \ X. There are inner node labels b1, . . . , bn ∈ B such that
wh = wα(b1 · · · bn)g holds for each forest type g ∈ H \X and context type w in the context
component of v.

Proof. Let h be a forest type outside X. We first show that there is a context type ug such
that h = uhf holds for every forest type f ∈ H. By assumption on there being only one
forest component outside X, the forest type h can be reached from every forest type. In
particular, there is some context type u such that h = u(h1 + · · · + hn), where h1, . . . , hn

are all the forest types in H. Let

uh = u(h1 + · · · + hn + �) .

Thanks to idempotency and commutativity of H, i.e. identity (6.1),

h1 + · · · + hn = h1 + · · · + hn + f

holds for any forest type f , and therefore also h = uhf .
We can decompose the context uh as

uh = (f1 + α(b1)) · · · (fn + α(bn))

for some n and f1, . . . , fn ∈ H and b1, . . . , bn ∈ B. (In general, some of the fi may be
empty; but the proof follows the same lines.) Let us denote α(bi) by vi. We will show that

wh = wv1 · · · vng

holds for any forest type g and any context type w in the context component of v, thus
proving the lemma.

Let then g,w be as above. As for h, we can define a context type ug such that g = ugf

holds for any forest type f . This context can also be decomposed as

ug = (fn+1 + α(bn+1)) · · · (fm + α(bm))

for some m ≥ n+ 1 and fn+1, . . . , fm ∈ H and bn+1, . . . , bm ∈ B. As previously, we denote
α(bi) by vi. By definition, we have

v1 · · · vn ⊣ uh vn+1 · · · vm ⊣ ug (8.5)

Let now w ∈ V be in the same context component as v. By assumption on w and
Lemma 8.4, also the context type wv1 · · · vm is in the same context component as v. In
particular, there is some w̄ ∈ V such that

wv1 · · · vmw̄ = w .

26 M. BOJAŃCZYK

By iterating the above ω times, and appending h, we get

wh = w(v1 · · · vmw̄)ωh .

Since uhf = h holds for all forest types f , the above can be rewritten as

w(v1 · · · vmw̄)ω(uhugw̄)ωh .

Using the property from identity (6.3), we get

w(v1 · · · vmw̄)ω(uhugw̄)ωh = w(v1 · · · vmw̄)ωv1 · · · vnugw̄(uhugv)
ωh

= w(v1 · · · vmw̄)ωv1 · · · vng = w̄v1 · · · vng ,

which concludes the proof of the lemma.

We now use the above Lemma to conclude the proof of (8.4). Indeed, let f, g be forest
types outside X. By the above lemma, there are inner node labels b1, . . . , bm ∈ B such that

f = wα(b1 · · · bn)h g = wα(bn+1 · · · bm)h

holds for all w in the context component of v and all forest types h outsideX. Let vi = α(bi).
By assumption on the equivalence class of v and by Lemma 8.4, there must be some v ∈ V

such that
vv1 · · · vmv̄ = v .

But then we have

vf = v(v1 · · · vmv̄)
ωf = v(v1 · · · vmv̄)

ωvn+1 · · · vmv̄(v1 · · · vmv̄)
ωf = v(v1 · · · vmv̄)

ωg = vg .

The second equality follows from (6.2).

9. Empty forests

The forest algebra setting used in this paper does not allow empty forests. There is also
a two-sorted alphabet (A,B), where letters from A are only allowed in leaves, and letters
from B are only allowed in inner nodes. A different, and arguably more elegant, setting is
considered in [6], where empty forests are allowed, and only one alphabet is used.

Why do we not use the forest algebra with empty forests here? The reason is that the
completeness proof in Proposition 8.2 uses an induction on the size of the leaf alphabet, so it
helps that the leaf alphabet is part of the definition of the forest algebra. The assumption on
nonempty forests follows, since if we want a separate alphabet for leaves, there are algebraic
reasons to consider forest algebras without the empty forest. A natural question emerges:
does our characterization also work for forest algebra with empty forests? In this section,
we give an informal argument that the answer to this question is yes.

We will not give a detailed discussion of forest algebra with empty forests here. We
define only define the syntactic object. The interested reader is referred to [6]. Let A be
an alphabet. We define A∆

H (respectively, A∆
V) to be the set of (possibly) empty forests

(respectively, contexts) labeled by A, without any restriction on labels in leaves or inner
nodes. We write A∆ for the pair (A∆

H , A
∆
V). The only difference between A∆ and (A,A)∆

is that the second does not allow the empty forest on its first coordinate. It is not hard to
see that A∆ is a forest algebra, as defined in Section 4. Given a set L of forests, possibly

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 27

including the empty forest, the syntactic forest algebra with empty forests of L is defined to
be the quotient of A∆ under the two-sorted equivalence relation defined below.

t ≃ t′

p ≃ p′
iff ∀p ∈ A∆

V pt ∈ L ⇔ pt′ ∈ L

iff ∀q ∈ A∆
V ∀s ∈ A∆

H qps ∈ L ⇔ qp′s ∈ L

This equivalence relation is a refinement of the Myhill-Nerode equivalence introduced in
Section 4 (for the case when A = B). It may possibly distinguish more contexts because
the variable s can also quantify over the empty forest.

Theorem 9.1. Let L be a forest language. Let (H,V) be its syntactic forest algebra, and let
(H ′, V ′) be its syntactic forest algebra with empty forests. If (H,V) satisfies the identities
from Theorem 6.2, then so does (H ′, V ′), and vice versa.

Proof. We begin with the right to left implication. Since (A,A)∆ is a subalgebra of A∆,
and since the equivalence relation defining (H ′, V ′) is a refinement of the equivalence rela-
tion defining (H,V), it follows that (H,V) is a subalgebra of (H ′, V ′). In particular, any
identities that hold in the latter must also hold in the former.

For the left to right implication, assume that (H,V) satisfies the identities from The-
orem 6.2. By the theorem, the recognized language L is forest-definable in EF + F

−1. To
conclude, we will show that if a language L is forest-definable in EF+F

−1, then its syntactic
forest algebra with empty forests (H ′, V ′) satisfies the identities from Theorem 6.2. This
follows by the correctness argument presented in Section 7. The reason why we can use
that argument is that it relied on Proposition 7.3 to transfer Duplicator strategies, and this
proposition also works for the more general one-sorted morphisms that are appropriate for
forest algebras with empty forests.

10. One quantifier alternation

In [13], it was shown that over words, the temporal logic F+F
−1 has the same expressive

power as Σ2 ∩ Π2, where

• Σ2 are word properties definable by a first-order formula with quantifier prefix ∃∗∀∗; the
signature contains label tests and the left-to-right order on word positions.

• Π2 are complements of Σ2.

For instance, consider the word language b∗aA∗ over the alphabet A = {a, b, c}. This
language can be defined in F + F

−1 by the formula

F(a ∧ ¬F
−1¬b) .

This language can also be defined both in Σ2 and Π2, as witnessed by the formulas:

∃x∀y a(x) ∧ (y < x ⇒ b(y)) ∈ Σ2

∀x∃y c(x) ⇒ (y < x ∧ a(y)) ∈ Π2 .

Both classes Σ2 and Π2 can be extended to trees using the descendant order on tree nodes.
We show here that the result from [13] fails for trees:

Proposition 10.1. Over trees, the classes EF + F
−1 and Σ2 ∩ Π2 have incomparable ex-

pressive power. Likewise for forests.

28 M. BOJAŃCZYK

A mentioned in the introduction, the class Σ2∩Π2 was given an effective characterization
in [3]. We prove the above proposition for forests, the case for trees is done the same way.
The inequality

EF + F
−1) Σ2 ∩ Π2

is witnessed by the language “three nodes with label a”, which cannot be defined in EF+F
−1

by virtue of (6.1). To show the remaining inequality

EF + F
−1 (Σ2 ∩ Π2 ,

we will demonstrate in the following lemma that the forest property “no root node is a leaf”
cannot be defined in Σ2, although it is forest-definable in EF + F

−1.

Lemma 10.2. Let a be a leaf label, b an inner node label, and ϕ be a formula of the form

∃x1 . . . xi∀y1 . . . yjψ(x1 . . . xi, y1 . . . yj) ∈ Σ2 ,

with ψ quantifier-free. Let n > i+ j. If n(ba) satisfies ϕ, then so does n(ba) + a.

Proof. Assume then that n(ba) satisfies ϕ. We need to show that n(ba) + a does too. For
x1, . . . , xi, we pick the same nodes in n(ba) + a as the nodes in n(ba) that witnessed ϕ. We
need to show that for any assignment of the nodes y1, . . . , yj in n(ba) + a that makes ψ
false, we also can find an assignment in n(ba) that makes ψ false. The key point is that any
assignment of x1, . . . , xi, y1, . . . , yj in n(ba) + a must leave at least one copy of ba without
any variables; this copy can be used in n(ba) to simulate a.

11. Closing remarks

The contribution of this paper is a characterization of languages definable in EF + F
−1.

This characterization is expressed in terms of identities that must be satisfied in the syntactic
algebra. A corollary of this characterization is an algorithm for deciding if a given regular
language can be expressed in EF +F

−1. The algorithm runs in polynomial time if the input
is given as a forest algebra.

As mentioned in the introduction, there are many open problems waiting to be solved
in this field. Of those closely related to EF + F

−1, the following look interesting:

• What are the identities for two-variable first-order logic with the descendant relation?
The question boils down to: what identity should replace idempotency h+ h = h? Here
is one candidate: v(h+ h) + vh = vh+ vh.

• What are the identities for an extension of EF + F
−1, where we allow operators of the

form EF
kϕ, with the meaning: “the current node has k incomparable descendants where

ϕ holds”. This seems to be a reasonable extension of EF+F
−1 that is capable of counting

in a proper way (recall that two-variable logic could express the property “there are two
a’s”, but not the property “there are three a’s”).

It is conceivable that a modification of the techniques developed in this paper can be
sufficient to solve the above two logics. For other logics mentioned in this paper, such as
full first-order logic, or even variants of EF+F

−1 with horizontal order, new techniques need
to be developed.

TWO-WAY UNARY TEMPORAL LOGIC OVER TREES 29

References

[1] M. Benedikt and L. Segoufin. Regular languages definable in FO. In Symposium on Theoretical Aspects

of Computer Science, volume 3404 of Lecture Notes in Computer Science, pages 327 – 339, 2005.
[2] M. Bojańczyk. Decidable Properties of Tree Languages. PhD thesis, Warsaw University, 2004.
[3] M. Bojańczyk and L. Segoufin. Tree languages definable with one quantifier alternation. Submitted.
[4] M. Bojańczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. Logic in Computer

Science, 2008.
[5] M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theoretical Computer Science,

358(2-3):255–273, 2006.
[6] M. Bojańczyk and I. Walukiewicz. Forest algebras. In Automata and Logic: History and Perspectives,

pages 107 – 132. Amsterdam University Press, 2007.
[7] U. Heuter. First-order properties of trees, star-free expressions, and aperiodicity. In Symposium on

Theoretical Aspects of Computer Science, volume 294 of Lecture Notes in Computer Science, pages
136–148, 1988.

[8] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.

[9] J.-É. Pin. Logic, semigroups and automata on words. Annals of Mathematics and Artificial Intelligence,
16:343–384, 1996.

[10] A. Potthoff. First-order logic on finite trees. In Theory and Practice of Software Development, volume
915 of Lecture Notes in Computer Science, pages 125–139, 1995.

[11] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190–
194, 1965.

[12] P. Tesson and D. Thérien. Diamonds are forever: the variety da. In Semigroups, Algorithms, Automata

and Languages, pages 475–500, 2002.
[13] D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier alternation. In

ACM Symposium on the Theory of Computing, pages 256–263, 1998.
[14] W. Thomas. On chain logic, path logic, and first-order logic over infinite trees. In Logic in Computer

Science, pages 245–256, 1987.
[15] T. Wilke. Classifying discrete temporal properties. In Symposium on Theoretical Aspects of Computer

Science, volume 1563 of Lecture Notes in Computer Science, pages 32–46, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Why two-way unary temporal logic
	2.1. The word analogy
	2.2. XPath

	3. Basic definitions
	3.1. Trees and forests
	3.2. The logic
	3.3. Antichain composition principle

	4. Forest algebra
	4.1. Equivalence with regular languages
	4.2. Syntactic algebra
	4.3. Green's relations for trees

	5. Tree-Definable vs Forest-Definable
	6. The identities and the main result
	7. Correctness
	7.1. Ehrenfeucht-Fraïsse Game
	7.2. Morphic images
	7.3. Correctness of the identities

	8. Completeness
	8.1. For some inner node label b B, v is not reachable from v(b)
	8.2. There is more than one forest component in H X
	8.3. The induction base

	9. Empty forests
	10. One quantifier alternation
	11. Closing remarks
	References

